CN1108515C - 利用节点靠近型传感器的高灵敏度科里奥利氏效应流量计 - Google Patents

利用节点靠近型传感器的高灵敏度科里奥利氏效应流量计 Download PDF

Info

Publication number
CN1108515C
CN1108515C CN95194255A CN95194255A CN1108515C CN 1108515 C CN1108515 C CN 1108515C CN 95194255 A CN95194255 A CN 95194255A CN 95194255 A CN95194255 A CN 95194255A CN 1108515 C CN1108515 C CN 1108515C
Authority
CN
China
Prior art keywords
stream pipe
flowmeter
sensor
node
pipe assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN95194255A
Other languages
English (en)
Other versions
CN1153554A (zh
Inventor
A·T·帕顿
C·P·施特克
A·K·莱维恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micro Motion Inc
Original Assignee
Micro Motion Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micro Motion Inc filed Critical Micro Motion Inc
Publication of CN1153554A publication Critical patent/CN1153554A/zh
Application granted granted Critical
Publication of CN1108515C publication Critical patent/CN1108515C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8413Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8436Coriolis or gyroscopic mass flowmeters constructional details signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/8472Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/8472Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane
    • G01F1/8477Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane with multiple measuring conduits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/849Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having straight measuring conduits

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Measuring Volume Flow (AREA)

Abstract

一种提高了灵敏度的科里奥利氏流量计(310)它具有使一个流管(130)或是多个流管(130,130’)在预定频率下振动以在沿着流管(130,130’)的某些点产生包括动态节点(AN)和/或静态节点(SN)在内的节点的一个或是多个驱动器(D)。本发明的流量计(310)的灵敏度的提高,是通过使传感器(S)控制定位在靠近静态节点(SN)和或动态节点(AN)的位置处的方式实现的。在第一实施例中,流管(130,130’)按在靠近传感器(S)设置的位置附近或是其相对侧产生一个单一的动态节点(AN)的方式振动。在第二实施例中,流管(130,130’)按产生多个动态节点(AN)的方式振动,而传感器(S)设置在每一个动态节点(AN)的相对侧,或是就传感器(S)设置在相对的流管(130,130’)处,即将一个传感器(S)设置在一个支管处的一个动态节点(AN)之上,另一个传感器(S)设置在相对支管处的动态节点(AN)之下。在其它实施例中,传感器(S)设置在靠近静态节点(SN)的位置处,或是如前所述将传感器(S)设置在动态节点(AN)处。在所有的实施例中,传感器(S)均按传感器电子组件产生的信号的信噪比为最大的方式,被控制定位在靠近动态节点(AN)和/或静态节点(SN)的位置处。

