CN110813273A - ZnO纳米棒/碳纤维的制备方法及其在光电降解有机染料中的应用 - Google Patents

ZnO纳米棒/碳纤维的制备方法及其在光电降解有机染料中的应用 Download PDF

Info

Publication number
CN110813273A
CN110813273A CN201911208155.3A CN201911208155A CN110813273A CN 110813273 A CN110813273 A CN 110813273A CN 201911208155 A CN201911208155 A CN 201911208155A CN 110813273 A CN110813273 A CN 110813273A
Authority
CN
China
Prior art keywords
carbon fiber
zno
zno nano
rod
magnetron sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911208155.3A
Other languages
English (en)
Inventor
刘丽
杜韫哲
柴铭茁
马震宇
何曦
华梓博
丁磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201911208155.3A priority Critical patent/CN110813273A/zh
Publication of CN110813273A publication Critical patent/CN110813273A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/342Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electric, magnetic or electromagnetic fields, e.g. for magnetic separation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种ZnO纳米棒/碳纤维的制备方法及其在光电降解有机染料中的应用,所述方法包括如下步骤:一、在碳纤维表面磁控溅射ZnO纳米薄膜;二、以溅射的ZnO纳米薄膜为模板,生长ZnO纳米棒阵列。本发明使用碳纤维作为基底,使ZnO纳米棒呈放射状生长于碳纤维的表面,显著提高了ZnO纳米棒对有机染料的吸附效率。碳纤维作为导电基底,可以防止ZnO纳米棒中电子与空穴的快速复合。使用磁控溅射ZnO薄膜作为ZnO纳米棒与碳纤维之间的界面层,改善了ZnO纳米棒与碳纤维之前的结合性能。通过调控磁控溅射的参数,可以调节ZnO纳米棒与碳纤维之间的界面载流子传递效率,进而保证ZnO纳米棒对有机染料的催化降解速率。

