CN110841720B - 石墨烯吸附多组分手性催化剂及其在不对称氢化中的应用 - Google Patents

石墨烯吸附多组分手性催化剂及其在不对称氢化中的应用 Download PDF

Info

Publication number
CN110841720B
CN110841720B CN201911197783.6A CN201911197783A CN110841720B CN 110841720 B CN110841720 B CN 110841720B CN 201911197783 A CN201911197783 A CN 201911197783A CN 110841720 B CN110841720 B CN 110841720B
Authority
CN
China
Prior art keywords
graphene
chiral catalyst
reaction
catalyst
asymmetric hydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911197783.6A
Other languages
English (en)
Other versions
CN110841720A (zh
Inventor
郝二军
苏富赢
王园梦
李文慧
沈明珠
李恭欣
石磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Normal University
Original Assignee
Henan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Normal University filed Critical Henan Normal University
Priority to CN201911197783.6A priority Critical patent/CN110841720B/zh
Publication of CN110841720A publication Critical patent/CN110841720A/zh
Application granted granted Critical
Publication of CN110841720B publication Critical patent/CN110841720B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2442Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems
    • B01J31/2461Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems and phosphine-P atoms as ring members in the condensed ring system or in a further ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/12Preparation of carboxylic acid amides by reactions not involving the formation of carboxamide groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/645Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of C=C or C-C triple bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0225Complexes comprising pentahapto-cyclopentadienyl analogues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了石墨烯吸附多组分手性催化剂及其在不对称氢化中的应用,属于有机化学中领域。利用原位固定策略,制备了吸附在石墨烯上的杂化材料多组分手性催化剂2a@graphene,将其应用于脱氢氨基酸衍生物氢化时,表现出良好不对称诱导作用,达到了99%以上转化率,最高96%ee。反应结束后,简单过滤即可再循环利用。本发明对于开发基于非共价相互作用不对称反应的其他多相杂化手性催化剂提供了很好的借鉴。