Description

利用节点靠近型传感器的高灵敏度 科里奥利氏效应流量计
                        本发明的技术背景
本发明涉及科里奥利氏效应流量计,特别涉及到具有相当靠近流量计管的一个或多个振荡节点的拾取传感器的科氏效应流量计。
                           问题的提出
众所周知,科氏效应流量计可以测量材料流过管道时的质量流量和其它信息。这种类型的流量计已经于1978年8月29日公开在美国专利4109524中,于1985年1月1日公开在美国专利4491025中,于1982年2月11日公开在美国再颁发专利31450中,所有这些专利均是授予J.E.Smith等人的。这些流量计均有一个或多个直的或是弯曲的流管。在科氏质量流量计中的每一种流管结构均有一组固有振动模式,这些模式可能是简单弯曲型,简单扭转型,或是其复合形式。每一个流管均被驱动,在这些固有模式之中的某一个下产生共振振动。材料从与该流量计的输入侧相接的管路流进该流量计,被引导通过一个或多个流管,再通过输出侧排出到流量计外。使充满流管的流体被激振的固有振动模式部分地由流管和流管内的材料的组合质量来限定。
当没有流体流过流量计时,沿流管的所有的点均在所施加的驱动力作用下,以同一相位振动。当材料开始流入时,科里奥利氏加速度将使沿流管的每一个点均具有不同的相位。在流管输入侧的相位会滞后于驱动器,而在输出侧的相位将领先于驱动器。若将传感器设置在流管上,即可产生相应于流管运动的正弦形信号。两个传感器信号间的相位差即正比于流过该流管的材料的质量比流量。
在这种测量中的一个复杂的因素就是,典型处理流体的密度是变化的。密度的这一变化会导致固有模式的频率变化。由于流量计控制系统要保持共振,所以其振动频率也要相应于密度的变化而变化。在这种条件下,质量比流量正比于相位差和振动频率的比率。
在上述的授予Smith的美国再颁发专利31450中,所公开的科氏流量计克服了需要同时测量相位差和振动频率这两个量的要求。它是通过测量该流量计的两个正弦形信号的水平过零点之间的时间延迟,来测定相位差的。当采用这种方法时,在振动频率中的这一变化被抵消,而质量比流量正比于所测得的时间延迟。这种测量方法在后面被称为时间延迟或Δt测量。
由于在两个传感器输出信号间的相位差正比于流过所述一个或多个流管的材料的质量比流量,所以往往可以形成这样的点,即由于仪器灵敏度的限制和噪音的影响,当质量比流量降低时,在该点上测不到相位差。如果需要所测量的是,比如说气体等等的低密度材料在低压下的质量比流量,则需要非常高的相位检测灵敏度,才能由流量计输出信号中检测出相应的相当低的相位差。许多常规的科里奥利氏流量计并不具有相应的相位检测灵敏度,故它们不能用来测量低压或是低流速下的气体的流量。
因此,需要有一种提高了其灵敏度的、可测量诸如在低流速下和低压下的气体等等的材料的质量比流量的流量计。
                     技术解决方案
上面所提出的需要使科里奥利氏流量计具有更大的材料质量比流量灵敏度的问题,可由本发明的流量计给予解决。这种流量计是通过控制传感器的位置,使其尽可能的靠近流管的节点,以提高其灵敏度的。节点可以是某些静态节点,也可以是某些振动节点(下面称为“动态节点”)。节点是沿着一条振动流管上的振动幅度为零的点。静止节点是位于流管支撑杆处的或者是其它的固定着的流管端头处的节点,在这些地方,流管的振动被机械的抑制住而形成为零振幅点。动态节点是沿着一条振动流管上的除静止节点位置之外的自由形成的一个或多个节点,而且动态节点位置是由在没有材料流经流管时的振动频率、驱动位置和所产生的流管振动等等决定的。
本发明提供了一种用于测量流过管路的材料的质量比流量的改进了的方法和装置。这里公开的装置和方法具有更高的测量灵敏度,所以可以用来测量诸如低压气体等的低密度流体的质量比流量。在运行中,使用本发明的流量计管将产生振动,并可以由一对传感器的输出信号中获得时间差(Δt)的测量,而且这一对传感器可控制地定位在靠近一个或多个节点的位置处。该增大了的测量灵敏度是通过将这一对传感器,在可实施的情况下,沿流管设置在尽可能靠近节点的位置处来保证的。
本发明的流量计使用一个或多个驱动器,以使得一个流管(或是具有平行结构两个流管)在一定的频率下振动,产生预期的动态节点。这些驱动器可以在波腹处或是其附近,也可以在一个或是多个流管振动的固有频率的节点之外任何其他位置处,与一个或是多个流管相接触。
在这里公开的本发明的两个最佳实施例中,使用的是两个平行的具有基本上直的顶部部分的、与两个向下游侧和内侧的斜置流管“支管”相连接的“改进了的U形”流管。在一个实施例中,流管按在与流管的支管相连接的顶部部分的中点处产生一个单一的动态节点的方式振动。两个用来检测流管运动的传感器,设置在尽可能靠近该动态节点处和该动态节点处的相对两侧。
在另外的实施例中,流管可在更高的频率(与第一实施例相比)下振动,以产生多个动态节点。在这些另外的实施例中,可以将两个拾取传感器设置在管子的相对的支管上,即将一个传感器设置在管子的一个支管的动态节点之上的位置处,而将另一个传感器设置在管子的另一个支管的相应的动态节点之下的位置处。将这些传感器相对于流管支管设置,便可以使传感器尽可能的按预定方案靠近相应的动态节点处设置,而不会受到传感器的物理尺寸的限定。
在各种振动模式下,拾取传感器均可以被控制设置在能充分地靠近动态或是静态节点的位置处,从而使传感器电子组件产生的信噪比可以最大化。
本发明的流量计可以使用基本上直的管子或是弯曲的管子,也可以使用其它形式的管子。
                        对附图的简要说明
本发明的上述的和其它的优点和特征,可以由下面参考附图所作的说明中得到更好的理解。
图1示出了一种在先技术中的科里奥利氏流量计。
图2形象的示出了对于所涉及的仪器的在输出信号的幅度、相位和传感器的流管位置相应于动态节点和噪声电平之间的关系的曲线图。
图3示出了本发明的使用一种改进了的“U”形流管的流量计的最佳实施例。
图4和5分别示出了弯曲和扭转模式的一般例子中的拾取传感器和驱动器位置的示意图。
图6示出了流量计在弯曲模式下运行时的传感器和驱动器位置的示意图。
图7和8分别示出了在第一异相扭转模式和第二异相扭转模式下的各种传感器和驱动器位置的示意图。
图9示出了本发明的另一种使用一种直形流管的另外的实施例。
图10示出了图9中的流管各个部分的位移的曲线图。
                          详细说明
现有技术
图1示出了科里奥利氏流量计的机械组件10和电子组件20。电子组件20通过导线100与机械组件10相连接,并将密度、质量比流量、体积流速和总和质量流动信息供给至通路26。