Description

ZnO纳米棒/碳纤维的制备方法及其在光电降解有机染料中的 应用
技术领域
本发明属于有机染料废水处理领域,涉及一种ZnO纳米棒/碳纤维的制备方法及其在光电降解有机染料中的应用。
背景技术
近年来,有机污染物造成的水资源污染已经成为威胁人类生存发展的重大问题。针对有机污染物的降解,科学家们已经开展了广泛的研究工作,并且取得了一系列的研究进展。目前,有机污染物的降解包括物理法、生物法以及化学法。通过物理法降解有机染料的成本太高,不适合大规模应用。生物降解法是一种低成本的有机物降解方法,但是生物法降解过程较慢,不能满足日益严重的环境问题。通过化学催化的方法可以有效降解水中的有机染料,同时可以控制催化剂的结构,进一步提升染料降解速率。
ZnO是一种重要的半导体催化材料,可用于多种化学反应的催化,同时ZnO可以被制备成不同形貌的纳米材料,例如纳米棒、纳米带等。由于纳米材料具有大的比表面积,再加上ZnO是理想的光电催化材料,因此ZnO纳米结构已经被广泛应用于有机染料的降解。通常,ZnO纳米结构需要负载在一个合适的基体上,使ZnO催化剂易于再回收利用。碳纤维是一种新型的功能纤维材料,具有优异的力学强度以及良好的导电性。将ZnO纳米棒制备于碳纤维的表面可以充分暴露ZnO纳米棒的表面,使其与有机染料充分接触,同时碳纤维的导电性可以提供ZnO载流子的传输途径,防止电子与空穴的复合,提高有机染料催化效率。
ZnO纳米棒与载体之间的载流子传递速率是保证ZnO催化效率的关键因素,但是目前还没有有效的办法控制ZnO纳米棒与碳纤维之间的载流子传递速率。因此,急需一种有效的方法,在碳纤维表面合成ZnO纳米棒阵列,并且通过控制界面传递效率提高ZnO的催化性能。
发明内容
为了解决ZnO纳米棒/碳纤维对有机染料降解速率较弱的问题,本发明提供了一种ZnO纳米棒/碳纤维的制备方法及其在光电降解有机染料中的应用。该方法通过改善ZnO纳米棒与碳纤维之间界面载流子传递方式,解决了ZnO纳米棒与碳纤维之间界面性能不可控的难题,进而提高了光电降解有机染料速率的方法。
本发明的目的是通过以下技术方案实现的:
一种ZnO纳米棒/碳纤维的制备方法,包括如下步骤:
一、在碳纤维表面磁控溅射ZnO纳米薄膜:
(1)将碳纤维铺展开在玻璃板表面,并将碳纤维固定;
(2)将玻璃板固定在磁控溅射托盘,碳纤维朝下面向溅射腔内部,使用ZnO作为靶材,将腔室内部的气压抽至10-4大气压以下;
(3)通入氩气与氧气,开启磁控溅射,在碳纤维表面溅射ZnO纳米薄膜,在此过程中,保持氩气流速为20sccm,通过控制磁控溅射的参数:溅射时间(15~60min)、功率(100~200W)、氧气流速(0~6sccm)、基底温度(室温~200℃)调控ZnO纳米薄膜的结构与性能;
二、以溅射的ZnO纳米薄膜为模板,生长ZnO纳米棒阵列:
(1)置ZnO纳米棒的生长溶液:将1~2g六次甲基四胺溶入500ml蒸馏水,待完全溶解后,加入3~4g硝酸锌;
(2)将盛有生长溶液的大烧杯放入磁力搅拌器加热的水浴锅中;
(3)将附着有ZnO纳米薄膜的碳纤维浸入生长溶液中,加以搅拌,将水温设置为90℃,当温度上升到设定值后,保温1~2h,最终在碳纤维表面形成致密均匀的ZnO纳米棒阵列,该结构对有机染料具有更快的降解速率。
相比于现有技术,本发明具有如下优点:
1、本发明通过磁控溅射的方法,首先在碳纤维表面合成了ZnO纳米薄膜;再以ZnO薄膜作为晶种,制备了致密均匀的ZnO纳米棒的阵列。相比于传统的ZnO纳米棒阵列的合成方法,本发明首次实现了对ZnO纳米棒与碳纤维界面的精确调控,从而显著提高了该结构对有机污染物的催化降解效率。
2、本发明使用碳纤维作为基底,使ZnO纳米棒呈放射状生长于碳纤维的表面,显著提高了ZnO纳米棒对有机染料的吸附效率。同时碳纤维作为导电基底,可以防止ZnO纳米棒中电子与空穴的快速复合。使用磁控溅射ZnO薄膜作为ZnO纳米棒与碳纤维之间的界面层,改善了ZnO纳米棒与碳纤维之前的结合性能。更为关键的是,通过调控磁控溅射的参数,可以调节ZnO纳米棒与碳纤维之间的界面载流子传递效率。界面载流子的快速传递保证了ZnO纳米棒对有机染料的催化降解速率。
3、本发明提出的光电共作用催化降解有机染料的方法,广泛适用于污水以及工厂废水的快速处理。
附图说明
图1为实施例1中碳纤维表面磁控溅射ZnO纳米薄膜的形貌;
图2为实施例1中碳纤维表面合成ZnO纳米棒阵列之后的形貌;
图3为实施例1中测试界面的i-V曲线;
图4为实施例1中ZnO纳米棒在有无偏压下对有机染料的降解速率;
图5为实施例2中碳纤维表面磁控溅射ZnO纳米薄膜的形貌;
图6为实施例2中碳纤维表面合成ZnO纳米棒阵列之后的形貌;
图7为实施例2中测试界面的i-V曲线;
图8为实施例2中ZnO纳米棒在有无偏压下对有机染料的降解速率。
具体实施方式
下面结合附图对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。
实施例1:
本实施例提供了一种通过控制ZnO纳米棒与碳纤维之间的界面载流子传递方式,进一步提高ZnO纳米棒/碳纤维对有机染料催化降解速率的方法,所述方法包括如下步骤:
一、在碳纤维表面磁控溅射ZnO纳米薄膜:
(1)取一块玻璃板,将碳纤维铺展开在玻璃板表面,并用耐热胶带将碳纤维的两端固定;
(2)将玻璃板固定在磁控溅射托盘,碳纤维朝下面向溅射腔内部,使用高纯ZnO作为靶材,将腔室内部的气压抽至10-4大气压以下;
(3)通入氩气与氧气,开启磁控溅射,在碳纤维表面溅射ZnO纳米薄膜,在此过程中,控制氩气流速为20sccm,溅射时间为60min,功率为100W,氧气流速为3sccm,基底温度为200℃。
图1为碳纤维表面溅射ZnO薄膜的形貌,由图中可以看到一层ZnO薄膜覆盖在碳纤维的表面。ZnO薄膜表面还存在需要的突起,是由于界面应力集中形成的岛状结构。
二、以溅射的ZnO纳米薄膜为模板,生长ZnO纳米棒阵列:
(1)置ZnO纳米棒的生长溶液:将1.75g六次甲基四胺溶入500ml蒸馏水,待完全溶解后,加入3.71g硝酸锌;
(2)将盛有生长溶液的大烧杯放入磁力搅拌器加热的水浴锅中;
(3)将附着有ZnO纳米薄膜的碳纤维浸入生长溶液中,加以搅拌,将水温设置为90℃,当温度上升到设定值后,保温1.5h,最终在碳纤维表面形成致密均匀的ZnO纳米棒阵列。
图2为在碳纤维表面合成的ZnO纳米棒的阵列,从图中可以看出ZnO纳米棒呈现六棱柱结构,垂直于碳纤维的表面。
三、测试不同界面下,ZnO纳米棒/碳纤维对有机染料的降解效率:
(1)碳纤维表面合成ZnO纳米棒之后,将一端裸露的碳纤维作为一个电极,另一端在ZnO纳米棒的表面覆盖一层导电ITO薄膜。使用电化学工作站,测试i-V曲线。
由于磁控溅射条件的不同,i-V曲线会呈现出不同的形状,图3所示为界面为肖特基势垒接触时的i-V曲线。
(2)将碳纤维表面未附着ZnO纳米棒的一端通过导电胶带与导线连接,导线与一恒压稳流电源连接。使用贵金属铂作为对电极,与电源的另一电极连接。在100ml的烧杯中,配置好浓度为10mg/L的亚甲基蓝与0.1mol/L的Na2SO4溶液。将碳纤维与铂电极浸入烧杯中,将烧杯置于与光源距离10cm的位置处。
(3)打开光源,给碳纤维与铂电极施加不同的偏压,0V以及+0.5V。利用紫外可见吸收光谱仪测试在不同的时间阶段亚甲基蓝的浓度,并且计算ZnO纳米棒/碳纤维对亚甲基蓝的降解速率。
图4为在不同的条件下测试得到的对有机染料的降解速率。通过计算可以得到,在施加电压的条件下,ZnO纳米棒/碳纤维结构对有机染料具有更快的降解速率。而加上0.5V的偏压之后,有机染料的降解速率从0.0019min-1提高到0.0022min-1
实施例2:
本实施例提供了一种通过控制ZnO纳米棒与碳纤维之间的界面载流子传递方式,进一步提高ZnO纳米棒/碳纤维对有机染料催化降解速率的方法,所述方法包括如下步骤:
一、在碳纤维表面磁控溅射ZnO纳米薄膜:
(1)取一块玻璃板,将碳纤维铺展开在玻璃板表面,并用耐热胶带将碳纤维的两端固定;
(2)将玻璃板固定在磁控溅射托盘,碳纤维朝下面向溅射腔内部,使用高纯ZnO作为靶材,将腔室内部的气压抽至10-4大气压以下;
(3)通入氩气与氧气,开启磁控溅射,在碳纤维表面溅射ZnO纳米薄膜,在此过程中,控制氩气流速为20sccm,溅射时间为60min、功率为200W,氧气流速为0sccm,基底温度为100℃。
图5为碳纤维表面溅射ZnO薄膜的形貌,由图中可以看到一层ZnO薄膜覆盖在碳纤维的表面。ZnO薄膜表面还存在需要的突起,是由于界面应力集中形成的岛状结构。
二、以溅射的ZnO纳米薄膜为模板,生长ZnO纳米棒阵列:
(1)置ZnO纳米棒的生长溶液:将1.75g六次甲基四胺溶入500ml蒸馏水,待完全溶解后,加入3.71g硝酸锌;
(2)将盛有生长溶液的大烧杯放入磁力搅拌器加热的水浴锅中;
(3)将附着有ZnO纳米薄膜的碳纤维浸入生长溶液中,加以搅拌,将水温设置为90℃,当温度上升到设定值后,保温1.5h,最终在碳纤维表面形成致密均匀的ZnO纳米棒阵列。
图6为在碳纤维表面合成的ZnO纳米棒的阵列,从图中可以看出ZnO纳米棒呈现六棱柱结构,垂直于碳纤维的表面。
三、测试不同界面下,ZnO纳米棒/碳纤维对有机染料的降解效率:
(1)碳纤维表面合成ZnO纳米棒之后,将一端裸露的碳纤维作为一个电极,另一端在ZnO纳米棒的表面覆盖一层导电ITO薄膜。使用电化学工作站,测试i-V曲线。
由于磁控溅射条件的不同,i-V曲线呈现出不同的形状,图7所示i-V曲线为典型的欧姆接触。
(2)将碳纤维表面未附着ZnO纳米棒的一端通过导电胶带与导线连接,导线与一恒压稳流电源连接。使用贵金属铂作为对电极,与电源的另一电极连接。在100ml的烧杯中,配置好浓度为10mg/L的亚甲基蓝与0.1mol/L的Na2SO4溶液。将碳纤维与铂电极浸入烧杯中,将烧杯置于与光源距离10cm的位置处。
(3)打开光源,给碳纤维与铂电极施加不同的偏压,0V以及+0.5V。利用紫外可见吸收光谱仪测试在不同的时间阶段亚甲基蓝的浓度,并且计算ZnO纳米棒/碳纤维对亚甲基蓝的降解速率。
图8为在不同的条件下测试得到的对有机染料的降解速率。通过计算可以得到,在电压0.5V的条件下,ZnO纳米棒/碳纤维结构对有机染料具有更快的降解速率。加上0.5V的偏压之后,有机染料的降解速率从0.0025min-1提高到0.0034min-1,与实施例1的磁控溅射条件相比提高了54.5%。