Description

石墨烯吸附多组分手性催化剂及其在不对称氢化中的应用
技术领域
本发明涉及石墨烯吸附多组分手性催化剂及其在不对称氢化中的应用,属于有机化学中的不对称合成领域。
背景技术
多组分手性催化剂(MCC)包含几种化学实体(例如,配体,金属和其他功能性部分)的混合物,通过利用每个活性位点之间的协同作用来促进各种区域和立体选择性反应,从而模拟酶。MCC系统的固定化方法研究并不充分。
在传统的固定化方法中(见图1a),配体通过共价键随机锚固在固体载体(例如聚苯乙烯树脂)的不规则表面上,随后活性金属的引入。由于每个固定组分(例如配体和金属)之间的距离所施加的限制,该过程可能阻止形成具有所需结构的MCC,这可能导致所得材料的催化性能下降。当前,MCC异构化的方法较少,限制了其在工业应用中的潜在用途。
石墨烯材料因其化学惰性,极高的表面积和机械稳定性而提供了独特的机会,可通过与包含多环芳烃的分子(例如芘单元)进行π-π堆积相互作用进行非共价修饰。为了促进催化剂的回收和再利用,已经对各种催化剂进行了改性和固定在石墨烯上(包括其他类型的碳材料,如木炭,富勒烯和碳纳米管)。这种杂化催化剂在几次循环后,在循环实验中反应性和选择性逐渐下降。这表明通过非共价相互作用使手性金属催化剂的异质化仍然是一个挑战。
发明内容
为了解决上述技术问题,本发明通过以下方法进行了设计和探索:由改性的结构良好的MCC最初是通过在均质溶液中通过配体与金属的配位相互作用而组装的,通过π-π自发吸附在石墨烯上堆叠互动。在此过程中,MCC结构特征将被完全保留(图1b)。所得杂化石墨烯材料在脱氢氨基酸衍生物的催化加氢中表现出出色的不对称诱导性,并且易于回收利用,而不会将有毒金属离子浸入产物中。
Monophos配体2采用市售1-芘丁酸与R-[1,1'-双萘]-2,2'-二甲氧基-6-丁醇进行合成。首先在DCC和DMAP存在下缩合,然后脱保护得到游离羟基,然后与三(二甲胺基)磷反应得到配体2;将混合[Rh(COD)2]BF4和配体2原位反应原位生成手性催化剂2a,接着加入石墨烯形成杂化材料2a@graphene。
本发明所述石墨烯吸附多组分手性催化剂2a@graphene,结构如下:
Figure GDA0002328080250000021
其中,方框内代表吸附在石墨烯上。
本发明所述石墨烯吸附多组分手性催化剂2a@graphene制备方法,包括如下步骤:1-芘丁酸S1和(R)-[1,1'-萘]-2,2'-二甲氧基-6-丁醇S2在DCC存在下发生缩合反应得到S3;接着在BBr3存在下,反应得到S4;接着S4与P(NMe2)3生成配体2;随后配体2和[Rh(COD)2]BF4反应生成催化剂2a,最后与石墨烯反应得到多组分手性催化剂2a@graphene。反应方程式如下:
Figure GDA0002328080250000031
进一步地,在上述技术方案中,所述缩合反应中加入当量以上DMAP。在不添加DMAP时,反应收率为43%,添加当量以上DMAP时,收率提高至94%。
进一步地,在上述技术方案中,所述每步反应在有机溶剂中进行,有机溶剂选自1,2-二氯苯、1,3-二氯苯、氟苯、四氢呋喃、1,2-二氯乙烷、甲苯、氯苯、乙酸乙酯、二氯甲烷、乙醚或氯仿中的一种或多种。
本发明还提供了手性催化剂2a@graphene在脱氢氨基酸衍生物不对称氢化中的应用。采用反应方程式表示如下:
Figure GDA0002328080250000041
进一步地,在上述技术方案中,所述氢化反应在压力10-30atm和催化剂用量1-3%mol条件下,反应溶剂优选乙酸乙酯,反应温度优选室温条件。通常情况下,反应在1.5-2小时即可完全转化。
进一步地,在上述技术方案中,所述多组分手性催化剂2a@graphene在不对称氢化反应后,过滤回收,可再循环10次以上。
进一步地,上述氢化反应结束后,过滤得到2a@graphene可重复利用10次以上。
氢化反应完成后,在手套箱中在氩气保护下在简单的套管中过滤,即可将吸附在石墨烯上的杂化材料2a与含有产物的溶液分离。然后将分离出的吸附在石墨烯上的杂化材料2a简单地加入溶剂和底物,然后重新装入高压釜中进行下一步操作。
附图说明
图1为具有不完全MCC传统聚合物负载催化剂(a)和通过原位固定策略生成杂化石墨烯催化剂(b,框代表吸附在石墨烯上);
图2为在溶液中多组分手性催化剂2a在石墨烯上的吸附;左侧为均匀的复合溶液,中间为与石墨烯的混合物,右侧为滤液;
图3为吸附在石墨烯上的多组分手性催化剂2a透射电镜图像(a)和能谱仪EDS元素映射图(b);
图4为31P CP-MAS NMR光谱:Monophos配体1(a)、金属络合物1a(b)、配体2(c)和吸附在石墨烯上的多组分催化剂金属络合物2a(d);
图5为实施例3中2a@graphene循环套用与转化率和对映选择性关系图。
发明有益效果:
本发明采用原位固定方法避免了对湿敏金属络合物催化剂和载体材料进行额外的化学修饰的需要,并且其固有的高催化反应性和对映选择性可以在非均相反应条件下实现。
该石墨烯吸附杂化材料多组分手性催化剂2a在脱氢氨基酸衍生物不对称氢化时,呈现出优异的不对称诱导作用(99%以上转化率,和最高96%ee),并且易于回收和再利用。
具体实施方式
实施例1吸附在石墨烯上的杂化材料2a的合成
化合物S3的制备