机械组件10包括一对歧管110和110’,管型元件150和150’,一对平行流管130和130’,驱动机构180,以及一对速度传感器170L和170R。流管130和130’具有两个基本上直的输入侧支管131和131’和输出侧支管134和134’,它们向前方彼此汇聚在岐管元件120和120’处。撑板140和140’限定了每一流管的振动时所围绕的轴线W和W’。
流管130和130’的侧支管131和134固定附着在流管安装构件120和120’上,而后者固定附着在歧管元件150和150’上。这样便可以形成通过科里奥利氏流量计机械组件10的连续闭合的材料通路。
当具有带有孔102的法兰103的机械组件10,通过输入侧端部104’和输出侧端部101’,连接至引导被测的处理材料用的流管系统(未示出)时,处理材料将通过输入侧歧管110上的端部104的法兰103中的孔口101进入流量计,并通过其横截面逐步变化的通道路线而引导至具有表面121的岐管元件120处。在这儿,材料将分开流经支管131和131’、流管130和130’和支管134和134’。到达输出侧支管134和134’时,处理材料将在歧管元件150’中再次合为一股,然后流经输出歧管110’。在输出侧歧管110’中,通过其横截面逐步变化的另一通道路线的材料将由歧管110流至输出侧端部104’处的孔口101’。输出侧端部104’通过具有螺纹孔102’的法兰103’,与管道系统(未示出)相连接。
可以适当的选择流管130和130’,并将其安装在元件120和120’上,以便能够相对于弯曲轴线W-W和W’-W’分别形成相同的质量分布、惯性力矩和弹性模量。这些弯曲轴线是静态节点,且位于相应的流管撑板140和140’和元件120和120’处。这些流管由安装构件以基本上平行的方式向外侧伸延,并且相对于各自的弯曲轴线具有基本上相同的质量分布、惯性力矩和弹性模量。
由驱动器180沿相对于各自的弯曲轴线W和W’以相反的方向驱动这两个流管130,其频率为该流量计的第一异相固有频率。这种振动模式也被称为异相弯曲模式。两个流管130和130’象调谐音叉的叉指那样进行异相振动。该驱动机构180可以为包含诸如安装在流管130’上的一个磁体和安装在流管130上的一个相对的线圈,并且使交变电流流过线圈而使这两个流管振动等等的任何一种公知方式在内的设置方式。可用表计的电子组件20将一个适当的驱动信号通过导线185送至驱动机构180。
驱动机构180和所产生的科里奥利氏力,将使流管130以周期方式相对于轴线W和W’振动。在流管130的第一个振动半周期中,相邻侧支管131和131’受到力作用,而比与它们相配合的侧支管134和134’更靠近,并且比与它们相配合的上述部件更早的到达行程的端点,在端点处它们的速度过零。在科里奥利氏振动的第二个半周期中,二流管130将产生相反的相对运动,即相邻侧支管134和134’受到力作用,而比与它们相配合的侧支管131和131’更靠近,并且比与它们相配合的上述部件更早的到达行程的端点,在端点处它们的速度过零。这一时间间隔(下面被称为特定频率的相位差,或是时间差,简化为“Δt”值),即这一对相邻侧支管到达行程的端点,要比与它们相配合的部件(即受力分开的部件)到达行程的端点更早的这一间隔,基本上正比于流过表计组件10的处理材料的质量比流量。
为了测量该时间间隔Δt,可将一对传感器170L和170R附设在流管130和130’的上侧端部附近。该传感器可以为任何公知的类型的传感器。由传感器170L和170R产生的信号给出了流管的整个行程的速度分布,表计电子组件20可用任何一种公知的方法对其进行处理,计算时间间隔Δt,进而得出流过该流量计的材料的质量比流量。
传感器170L和170R分别向导线165L和165R提供左、右速度信号。该时间差,或称Δt的测量,可提供由左、右速度传感器信号之间产生的相位差的一种表示形式。但是请注意,这两个传感器170L和170R分别设置在距位于撑板140和140’处的静态节点相当的距离处。正如下面所述,在静态节点和传感器之间的这一较大的距离将会降低材料流动测量的分辨力。
表计电子组件20分别接收由导线165L和165R送来的左右速度信号。电子组件20还产生通过导线185送至驱动机构180的驱动信号,后者驱动流管130和130’振动。电子组件20处理所接收到的左右速度信号,以计算出流经表计组件10的材料的质量比流量、体积流速和材料密度。
对附图2的说明
图2以传感器S在流管130和130’上的位置为例,示意性的示出了图3中的科里奥利氏流量计310的各种参数之间的关系。由图2示出的参数包括对于各种可能的传感器位置的振动流管的相位和位移幅度,相应于传感器的不同流管位置的可由传感器位置获得的传感器输出信号,相应于不同传感器位置的、可由两个传感器输出信号之间的得到的相位移,以及传感器输出信号中的噪声电平。图2示出了弯曲和扭转运行模式,它可适用于,但并不仅限于,包括图1、3和9所示的各种形式的科里奥利氏流量计。
术语“输出信号幅度”是指由图3中的拾取传感器SL和SR的输出信号的幅度。该输出信号幅度正比于流管由其中心位置的位移。Y轴称为切线,它表示的是两个传感器输出信号的相位移。X轴代表的是在一个单一的动态节点AN和各种各种传感器位置之间的距离。传感器可被控制定位在由图2中间的垂直线所代表的位置处的动态节点AN任一侧的不同位置。左侧垂直线BL代表左侧撑板,诸如图3中的撑板BL的位置。最右侧的垂直线BR代表图3中的相对于动态节点AN的位置的右侧撑板BR。相对于AN动态节点左侧和右侧的垂直线DL和DR,代表着图3中的驱动器DL和DR的位置。
曲线201代表着当左侧传感器SL在由左侧撑板BL至右侧动态节点AN内的可能位置范围中间移动时,所可能产生的相位移。由图中可见,该传感器输出信号的相位移在垂直线BL附近的幅度适中,并且由此开始减少,一直减少到垂直线206的区域。然后保持该减少了的噪声电平,直到与垂直线207相接的区域。从这里向右侧,在靠近动态节点AN的传感器位置处,相位移变的相当的大。右侧传感器DR的相位移是负的,而且正如图2中的右下象限所示,它在垂直线BR位置附近从适中的电平开始变化。由此开始减少,在垂直线214和213的区域中一直减少。在靠近动态节点AN的传感器位置处,它在负方向上变到相当的大。