Claims (3)

1.一种ZnO纳米棒/碳纤维的制备方法,其特征在于所述方法包括如下步骤:
一、在碳纤维表面磁控溅射ZnO纳米薄膜:
(1)将碳纤维铺展开在玻璃板表面,并将碳纤维固定;
(2)将玻璃板固定在磁控溅射托盘,碳纤维朝下面向溅射腔内部,使用ZnO作为靶材,将腔室内部的气压抽至10-4大气压以下;
(3)通入氩气与氧气,开启磁控溅射,在碳纤维表面溅射ZnO纳米薄膜;
二、以溅射的ZnO纳米薄膜为模板,生长ZnO纳米棒阵列:
(1)配置ZnO纳米棒的生长溶液:将1~2g六次甲基四胺溶入500ml蒸馏水,待完全溶解后,加入3~4g硝酸锌;
(2)将盛有生长溶液的大烧杯放入磁力搅拌器加热的水浴锅中;
(3)将附着有ZnO纳米薄膜的碳纤维浸入生长溶液中,加以搅拌,将水温设置为90℃,当温度上升到设定值后,保温1~2h,最终在碳纤维表面形成致密均匀的ZnO纳米棒阵列。
2.根据权利要求1所述的ZnO纳米棒/碳纤维的制备方法,其特征在于所述磁控溅射参数为:溅射时间15~60min、功率:100~200W、氩气流速:20sccm、氧气流速:0~6sccm、基底温度:室温~200℃。
3.一种权利要求1-2任一项所述方法制备得到的ZnO纳米棒/碳纤维在光电降解有机染料中的应用。
CN201911208155.3A 2019-11-30 2019-11-30 ZnO纳米棒/碳纤维的制备方法及其在光电降解有机染料中的应用 Pending CN110813273A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911208155.3A CN110813273A (zh) 2019-11-30 2019-11-30 ZnO纳米棒/碳纤维的制备方法及其在光电降解有机染料中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911208155.3A CN110813273A (zh) 2019-11-30 2019-11-30 ZnO纳米棒/碳纤维的制备方法及其在光电降解有机染料中的应用

Publications (1)