将224mg 1-芘丁酸S1(0.78mmol)、300mg R-[1,1'-萘]-2,2'-二甲氧基-6-丁醇S2(0.78mmol)、320mg DCC和8mL二氯甲烷混合,然后加入190mg DMAP(1.55mmol)在室温搅拌过夜。硅藻土淬灭反应混合物,搅拌1h,过滤并真空浓缩,得到浅黄色油状粗产物,硅胶柱色谱法(乙酸乙酯/石油醚=1:10)纯化,得到480mg S3,收率94%,浅黄色固体。mp:72℃;[ɑ]=+30.6°(20℃,c=0.01g/ml,DCM).1H NMR(400MHz,CDCl3)δ8.32(d,J=9.1Hz,1H),8.19-8.14(m,2H),8.13-8.06(m,2H),8.07-7.95(m,4H),7.94-7.82(m,3H),7.65(s,1H),7.49-7.41(m,2H),7.38-7.31(m,1H),7.25-7.22(m,1H),7.19--7.15(m,1H),7.08(s,2H),4.23-4.14(m,2H),3.77(s,6H),3.40(t,J=7.4Hz,2H),2.76(t,J=7.4Hz,2H),2.49-2.45(m,2H),2.25-2.21(m,2H),1.89-1.61(m,4H).13C NMR(100MHz,CDCl3)δ173.5,155.0,154.6,137.0,135.7,134.0,132.5,131.4,130.9,129.9,129.4,129.3,129.2,128.7,127.9,127.7,127.4,127.3,127.3,126.6,126.4,126.2,125.8,125.3,125.3,125.1,125.0,124.8,124.8,124.7,123.4,123.3,119.8,119.6,114.4,114.2,64.3,56.9,56.8,35.3,33.9,32.7,28.3,27.5,26.8.HRMS(EI+)Calculated for C46H40O4Na[M++Na]:679.2819,Found:679.2821.
化合物S4的制备
在-78℃下,将200mg S3(0.3mmol)溶解在2mL二氯甲烷中,逐滴加入0.66mL 1.0MBBr3(0.66mmol)/二氯甲烷溶液。混合物逐渐升至室温反应2小时,然后小心倒入饱和NaHCO3水溶液(5mL)中,二氯甲烷(3×5mL)萃取。合并有机层,无水Na2CO3干燥,旋蒸得到黄色油状粗产物。硅胶柱色谱法(乙酸乙酯/石油醚=1/5)得到0.69g S4,收率75%,浅黄色固体状。mp:98-102℃;[ɑ]=-23.6°(20℃,c=0.01g/mL,DCM).1H NMR(400MHz,CDCl3):δ8.29(d,J=9.2Hz,1H),8.18-8.12(m,2H),8.13-8.11(m,3H),8.01(d,J=5.5Hz,2H),7.97(d,J=8.5Hz,2H),7.92-7.81(m,3H),7.64(s,1H),7.41-7.33(m,3H),7.30(dd,J=14.4,6.2Hz,1H),7.18-7.12(m,1H),7.12-7.05(m,1H),5.07(br.s,2H),4.16-4.04(m,2H),3.38(t,J=7.7Hz,2H),2.73(t,J=7.2Hz,2H),2.44(t,J=7.2Hz,2H),2.19(p,J=7.3Hz,2H),1.77-1.64(m,4H).13C NMR(100MHz,CDCl3)δ173.8,153.0,152.5,138.9,135.9,133.7,132.1,131.7,131.6,131.1,131.0,130.2,129.9,129.7,129.0,128.6,127.7,127.7,127.6,127.6,127.3,126.9,126.1,125.3,125.2,125.1,125.0,125.0,124.5,124.5,124.2,123.5,118.0,111.3,111.1,111.0,64.5,35.5,34.2,33.0,28.5,27.9,27.0.HRMS(EI+)Calculated for C44H36O4Na+1[M++Na]:651.2511,Found:651.2499.
配体2的制备
在氮气保护下,在装有回流冷凝器的圆底烧瓶中装入化合物S4(0.5g,0.8mmol)。然后向该固体加入干燥5mL甲苯和0.15mL P(NMe2)3(0.8mmol)。将反应混合物回流2小时。反应混合物冷却,31P NMR分析表明,仅形成了所需的亚磷酰胺产物δ:148.8ppm。将粗反应混合物浓缩并通过硅胶柱色谱法纯化(正己烷/二氯甲烷)得到配体2,收率95%,白色粉末状固体。mp:110-113℃;[ɑ]=-304.6°(20℃,c=0.01g/mL,DCM)1H NMR(400MHz CDCl3)δ8.30(d,J=9.2Hz,1H),8.18-8.12(m,2H),8.09(d,J=9.2Hz,2H),8.03-7.93(m,3H),7.87(dd,J=8.5,7.3Hz,1H),7.88-7.96(m,2H),7.65(s,1H),7.52-7.42(m,2H),7.43-7.46(m,1H),7.36-7.30(m,1H),7.29-7.14(m,3H),7.12-7.05(m,1H),4.13(q,J=6.0Hz,2H),3.39(t,J=7.7Hz,2H),2.79-2.71(m,2H),2.55(dd,J=8.9,4.5Hz,6H),2.46(t,J=7.2Hz,2H),2.20(p,J=7.2Hz,2H),1.83-1.59(m,4H).13C NMR(100MHz,CDCl3)δ172.5,148.4,137.4,137.1,134.7,130.4,129.9,128.9,128.0,127.7,127.2,127.1,126.4,126.4,126.3,126.3,126.0,125.8,125.7,125.7,125.0,124.8,124.3,124.1,124.0,123.9,123.8,123.7,123.7,123.5,122.3,121.0,120.9,63.2,35.0,34.8,32.9,31.7,29.9,27.3,26.5,25.8.HRMS(EI+)Calculated for C46H40NO4P[M]+:701.2695,Found:701.5168.配体2在多数有机溶剂(如四氢呋喃、乙酸乙酯等)均可完全溶解,对空气稳定。