流管不同部份上的位移由曲线203示出。曲线203还示出了相对于每一曲线203位置处的传感器输出信号的相对幅度。由图中可见,传感器输出信号203,在右侧撑板BR和左侧撑板BL两个垂直线附近,以及由位于垂直线209和211之间的位置所代表的动态节点AN的附近,低于噪声值。由于可能够获得的相位移201相当小,所以在垂直线206和207之间的流管位置并不是左侧传感器SL的最佳位置。如果将右侧传感器SR设置在垂直线213和214之间的的位置处,也可以获得类似的状态。由于要使左侧传感器SL输出的输出信号幅度和相位移均比较大,所以对于左侧传感器SL的设置来说,垂直线207和209之间的位置是最佳位置。类似地,由于要使可获得的传感器输出的信号幅度和相位移均比较大以及使噪声电平最低,所以对于右侧传感器SR的设置来说,垂直线211和213之间的位置是右侧传感器SR的最佳位置。
根据本发明的技术教导,为了消除噪声问题,获得具有适当幅度和相位移的输出信号,可在与线207和209相对应的流管位置之间,对左侧传感器SL进行定位控制。类似地,为了获得具有适当幅度和相位移的输出信号,使噪声电位降低到最小,可在垂直线211和213之间,对右侧传感器SR进行控制定位。
不论所使用的是哪一种流管,也不论节点N是动态节点AN还是静态节点SN,是一个节点还是多个节点,均应使传感器S在实际上可行的范围内,尽可能的靠近一个节点N而定位的原理,是本发明给出的技术教导。若节点并不位于撑板或是其它的支撑点处,传感器S可以跨接在动态节点AN上,对于位于撑板B处的静态节点SN,传感器S也可以在实际上可行的范围内,尽可能的靠近定位在静态节点SN处。传感器S还可以跨接在两个动态节点AN上,就象后面的图5所示的那样。传感器S的位置越靠近节点N,Δt的值就越大,因而对质量流量的测量灵敏度就越高。但是,流管的输出信号的幅度与Δt的值成反比。本发明就是要使传感器S控制定位于尽可能靠近节点N的位置处,但仍然与节点N相距一定的足够距离,以便能产生具有可使用的信噪比的输出信号的幅度。
对附图3的说明
图3示出了本发明的流量计310的一种示范性的实施例,它使用了改进了的“U”形流管。术语“改进了的‘U’形流管”指得是这样一种流管,它包括基本上呈“D”形的具有基本上为直的部分的流管,以及基本上呈“D”形的具有非直线性的或是曲线部分的流管。图三所示的实施例的结构和功能,基本上与图一所示的例子相同,其差别仅在于驱动器DL和DR的位置,以及拾取传感器SL和SR的位置。尽管和图一所示的仪器相比,驱动器DL和DR也位于流管130和130’不同的位置处,但是本实施例的描述主要是用来对使传感器尽可能的靠近位于流管130和130’的顶部区域中的中点处的一个动态节点而定位时的各种不同的布置方式的讨论。不难理解,所描述的这一实施例仅仅是用于解释的目的,并不意味着对本发明范围的限定。应该认为其它实施方式也属于本发明的范围之内。
图3所示的流量计是在异相扭转模式下运行的,它可产生一个位于轴线NP和由流管130和130’的中心限定的平面的中心的交叉点处的动态节点AN。驱动器DL和DR定位在流管130和130’的、下面被称为流量计310的“顶部”区域的直的区域的相对的端部处。驱动器DL和DR在驱动信号322和324的驱动下进行异相运行,以使流管130和130’的顶部部分相对于轴NP扭转。科里奥利氏流量计310具有位于尽可能靠近动态节点AN处的拾取传感器SL和SR,以便能够在流量计仪器的信噪比抑制范围内使Δt的值最大化。质量流量仪器320分别通过通路326和328接在传感器SL和SR之中,通过通路322和324接在驱动器DL和DR之中。质量流量仪器320可有效实现,如图一所示和说明的电子组件20同样的功能。
运行模式
在已经公开的流量计中,有两种令人感兴趣的运行振动模式。它们是“弯曲”和“扭转”模式。流管可以在包括“弯曲模式”和各种“异相扭转模式”在内的几种模式下被驱动。象图一中的流量计所示的那样,通过在相当低的共振频率下相对轴线W和W’异相驱动流管,便可以实现弯曲模式。这样,在撑板140和140’处将形成静态节点。撑板140和140’还是流管异相振动的枢轴点。在频率通常高于弯曲模式所用的频率下以扭转方式在流管的端部进行驱动时,便可以实现异相扭转模式。流管在一种可能的典型扭转模式下振动,会在流管的顶部(在中点)处产生一个单一的动态节点AN。这正如图三所示。
在上述的如图一所示的在先技术中,驱动器180是设置在与流管支管131/131’和134/134’相连接的流管130和130’的顶部区域处的。在这种布置中,流管将在第一异相“弯曲”模式下运行,从而在撑板140和140’处产生静态节点。传统的科里奥利氏流量测量仪器亦是将它们的传感器适当定位,以便能产生足够大的输出信号幅度。然而,这些现有的科里奥利氏流量测量仪器并没有将传感器设置在靠近节点的位置处,以便使输出信号的相位差最大化。
当如图3所示,流管支管131/131’和134/134’在第一异相“扭转”模式下被驱动时,静态节点SN分别位于撑板BR和BL处或是其附近,而动态节点AN将在流管130和130’的顶部中心区域处产生。然而,传统的系统并没有将动态节点AN或是静态节点SN利用来作为定位传感器的“焦点”。
本发明并不仅限于将传感器S定位于接近单一顶部区域中心动态节点AN处,以增大测量精度。本发明还可以用来利用其它的“扭转”模式,来较常规的科里奥利氏流量计增大其测量精度。本发明还可以在扭转模式运行下利用更高的驱动频率,以产生两个或是多个动态节点AN。可以用驱动器DL和DR沿流管130和130’的定位位置和频率,来确定动态节点AN的数目和位置。
在扭转运行模式下,比如说如图3所示,驱动器DL和DR可在非节点位置处,定位在流管130和130’的支管的相对端部处。在任何一种运行模式(弯曲或是扭转)下,传感器SL和SR均可被控制定位在动态节点AN附近(或是相对于动态节点),以便能在可接受的信噪比下运行,并且使Δt的值最大化。
对附图4和5的说明
图4和5示出了对于“普通的”流量计,传感器和驱动器相对于节点位置的定位位置,该流量计可以是直的,U形的,或是不规则形的结构。图4中用曲线A示出了流管位移的幅度,它相对于一个动态节点AN,随设置在流管FT上的传感器S1和S2,以及驱动器DL和DR的位置而变化。尽管本发明的最佳实施例使用了一对平行的流管FT,但是为了便于理解,在图3和4中仅示出了一个流管。当按照图3所示的实施例,使流量计管路在扭转模式下运行时,则可如图4所示,将传感器S1和S2在如图2所示的信噪比抑制的范围内,在实际上可运行的条件下,设置在靠近动态节点AN的位置处。在某些例子中,由于传感器S的体形尺寸可能会妨碍将它们设置在靠近动态节点AN的位置处,对于这一特定的问题,图5所示出的实施例给出了另一种解决方案。静态节点SN位于撑板BL和BR处或是其附近。