Publication Number Publication Date
CN110813273A true CN110813273A (zh) 2020-02-21

Family

ID=69543657

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911208155.3A Pending CN110813273A (zh) 2019-11-30 2019-11-30 ZnO纳米棒/碳纤维的制备方法及其在光电降解有机染料中的应用

Country Status (1)

Country Link
CN (1) CN110813273A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088913A (zh) * 2021-04-13 2021-07-09 安徽工程大学 一种碳纤维改性方法及其产品

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101798105A (zh) * 2009-11-13 2010-08-11 襄樊学院 一种在ITO PET薄膜上生长ZnO纳米棒阵列的制备工艺

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101798105A (zh) * 2009-11-13 2010-08-11 襄樊学院 一种在ITO PET薄膜上生长ZnO纳米棒阵列的制备工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YUNZHE DU ET AL.: "Improvement of bond strength between ZnO nanorods and carbon fibers using magnetron sputtered ZnO films as the interphase", 《CRYSTENGCOMM》 *
白珊珊: "纳米ZnO材料制备及其光电化学性能研究", 《中国优秀博硕士学位论文全文数据库(硕士) 信息科技辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088913A (zh) * 2021-04-13 2021-07-09 安徽工程大学 一种碳纤维改性方法及其产品
CN113088913B (zh) * 2021-04-13 2022-03-29 安徽工程大学 一种碳纤维改性方法及其产品

Similar Documents

Publication Publication Date Title
Fang et al. Phosphorus-doped p-type ZnO nanorods and ZnO nanorod p− n homojunction LED fabricated by hydrothermal method
CN105925954B (zh) 一种半导体氮化碳薄膜的制备方法
CN107819045B (zh) 基于氧化镓异质结结构的紫外光电探测器及其制备方法
CN109461821A (zh) 一种有机-无机杂化钙钛矿薄膜的制备方法
CN101348931A (zh) 一种脉冲电沉积制备均匀透明氧化锌纳米棒阵列薄膜的方法
US20100139750A1 (en) Flexible energy conversion device and method of manufacturing the same
CN104250723A (zh) 一种基于铅单质薄膜原位大面积控制合成钙钛矿型ch3nh3pbi3薄膜材料的化学方法
CN104120467B (zh) 一种组成可控的铜锌锡薄膜材料和铜锌锡硫基太阳能电池及其两者的制备方法
CN110416334A (zh) 一种基于异质外延Ga2O3薄膜深紫外光电探测器的制备方法
CN106848494A (zh) 一种碳自掺杂氮化碳纳米薄膜电极的简单制备方法
CN106384669A (zh) 一种光电响应型碳量子点修饰氧化锌光阳极的制备方法
CN100552099C (zh) 改进的电化学沉积工艺制备单一c轴取向氧化锌薄膜方法
Liu et al. CuInS2/TiO2 heterojunction with elevated photo-electrochemical performance for cathodic protection
CN112490363A (zh) 一种基于磁控溅射氧化锌/二氧化锡双电子传输层的钙钛矿太阳能电池制备方法
CN110129850B (zh) 一种亚铁氰化铁薄膜的分步沉积制备方法
CN106967979B (zh) 一种磷酸钴助催化剂改性BiFeO3薄膜光电极及其制备方法
CN110635050B (zh) 一种压力协助制备高质量钙钛矿薄膜的方法
CN110813273A (zh) ZnO纳米棒/碳纤维的制备方法及其在光电降解有机染料中的应用
CN104282440B (zh) 一种硫族量子点敏化氧化物半导体光阳极的制备方法
CN109979643B (zh) ZnO/ZnSe/CdSe/MoS2核壳结构薄膜电极的制备方法和应用
CN108588778A (zh) 一种在柔性塑料基底上低温电沉积制备有序ZnO纳米棒的方法
EP2045849A2 (en) Conducting substrate structure with controlled nanorod density and method of fabricating the same
CN108560012B (zh) 高光电转换效率Sn2Nb2O7光阳极及其制备方法和应用
CN101159296B (zh) 改善单室沉积本征微晶硅薄膜质量的方法
CN105088301B (zh) 一种由硝酸铜制备氧化亚铜光电薄膜的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200221