由修饰配体2形成金属配合物2a,接着原位与石墨烯配位,形成多组分催化剂2a@graphene,氢化中反应顺利(实施例2),而Monophos配体1形成金属配合物1a以及原位与石墨烯反应后在实施例2氢化中均无催化活性,上述区别表示如下:
Figure GDA0002328080250000081
为了确定络合物2a与石墨烯材料之间π-π堆积相互作用的性质,做了下述对比实验,结果见图2。
1、将8.7mg芘标记配体2(1.2x10-2mmol)与2.5mg[Rh(COD)2]BF4(0.6x10-2mmol)在5mL乙酸乙酯中以2:1比例混合,见图2左侧。显示所得均相溶液显示出典型的橙色,表明通过一个铑(I)原子和两个磷配体2之间的金属-配位体配位形成2a。
2、将上述溶液与20mg石墨烯混合并搅拌30分钟,溶液的原始橙色变为无色,表明络合物2a固定在石墨烯表面,见图2中间。各种溶剂的筛选表明,乙酸乙酯是吸附和催化性能最佳溶剂。
3、将所得吸附在石墨烯上的杂化材料2a@graphene过滤,并用乙酸乙酯洗涤,得到滤液,见图2右侧。滤液1H NMR谱表明溶液中不存在任何痕量络合物2a,进一步证实了2a在石墨烯上的定量沉积。
4、在相同条件下配合物1a与石墨烯混合物的对照实验表明,在溶液中保留有配合物1a,这证实了含芘单元络合物2a的吸附。
上述实验证实了通过“正交”非共价相互作用(金属-配体配位和π-π堆积)形成了杂化催化剂材料。
图3a表明了多组分催化剂2a确实吸附在石墨烯上,在透射电子显微镜(TEM)上进行的能量色散X射线光谱(EDS)对新吸附在石墨烯上杂化材料2a@graphene进行元素图分析,结果显示铑(I)在材料上的均匀分布,见图3b。经计算,铑(I)在石墨烯(3.1wt%)上负载量为3x10-4mmol/mg。材料表面积分析是在77K下通过氩气吸附分析进行。吸附在石墨烯上2aBET面积为360.4m2g-1,远远低于原始石墨烯的BET面积(734.6m2 g-1)。
芘标记配体2和吸附在石墨烯上杂化材料2a@graphene与Monophos 1及其铑(I)固态31P交叉极化幻角旋转(CP-MAS)NMR光谱中(图4),化学位移清楚地表明了两者存在相似的配位模式。
Monophos 1 31P CP-MAS NMR光谱显示为宽峰,中心位于149.5ppm,当形成铑(I)络合物1a,该峰便移动至135.3ppm。同样,芘标记配体2和吸附在石墨烯上杂化材料2a@graphene共振分别从146.5ppm减少为为135.9ppm。以上数据表明,芘标记络合物2a中结构基序被成功吸附到石墨烯表面上,而没有改变配位方式。
实施例2吸附在石墨烯上的杂化材料2a氢化催化反应
吸附在石墨烯上的杂化材料2a@graphene催化脱氢氨基酸6a-h的不对称氢化反应,结果如下:
Figure GDA0002328080250000101
具体操作如下:氩气保护下,在无水乙酸乙酯(5mL)中混合[Rh(COD)2]BF4(2.0mg,0.005mmol)和配体2(7.0mg,0.01mmol)原位制备得到催化剂2a。在上述溶液中加入石墨烯(20mg)并搅拌30分钟得吸附在石墨烯上的杂化材料2a@graphene。将吸附在石墨烯上的杂化材料2a@graphene(0.01mmol,10mM,基于(Monophos)2/Rh单位),底物6(1mmol,1.0M)在无水乙酸乙酯(5.0mL)中。将试管放置在不锈钢高压釜中密封,氢气置换3次,将最终氢气压力调节至20atm并开始搅拌。反应结束(1.5h),释放氢气,并在氩气气氛下通过套管过滤回收催化剂。减压除去乙酸乙酯后,分析产物。转化率和对映体过量分别通过1H NMR和手性HPLC(Chiralpak IA柱)测定。上述底物6a-h通过1H NMR光谱确定转化率>99%。氢化产物表征数据如下:
(S)-Methyl 2-acetamido-3-phenyl propanoate 7a,White solid.1H NMR(400MHz,CDCl3):1.99(s,3H;CH3CO),3.07-3.18(m,2H;CH2),3.73(s,3H;OCH3),4.87-4.91(m,1H;CH),5.91(d,J=7.2Hz,1H;NH),7.08-7.12(m,2H;ArH),7.25-7.31(m,3H;ArH);Eewas determined by HPLC with a Chiralpak IA column(4.6mmΦ×250mml),minor t1=18.28min;major t2=22.20min;95%ee.
(S)-Methyl 2-acetamido-3-(p-tolyl)propanoate 7b.White solid.1H NMR(400MHz,CDCl3):δ1.97(s,3H;CH3CO),2.31(s,3H;ArCH3),3.01-3.07(m,2H;CH2),3.72(s,3H;COOCH3),4.83-4.88(m,1H;CH),6.00(d,J=7.2Hz,1H;NH),6.96(d,J=7.9Hz,2H;ArH),7.09(d,J=7.8Hz,2H;ArH);Ee was determined by HPLC with a Chiralpak IA column(4.6mmΦ×250mml),minor t1=20.40min;major t2=25.20min;93%ee.