正如下面将要进一步详细说明的那样,图5所示的流管是在第二异相扭转模式下运行的。在这种扭转模式下,有两个动态节点AN1和AN2,以及两个驱动器DL和DR。为了说明方便,图中仅示出了一个流管,但也可以使用两个流管。两个动态节点AN1和AN2的存在,使得成对传感器S1-S2和S3-S4可以设置在四个可能利用的位置中的任一个处。因此,传感器对可以定位在位置S1和S2,S3和S4,S1和S4,或是S2和S3。由于这里有两个动态节点AN1和AN2,所以可以将传感器设置在流管的相对侧,从而可以将传感器在实际上可运行的条件下,设置在尽可能靠近预期的节点处,消除在需要将两个传感器设置在给定节点的相对侧时的体形接近方面的限制。如果需要的话,图5的实施例也可以使用中心DC驱动器,以及驱动器DL和DR。静态节点SN位于撑板BL和BR处或是其附近。
对附图6的说明
根据本发明的原理,图6示出了在第一异相弯曲模式下运行的流量计中的传感器和驱动器的位置。图6示出了流量计元件的零流量状态。零偏移状态如虚线所示。偏移状态如实线所示。在图6中,和如图1所示的在先技术相类似,驱动器D1被定位在流管130和130’的顶部的中点附近,从而使流管在振动时的静态节点SN分别出现在撑板BL和BR处。然而,在图6所示的实施例中,传感器SL和SR和在先技术中的传感器170L和170R相比,被向下方侧移动,以便分别使它们的位置,更接近于撑板BL和BR处的各自的静态节点SN。增加了的流量测量灵敏度即是由传感器的节点接近定位获得的。
对附图7和8的说明
图7和8分别示出了相应于第一异相扭转模式和第二异相扭转模式的传感器和驱动器的位置。
正如图7所示,驱动器DL和DR在第一异相扭转模式下驱动流管130和130’。虚线FTO和FTO’示出了零偏移状态。线FT1和FT1’示出了常规流动状态。在这种特定的扭转模式下,传感器SL和SR设置在靠近动态节点AN的位置处。可以根据上述图2中讨论得出的准则,确定传感器SL和SR对动态节点AN的靠近状态。
图8示出了根据本发明构成的第二异相扭转模式。若将图8和图5相比较可见,前者将产生两个动态节点AN1和AN2,这使得传感器可以在更大的区域内设置。虚线FTO和FTO’代表着无流量状态。实线FT1和FT2代表着常规流量状态。在这种特定的模式下,使用了三个驱动器DL,DC和DR。该驱动系统可在流管130和130’的顶部区域上产生动态节点AN1和AN2。也可以用两个驱动器产生同样的节点,但是在这种例子中,一个驱动器必须设置在流管的顶部区域,而另一个驱动器要设置在两侧部之一处。传感器SL1和SL2设置在靠近动态节点AN1的位置处,而传感器SR1和SR2设置在靠近动态节点AN2的位置处。
对附图9的说明
本发明的另一个可实施的最佳实施例已示出在图9中,它的管形部分由元件912,914支撑着。这两个元件之间的距离决定着管子910的振动频率,这是由于上述距离至少为驱动频率的一个波长长度。如果为了使流量计能够实际运行,管子910的长度相当长,则可以在管子910上安装附属于元件912和914的、且位于元件912和914之间的支撑体。本发明的流量计元件可以夹在管子910上,而不需要对管子作任何较大的改动或是变化,并可以测量由管子内流过的材料的质量比流量。如图所示,管子910基本上是直的且横截面不变。不难理解,本发明的流量计也可以使用其它各种形状和结构的管子。
图9中的实施例包括有直接夹在管子910上的驱动器920,其位置可以为固有频率的二次谐波的波腹处或是其附近,也可以为除固有频率的第二谐波的节点之外的任何位置处。与驱动器920相类似的附属驱动器,也可以夹在管子910上,以增加对称性,并平衡所施加在管子上的荷载。然而,正如图所示,本发明的这一系统也可以仅在一个驱动器下运行。驱动器920可以与包括有运动传感器930的反馈回路相连接,并且可以以直接与驱动器920相对,位于驱动器920附近或是附着在驱动器920上的方式,安装运动传感器930。
流量计元件还可以包括有以在实际上可行的范围内,尽可能靠近动态节点的方式安装在管子910上的运动传感器932L和932R,这一点已由虚线931示出。配重940可以安装在管子910的预定位置处,比如说安装在管子910的固有振动频率的谐波波腹处等等,以平衡驱动器920产生的负载。如果需要的话,还可以在该位置安装第二驱动器,也可以将配重940或是第二驱动器除去。
对附图10中的系统运行的说明
图10形象地示出了流管910在运行时各部分的位移。图10中的幅度曲线1000形象地示出了管子910在其二次谐波频率下振动时的零流量状态。
曲线1000在管子由支撑体912,914固定的每一端部,以及在非流动状态时的动态节点位置1002处,为零幅度。曲线1000的峰值幅度出现在波腹1004和1006处。驱动器920向管子910施加横向力,然后释开这一力,从而使管子910振动。幅度曲线1000示出了受力循环部分,而幅度曲线1000’示出了非受力循环部分。波腹1004,1006在每一循环中的幅度相反,而且在非受力循环部分中它们位于1004’,1006’处。
当有材料流经管子910时,管子910的振动将在管子的每一元件上产生科里奥利氏力。有流体流动的管子的幅度曲线1010,1020已经示出在图2中。为了说明系统的运行方式,在图2中已经将管子910的挠曲幅度大大地放大了。作用在管子910上的科里奥利氏力的效应,将使幅度曲线1010(相应于该驱动循环的第一部分),与零流量状态的幅度曲线1000相比,向左侧偏移。流过管子910的材料将抵抗由振动管子传递的这一效应。由于材料反作用于管子910管壁的科里奥利氏力效应的影响,曲线1010的初始部分在幅度上比曲线1000小。这将使振幅曲线1010的动态节点(零幅度点)向位置1020偏移。类似地,作用在管子910上的科里奥利氏力的效应,在循环的第二部分对管子910的影响将产生振幅曲线1020。曲线1020的节点1022(零幅度点)先于曲线1000的节点1002。
节点1012和节点1022的循环纵向偏移将会在管子910的位置1002处产生一个循环的横向幅度位移。正如图10所示,这一横向位移将在表示从动态节点位置1002处偏移开的曲线1010的曲线1010上的点1018,和表示从动态节点位置1002处偏移开的曲线1020的曲线1020上的点1028,之间产生。动态节点位置处的这一循环的横向位移,是由于流过振动管910的流体流动产生的科里奥利氏力的效应产生的。由于这一科里奥利氏力的效应是由在管子910中流过的材料的质量产生的,所以测定的由它产生的横向加速度和位移,直接代表着材料的质量比流量。
不难理解,本发明并不仅限于最佳实施例中的这些描述,它还包括本发明的主题和范围内的其它的改进和变化。

Claims (18)

1.一种科里奥利氏流量计(310),用于测量流过所述的流量计的处理材料的特性,所述的流量计(310)具有:流管组件(130,130’;910),用于使所述的处理材料从其中流过,所述流管组件在沿着其长度方向隔开的两个位置被固定;驱动组件(DL,DR;DL,DC,DR;920),被安排来使所述的流管组件(130)振动,以便在所述流管组件上的所述两个固定位置之间的一个位置处产生至少一个动态节点(AN;AN1;AN2;931);传感器装置,包括响应所述的流管组件的所述振动和流过所述的流量计的所述的处理材料产生表示由于所述的处理材料流过所述的流管组件产生的科里奥利氏力而使所述的流管组件振动的传感器输出信号的一对传感器(SL,SR;S1,S2;S1-S4;932L,932R);以及响应传感器输出信号以产生表示在所述的流量计(310)中流过的所述的处理材料的信息的信号处理组件(320),其特征在于:所述传感器对(SL,SR;S1,S2;S1-S4;932L,932R)固定于所述流管组件(130,130’;910)上所述至少一个动态节点(AN;AN1;AN2;931)的相对的两侧,尽可能靠近所述动态节点,以便使得传感器输出信号之间的相位差达到最大,同时保持与所述动态节点充分隔开,以使所述输出信号的幅值具有可用的信噪比。
2.如权利要求1所述的流量计,其中所述的流管组件包括一对基本上平行的流管(130,130’)。
3.如权利要求2所述的流量计,其中所述的流管(130,130’)具有顶部部分,和具有与撑板(BL,BR)相连接的较低部分形成流管的两个固定位置的一对侧支管(134,134’,131,131’)。
4.如权利要求3所述的流量计,其中所述驱动组件(DL,DR)振动所述流管(130,130’),以产生位于所述流管(130,130’)上顶部部分中间的单个动态节点(AN)。
5.如权利要求3所述的流量计,其中所述驱动组件(DL,DR;DL,DC,DR)振动所述的流管(130,130’),以便在所述流管(130,130’)上产生一对动态节点(AN1,AN2)。
6.如权利要求5所述的流量计,其中所述传感器组件包括两对传感器(S1,S2,S3,S4;SL1,SL2,SR1,SR2),一对(S1,S2;SL1,SL2)位于所述的一对动态节点中一个(AN1)的相对的两侧,另一对(S3,S4;SL1,SL2)位于所述的一对动态节点中另一个(AN2)的相对的两侧。
7.如权利要求5所述的流量计,其中所述的传感器对的位置为:一个传感器(S1)位于所述对的动态节点中第一节点(AN1)的一侧,另一个传感器(S4)位于所述对的动态节点中另一节点(AN2)的相对的一侧。
8.如权利要求5所述的流量计,其中所述对传感器(S1,S2)位于所述对的动态节点中的一个节点(AN1)的相对的两侧。
9.如权利要求3-8任一项的流量计,其中所述驱动组件包括一对隔开的驱动器(DL,DR),位于所述流管(130,130’)上。
10.如权利要求1所述的流量计,其中所述流管组件是基本上直的管子(910)。
11.如权利要求1所述的流量计,其中所述流管组件包括一对具有不同构形的流管。
12.一种科里奥利氏流量计(310),用于测量流过所述的流量计的处理材料的特性,所述的流量计(310)具有:流管组件(130,130’),用于使所述的处理材料从其中流过,所述流管组件在沿着其长度方向隔开的两个位置(BL,BR)被固定;驱动组件(D1),用于使所述的流管组件振动,以便在所述每个固定位置(BL,BR)产生静态节点(SN);传感器装置,包括响应所述的流管组件的所述振动和流过所述的流量计(310)的所述的处理材料以产生表示由于所述的处理材料流过所述的流管组件产生的科里奥利氏力而使所述的振动流管组件的运动的传感器输出信号的一对传感器(SL,SR);以及响应产生所述传感器输出信号以产生表示在所述的流量计(310)中流过的所述的处理材料的信息的信号处理组件(320),其特征在于:所述传感器对(SL,SR)固定于所述流管组件(130,130’)上,靠近所述固定位置(BL,BR),以使每个传感器(SL,SR)位于尽可能靠近所述静态节点中相关的一个节点(SN)的位置,以便使得传感器(SL,SR)输出信号之间的相位差达到最大,同时保持与所述静态节点充分隔开,以使所述传感器输出信号的幅值具有可用的信噪比。
13.如权利要求12所述的流量计,其中所述的流管组件包括一对基本上平行的流管(130,130’)。
14.如权利要求13所述的流量计,其中所述的流管(130,130’)具有顶部部分,和具有与撑板(BL,BR)相连接的限定固定部分的较低部分的一对侧支管(134,134’,131,131’),且其中所述驱动组件(D1)固定于所述流管的顶部并以异相弯曲模式振动所述流管(130,130’),使得所述流管(130,130’)围绕所述撑板(BL,BR)相互异相枢转。
15.一种方法,用于操作科里奥利氏流量计(310),所述的流量计(310)具有流管组件(130,130’;910),用于使所述的处理材料从其中流过,所述方法包括:在所述流管组件上利用产生至少一个动态节点(AN,AN1,AN2;931)的驱动组件振动所述流管组件;从固定于所述流管组件并响应所述流管组件的振动以产生表示由于所述的处理材料流过所述的流管组件产生的科里奥利氏力而使所述的流管组件振动的传感器(SL,SR;S1,S2;932L,932R)接收输出信号;以及响应接收到所述输出信号来操作信号处理组件(320)以产生表示在所述的流量计(310)中流过的所述的处理材料的信息;其特征在于:所述传感器对(SL,SR;S1,S2;932L,932R)固定于所述流管组件(130,130’;910)上,所述至少一个动态节点(AN;AN1;AN2;931)的相对的两侧,尽可能靠近所述动态节点,以便使得传感器输出信号之间的相位差达到最大,同时保持与所述动态节点充分隔开,以使所述输出信号的幅值具有可用的信噪比。
16.如权利要求15所述的方法,其中所述的流管组件包括具有顶部部分和一对侧支管(134,134’,131,131’)的改进了的U形结构的一对流管(130,130’),且所述驱动组件(D1)固定在所述的顶部部分处,且使所述的流管(130,130’)在异相弯曲模式下彼此相对围绕作为静态节点(SN)的所述的撑板组件(BL,BR)振动。
17.如权利要求15所述的方法,其中所述流管组件包括具有一顶部部分和一对侧支管(134,134’,131,131’)的改进的U形结构的一对流管(130,130’),且被固定在所述的侧支管处的驱动组件(DL,DR)使所述的流管(130,130’)彼此相对在异相扭转模式下振动,以使单个动态节点(AN)在所述对的流管(130,130’)上的顶部部分产生。
18.如权利要求15所述的方法,其中所述流管包括具有一顶部部分和一对侧支管(134,134’,131,131’)的改进的U形结构的一对流管(130,130’),且所述驱动组件包括被固定在所述的侧支管处的驱动组件(DL,DR)使所述的流管(130,130’)彼此相对在异相扭转模式下振动,以产生在所述的流管(130,130’)的所述的顶部部分的两个动态节点(AN1,AN2)。
CN95194255A 1994-07-20 1995-07-06 利用节点靠近型传感器的高灵敏度科里奥利氏效应流量计 Expired - Lifetime CN1108515C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/277,661 1994-07-20
US08/277,661 US5497666A (en) 1994-07-20 1994-07-20 Increased sensitivity coriolis effect flowmeter using nodal-proximate sensors