(S)-Methyl 2-acetamido-3-(3-methoxyphenyl)propanoate 7c.Whitesolid.1H NMR(400MHz,CDCl3):δ1.99(s,3H;CH3CO),3.04-3.11(m,2H;CH2),3.73(s,3H;ArOCH3),3.78(s,3H;COOCH3),4.85-4.90(m,1H;CH),5.93(d,J=7.2Hz,1H;NH),6.62-6.66(m,2H;ArH),6.79(dd,J=8.1Hz,1H;ArH),7.20(t,J=7.9Hz,1H;ArH);Ee was determinedby HPLC with a Chiralpak IA column(4.6mmΦ×250mml),minor t1=29.36min;majort2=33.78min;93%ee.
(S)-Methyl 2-acetamido-3-(4-methoxyphenyl)propanoate 7d.whitesolid.1H NMR(400MHz,CDCl3,):δ1.99(s,3H;CH3CO),3.02-3.11(m,2H;CH2),3.73(s,3H;OCH3),3.78(s,3H;COOCH3),4.84-4.89(m,1H;CH),5.93(d,J=7.2Hz,1H;NH),6.96(d,J=8.4Hz,2H;ArH),7.41(d,J=6.9Hz,2H;ArH);Ee was determined by HPLC with aChiralpak IA column(4.6mmΦ×250mml),minor t1=20.54min;major t2=25.56min;96%ee.
(S)-Methyl 2-acetamido-3-(4-fluorophenyl)propanoate 7e.Yellowsolid.1H NMR(400MHz,CDCl3):2.00(s,3H;CH3CO),3.06-3.15(m,2H;CH2),3.74(s,3H;COOCH3),4.86-4.91(m,1H;CH),5.96(d,J=7.2Hz,1H;NH),6.80(dd,J=9.7Hz,1H;ArH),6.87(dd,J=7.6Hz,1H;ArH),6.92-6.95(m,1H;ArH),7.23-7.28(m,1H;ArH);Ee wasdetermined by HPLC with a Chiralpak IA column(4.6mmΦ×250mml),minor t1=20.40min;major t2=25.20min;93%ee.
(S)-Methyl 2-acetamido-3-(3-chlorophenyl)propanoate 7f.Yellowsolid.1H NMR(400MHz,CDCl3,):1.99(s,3H;CH3CO),3.07-3.12(m,2H;CH2),3.73(s,3H;OCH3),4.86-4.90(m,1H;CH),5.98(d,J=7.2Hz,1H;NH),7.08-7.11(m,1H;ArH),7.12(s,1H;ArH),7.27-7.29(m,2H;ArH);Ee was determined by HPLC with a Chiralpak IAcolumn(4.6mmΦ×250mml),minor t1=20.54min;major t2=25.11min;94%ee.
(S)-Methyl 2-acetamido-3-(2-bromophenyl)propanoate 7g.Yellow solid.1HNMR(400MHz,CDCl3):1.88(s,3H;CH3CO),3.07-3.28(m,2H;CH2),3.65(s,3H;OCH3),4.81-4.88(m,1H;CH),6.05(d,J=7.2Hz,1H;NH),7.01-7.07(m,1H;ArH),7.11-7.20(m,2H;ArH),7.46(d,J=7.8Hz,1H;ArH);13C NMR(75MHz,CDCl3):171.1,168.7,134.9,132.0130.2,127.8,126.6,124.0,51.5,51.5,36.9,22.1;Ee was determined by HPLC with aChiralpak IA column(4.6mmΦ×250mml),minor t1=29.30min;major t2=35.89min;91%ee.
(S)-Methyl 2-acetamido-3-(4-bromine)propanoate 7h.Yellow solid.1H NMR(400MHz,CDCl3):1.99(s,3H;CH3CO),3.02-3.11(m,2H;CH2),3.73(s,3H;COOCH3),4.84-4.89(m,1H;CH),5.94(d,J=7.2Hz,1H;NH),6.96(d,J=7.8Hz,2H;ArH),7.41(d,J=6.8Hz,2H;ArH);Ee was determined by HPLC with a Chiralpak IA column(4.6mmΦ×250mml),minor t1=25.40min;major t2=32.26min;91%ee.
实施例3 2a@graphene重复使用
将吸附在石墨烯上2a@graphene在实施例2反应结束过滤,继续用于苯基β-脱氢氨基酸酯6a不对称氢化中,采用实施例2同样的反应条件,循环次数和转化率与对映选择性关系(图5)。
结果表明:在相同催化剂作用下,氢化反应进行了近定量转化和稳定的对映选择性(96-92%ee),至少循环使用了13次。但当催化剂循环7次之后,需要将反应时间从1.5小时延长至10小时,以确保实现底物完全转化,表明在连续氢化过程中,催化剂吸附在石墨烯上的杂化材料2a@graphene反应性逐渐降低。
通过ICP光谱法测定,用于催化剂13次循环反应组合产物中,Rh金属浸出为2.87ppm,产物溶液中总Rh浸出量为原始催化剂1.7%。以上实施例描述了本发明的基本原理、主要特征及优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。

Claims (7)

1.一种石墨烯吸附多组分手性催化剂2a@graphene,其特征在于,结构为:
Figure FDA0002295091780000011
其中,方框内代表吸附在石墨烯上。
2.如权利要求1所述手性催化剂2a@graphene制备方法,其特征在于,包括如下步骤:1-芘丁酸S1和(R)-[1,1'-萘]-2,2'-二甲氧基-6-丁醇S2在DCC存在下发生缩合反应得到S3;接着在BBr3存在下,反应得到S4;接着S4与P(NMe2)3生成配体2;最后配体2、[Rh(COD)2]BF4与石墨烯反应得到多组分手性催化剂2a@graphene。
3.根据权利要求2所述手性催化剂2a@graphene制备方法,其特征在于:缩合反应中加入当量以上DMAP。
4.根据权利要求2所述手性催化剂2a@graphene制备方法,其特征在于:每步反应在有机溶剂中进行,有机溶剂选自1,2-二氯苯、1,3-二氯苯、氟苯、四氢呋喃、1,2-二氯乙烷、甲苯、氯苯、乙酸乙酯、二氯甲烷、乙醚或氯仿中的一种或多种。
5.如权利要求1所述手性催化剂2a@graphene在脱氢氨基酸衍生物不对称氢化中的应用。
6.根据权利要求5所述在不对称氢化反应中的应用,其特征在于:不对称氢化反应条件为,催化剂用量为1-3mol%,压力10-30atm,乙酸乙酯溶剂中,室温反应。
7.根据权利要求5所述在不对称氢化反应中的应用,其特征在于:多组分手性催化剂2a@graphene在不对称氢化反应后,过滤回收,可再循环10次以上。
CN201911197783.6A 2019-11-29 2019-11-29 石墨烯吸附多组分手性催化剂及其在不对称氢化中的应用 Active CN110841720B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911197783.6A CN110841720B (zh) 2019-11-29 2019-11-29 石墨烯吸附多组分手性催化剂及其在不对称氢化中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911197783.6A CN110841720B (zh) 2019-11-29 2019-11-29 石墨烯吸附多组分手性催化剂及其在不对称氢化中的应用