Publications (2)

Publication Number Publication Date
CN1153554A CN1153554A (zh) 1997-07-02
CN1108515C true CN1108515C (zh) 2003-05-14

Family

ID=23061851

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95194255A Expired - Lifetime CN1108515C (zh) 1994-07-20 1995-07-06 利用节点靠近型传感器的高灵敏度科里奥利氏效应流量计

Country Status (13)

Country Link
US (1) US5497666A (zh)
EP (1) EP0771408A1 (zh)
JP (1) JP2778836B2 (zh)
CN (1) CN1108515C (zh)
AU (1) AU3003595A (zh)
BR (1) BR9508208A (zh)
CA (1) CA2184751C (zh)
CZ (1) CZ17897A3 (zh)
HK (1) HK1001139A1 (zh)
HU (1) HUT76703A (zh)
MX (1) MX9700355A (zh)
RU (1) RU2161780C2 (zh)
WO (1) WO1996002812A1 (zh)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5926096A (en) * 1996-03-11 1999-07-20 The Foxboro Company Method and apparatus for correcting for performance degrading factors in a coriolis-type mass flowmeter
US5687100A (en) * 1996-07-16 1997-11-11 Micro Motion, Inc. Vibrating tube densimeter
US6332367B1 (en) * 1997-03-11 2001-12-25 Micro Motion, Inc. Dual loop Coriolis effect mass flowmeter
US8467986B2 (en) * 1997-11-26 2013-06-18 Invensys Systems, Inc. Drive techniques for a digital flowmeter
US20030216874A1 (en) * 2002-03-29 2003-11-20 Henry Manus P. Drive techniques for a digital flowmeter
US7404336B2 (en) 2000-03-23 2008-07-29 Invensys Systems, Inc. Correcting for two-phase flow in a digital flowmeter
US7124646B2 (en) * 1997-11-26 2006-10-24 Invensys Systems, Inc. Correcting for two-phase flow in a digital flowmeter
US6311136B1 (en) * 1997-11-26 2001-10-30 Invensys Systems, Inc. Digital flowmeter
US7784360B2 (en) * 1999-11-22 2010-08-31 Invensys Systems, Inc. Correcting for two-phase flow in a digital flowmeter
US8447534B2 (en) 1997-11-26 2013-05-21 Invensys Systems, Inc. Digital flowmeter
US6092429A (en) * 1997-12-04 2000-07-25 Micro Motion, Inc. Driver for oscillating a vibrating conduit
US6293157B1 (en) * 1998-01-02 2001-09-25 Graco Minnesota Inc. Compensation of coriolis meter motion induced signal
US6360175B1 (en) * 1998-02-25 2002-03-19 Micro Motion, Inc. Generalized modal space drive control system for a vibrating tube process parameter sensor
JP3188483B2 (ja) * 1998-04-03 2001-07-16 エンドレス ウント ハウザー フローテック アクチエンゲゼルシャフト 質量流量を測定する方法及びそのためのセンサ
US6233526B1 (en) 1998-07-16 2001-05-15 Micro Motion, Inc. Vibrating conduit parameter sensors and methods of operation therefor utilizing spatial integration
US5987998A (en) * 1998-08-26 1999-11-23 Micro Motion, Inc. High temperature drive system for a coriolis mass flowmeter
US6513392B1 (en) * 1998-12-08 2003-02-04 Emerson Electric Co. Coriolis mass flow controller
US6748813B1 (en) 1998-12-08 2004-06-15 Emerson Electric Company Coriolis mass flow controller
DE01918944T1 (de) * 2000-03-23 2004-10-21 Invensys Systems, Inc., Foxboro Korrektur für eine zweiphasenströmung in einem digitalen durchflussmesser
US6694279B2 (en) 2001-02-16 2004-02-17 Micro Motion, Inc. Methods, apparatus, and computer program products for determining structural motion using mode selective filtering
US6535826B2 (en) 2001-02-16 2003-03-18 Micro Motion, Inc. Mass flowmeter methods, apparatus, and computer program products using correlation-measure-based status determination
US6466880B2 (en) 2001-02-16 2002-10-15 Micro Motion, Inc. Mass flow measurement methods, apparatus, and computer program products using mode selective filtering
US6415668B1 (en) * 2001-07-23 2002-07-09 Fmc Technologies, Inc. De-coupling extraneous modes of vibration in a coriolis mass flowmeter
US7059199B2 (en) * 2003-02-10 2006-06-13 Invensys Systems, Inc. Multiphase Coriolis flowmeter
US7188534B2 (en) * 2003-02-10 2007-03-13 Invensys Systems, Inc. Multi-phase coriolis flowmeter
US7013740B2 (en) * 2003-05-05 2006-03-21 Invensys Systems, Inc. Two-phase steam measurement system
US7072775B2 (en) * 2003-06-26 2006-07-04 Invensys Systems, Inc. Viscosity-corrected flowmeter
US7065455B2 (en) * 2003-08-13 2006-06-20 Invensys Systems, Inc. Correcting frequency in flowtube measurements
US7831400B2 (en) * 2003-09-29 2010-11-09 Micro Motion, Inc. Diagnostic apparatus and methods for a coriolis flow meter
JP3783959B2 (ja) * 2003-12-02 2006-06-07 株式会社オーバル コリオリ流量計
JP3783962B2 (ja) * 2004-03-24 2006-06-07 株式会社オーバル 三次モード振動式コリオリ流量計
US20060211981A1 (en) * 2004-12-27 2006-09-21 Integrated Sensing Systems, Inc. Medical treatment procedure and system in which bidirectional fluid flow is sensed
US20080004255A1 (en) * 2005-10-14 2008-01-03 Alltech, Inc. Methods and compositions for altering cell function
US8865763B2 (en) * 2005-10-14 2014-10-21 Alltech, Inc. Methods and compositions for altering cell function
DE102005060495B3 (de) * 2005-12-15 2007-04-26 Krohne Ag Massendurchflußmeßgerät
US7660681B2 (en) * 2006-02-13 2010-02-09 Invensys Systems, Inc. Compensating for frequency change in flowmeters
US7617055B2 (en) 2006-08-28 2009-11-10 Invensys Systems, Inc. Wet gas measurement
EP2179254B1 (en) * 2007-07-30 2020-03-18 Micro Motion, Inc. Flow meter system and method for measuring flow characteristics of a three phase flow
DE102008055126A1 (de) * 2008-12-23 2010-07-01 Robert Bosch Gmbh Ultraschallwandler zum Einsatz in einem fluiden Medium
KR101563863B1 (ko) * 2009-05-26 2015-10-28 마이크로 모우션, 인코포레이티드 균형 부재를 포함하는 유량계
DE102009028007A1 (de) * 2009-07-24 2011-01-27 Endress + Hauser Flowtec Ag Meßumwandler vom Vibrationstyp sowie Meßgerät mit einem solchen Meßwandler
DE102009028006A1 (de) * 2009-07-24 2011-01-27 Endress + Hauser Flowtec Ag Meßwandler vom Vibrationstyp sowie Meßgerät mit einem solchen Meßwandler
CN104541135B (zh) 2012-08-21 2018-04-20 高准公司 具有改进的量表零位的科里奥利流量计和方法
RU2617875C1 (ru) * 2013-06-14 2017-04-28 Майкро Моушн, Инк. Вибрационный расходомер и способ проверки измерителя
CN103630178B (zh) * 2013-11-28 2016-08-24 中国测试技术研究院流量研究所 质量流量计隔振系统
EP3265759B1 (en) * 2015-03-04 2022-06-08 Micro Motion, Inc. Coriolis threshold determination devices and methods
US10422678B2 (en) 2017-12-05 2019-09-24 General Electric Company Coriolis flow sensor assembly
US10429224B2 (en) * 2017-12-05 2019-10-01 General Electric Company Interface for a Coriolis flow sensing assembly
US10718644B1 (en) * 2019-01-03 2020-07-21 Dwyer Instruments, Inc. Sensor head for insertion electromagnetic flow meter
DE102019003075A1 (de) * 2019-04-30 2020-11-05 Endress+Hauser Flowtec Ag Messgerät zum Charakterisieren eines inhomogenen, fließfähigen Mediums
US11262226B2 (en) 2020-02-17 2022-03-01 GWU Design Hybrid mass flow sensor including a thermal and coriolis principle measurement arrangements