Publications (2)

Publication Number Publication Date
CN110841720A CN110841720A (zh) 2020-02-28
CN110841720B true CN110841720B (zh) 2022-11-18

Family

ID=69606190

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911197783.6A Active CN110841720B (zh) 2019-11-29 2019-11-29 石墨烯吸附多组分手性催化剂及其在不对称氢化中的应用

Country Status (1)

Country Link
CN (1) CN110841720B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6214763B1 (en) * 1997-05-20 2001-04-10 Firmenich Sa Ruthenium catalysts and their use in the asymmetric hydrogenation of weakly coordinating substrates
CN102056846A (zh) * 2008-03-19 2011-05-11 比亚尔-坡特拉有限公司 催化不对称氢化
WO2013057079A1 (en) * 2011-10-17 2013-04-25 Fundació Privada Institut Català D'investigació Química (Iciq) Process for water oxidation comprising the use of a polyoxometalate compound as water oxidation catalyst
CN103923005A (zh) * 2014-04-25 2014-07-16 浙江美诺华药物化学有限公司 手性胺类化合物的制备方法及其应用
CN107445999A (zh) * 2017-08-15 2017-12-08 中国科学院上海有机化学研究所 金属络合物、制备方法和应用及其中间体
CN107490610A (zh) * 2017-09-05 2017-12-19 济南大学 一种手性mof‑石墨烯杂化材料及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6214763B1 (en) * 1997-05-20 2001-04-10 Firmenich Sa Ruthenium catalysts and their use in the asymmetric hydrogenation of weakly coordinating substrates
CN102056846A (zh) * 2008-03-19 2011-05-11 比亚尔-坡特拉有限公司 催化不对称氢化
WO2013057079A1 (en) * 2011-10-17 2013-04-25 Fundació Privada Institut Català D'investigació Química (Iciq) Process for water oxidation comprising the use of a polyoxometalate compound as water oxidation catalyst
CN103923005A (zh) * 2014-04-25 2014-07-16 浙江美诺华药物化学有限公司 手性胺类化合物的制备方法及其应用
CN107445999A (zh) * 2017-08-15 2017-12-08 中国科学院上海有机化学研究所 金属络合物、制备方法和应用及其中间体
CN107490610A (zh) * 2017-09-05 2017-12-19 济南大学 一种手性mof‑石墨烯杂化材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Synthesis of Diastereomeric 1,4-Diphosphine Ligands Bearing Imidazolidin-2-one Backbone and Their Application in Rh(I)-Catalyzed Asymmetric Hydrogenation of Functionalized Olefins;Yong Jian Zhang et al.;《Adv.Synth.Catal.》;20051231;第563-570页 *