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4491025A (en) * 1982-11-03 1985-01-01 Micro Motion, Inc. Parallel path Coriolis mass flow rate meter
DE3329544A1 (de) * 1983-08-16 1985-03-07 Karl Dipl.-Ing. 8060 Dachau Küppers Massedurchflussmesser
DE3585222D1 (de) * 1984-07-11 1992-02-27 Exac Corp Geraet zum messen des massenflussdebits und der dichte.
EP0316908B1 (de) * 1987-11-20 1993-01-27 Endress + Hauser Flowtec AG Verfahren zur Massendurchflussmessung nach dem Coriolisprinzip und nach dem Coriolisprinzip arbeitendes Massendurchfluss-Messgerät
US5115683A (en) * 1988-09-27 1992-05-26 K-Flow Division Of Kane Steel Co., Inc. Coriolis mass flow meter adapted for low flow rates
ATE171270T1 (de) * 1989-06-09 1998-10-15 Micro Motion Inc Stabilitätsverbesserung bei einem coriolis- massenflussmesser
US5184518A (en) * 1991-01-22 1993-02-09 Lew Hyok S Method for measuring mass flow rate
BR9206318A (pt) * 1991-08-01 1995-10-24 Micro Motion Inc Medidor de fluxo de massa de efeito coriolis
US5349872A (en) * 1993-08-20 1994-09-27 Micro Motion, Inc. Stationary coils for a coriolis effect mass flowmeter

Also Published As

Publication number Publication date
CA2184751C (en) 2001-03-13
EP0771408A1 (en) 1997-05-07
CA2184751A1 (en) 1996-02-01
US5497666A (en) 1996-03-12
CZ17897A3 (en) 1997-05-14
WO1996002812A1 (en) 1996-02-01
HUT76703A (en) 1997-10-28
JP2778836B2 (ja) 1998-07-23
RU2161780C2 (ru) 2001-01-10
MX9700355A (es) 1997-04-30
JPH10500217A (ja) 1998-01-06
BR9508208A (pt) 1997-08-12
HK1001139A1 (en) 1998-05-29
AU3003595A (en) 1996-02-16
CN1153554A (zh) 1997-07-02

Similar Documents

Publication Publication Date Title
CN1108515C (zh) 利用节点靠近型传感器的高灵敏度科里奥利氏效应流量计
US6223605B1 (en) Coriolis-type mass flow sensor with a single measuring tube
JP5674675B2 (ja) 振動モード分離を向上させたコリオリ流量計
EP1095245B1 (en) Method and apparatus for a sensitivity enhancing balance bar
US4934195A (en) Coriolis mass flowmeter
CN100468011C (zh) 用于科里奥利力流量计的力平衡的方法和装置
US4716771A (en) Symmetrical mass flow meter
CN87107806A (zh) 科里奥利式质量流量计
CN1653316A (zh) 振动转换器
JPH07239261A (ja) 質量流量測定装置
CN1100805A (zh) 科里奥利原理—流量测量仪
CN101946163A (zh) 带有改进的平衡系统的科里奥利流量计
RU2487321C1 (ru) Расходомер, включающий в себя балансный элемент
KR100453257B1 (ko) 물질 밀도와 독립한 유량 보정계수를 가지는 코리올리유량계용 장치 및 그 방법
CN100430697C (zh) 用于检测电缆以及第一和第二拾取传感器中信号差的科里奥利流量计和方法
CN101014836B (zh) 用于消除流动中的密度效应的分离式平衡配重
KR101359295B1 (ko) 진동형 유동 센서 어셈블리의 드라이버와 픽-오프들을 진동적으로 분리하는 방법 및 장치
US7437949B2 (en) Tertiary mode vibration type Coriolis flowmeter
CN102439397B (zh) 包括平衡参考构件的流量计
JPH067324Y2 (ja) 質量流量計
RU2464534C1 (ru) Расходомер (варианты) и способ увеличения разделительного интервала между двумя или более колебательными частотами вибрационного расходомера
JPH0499919A (ja) 質量流量計
MXPA00012481A (en) Method and apparatus for a sensitivity enhancing balance bar
MXPA01001066A (en) Method and apparatus for a coriolis flowmeter having its flow calibration factor independent of material density
JPH0749980B2 (ja) 振動式測定装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Expiration termination date: 20150706

Granted publication date: 20030514

EXPY Termination of patent right or utility model