Also Published As

Publication number Publication date
CN110841720A (zh) 2020-02-28

Similar Documents

Publication Publication Date Title
JP4010562B2 (ja) 立体選択的開環反応
JP3497165B2 (ja) キラル触媒、接触酸化及び不均化反応並びにエポキシクロマン及びタキソルの製造方法
Jin et al. Design of N-cinnamyl sulfinamides as new sulfur-containing olefin ligands for asymmetric catalysis: achieving structural simplicity with a categorical linear framework
EP1542942A1 (fr) Compositions contenant des liquides ioniques et leurs utilisations, notamment en synthese organique
JP5648240B2 (ja) 有機アルミニウム化合物
JP2002504487A (ja) 不斉閉環メタセシス反応
Fernandez-Perez et al. Enantiopure bisphosphine ligands with appended crown ether groups as regulation sites for Rh-mediated hydrogenations
Korff et al. Preparation of chiral triarylphosphines by Pd-catalysed asymmetric P–C cross-coupling
Elma et al. Screening of C2-symmetric chiral phosphinites as ligands for ruthenium (II)-catalyzed asymmetric transfer hydrogenation of prochiral aromatic ketones
Liu et al. Dendritic Chiral Phosphine Lewis Bases‐Catalyzed Asymmetric Aza‐Morita–Baylis–Hillman Reaction of N‐Sulfonated Imines with Activated Olefins
Imamoto et al. Utilization of optically active secondary phosphine–boranes: Synthesis of P-chiral diphosphines and their enantioinduction ability in rhodium-catalyzed asymmetric hydrogenation
JP4758907B2 (ja) チタン化合物及び光学活性シアノヒドリン類の製造法
Huang et al. Polymeric salen-Ti (IV) or V (V) complex catalyzed asymmetric synthesis of O-acetylcyanohydrins from KCN, Ac2O and aldehydes
Shi et al. Chiral diphenylthiophosphoramides: a new class of chiral ligands for the silver (I)-promoted enantioselective allylation of aldehydes
JP2013522003A (ja) 不斉ニトロアルドール反応のためのキラル不均一触媒
Stemper et al. Silyl‐Substituted Planar Chiral Phosphoric Acids with Ferrocene‐bridged Paracyclophane Frameworks: Synthesis, Characterization, and Uses in Enantioselective aza‐Friedel‐Crafts Reactions
JPWO2003064420A1 (ja) 新規光学活性化合物、カルボン酸誘導体の速度論的光学分割方法およびその触媒
CN110841720B (zh) 石墨烯吸附多组分手性催化剂及其在不对称氢化中的应用
Siva et al. Syntheses of new dimeric-Cinchona alkaloid as a chiral phase transfer catalysts for the alkylation of Schiff base
WO2006002470A1 (en) Chiral ligands for asymmetric catalysis
CN113527367B (zh) 一种含四(3,5-二三氟甲基苯基)硼阴离子的手性双膦配体铑络合物和制备方法及应用
CN109503660B (zh) 一类环状膦骨架的手性单膦催化剂Le-Phos及其全构型的制备方法和应用
US20090227805A1 (en) Axially Asymmetric Phosphorus Compound and Production Method Thereof
Faller et al. Resolution of tert-butyl methyl sulfoxide via organometallic Lewis acids and chiral amplification in asymmetric transformations of the ruthenium center in [CpRu (CO)(PPh3)]+ adducts
FR2978151A1 (fr) Composes organophosphores p-chirogeniques

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant