CN110813260A - 一种高效吸附低浓度氨气的多级孔聚合物固体酸的制备方法 - Google Patents

一种高效吸附低浓度氨气的多级孔聚合物固体酸的制备方法 Download PDF

Info

Publication number
CN110813260A
CN110813260A CN201911146240.1A CN201911146240A CN110813260A CN 110813260 A CN110813260 A CN 110813260A CN 201911146240 A CN201911146240 A CN 201911146240A CN 110813260 A CN110813260 A CN 110813260A
Authority
CN
China
Prior art keywords
solid acid
polymer solid
porous polymer
adsorption
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911146240.1A
Other languages
English (en)
Inventor
江莉龙
刘福建
张冠青
米金星
罗宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201911146240.1A priority Critical patent/CN110813260A/zh
Publication of CN110813260A publication Critical patent/CN110813260A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/264Synthetic macromolecular compounds derived from different types of monomers, e.g. linear or branched copolymers, block copolymers, graft copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/202Polymeric adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/10Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/406Ammonia

Abstract

本发明公开了一种高效吸附低浓度氨气的多级孔聚合物固体酸的制备方法,所述固体酸以有机溶剂和去离子水为溶剂,二乙烯苯和苯乙烯磺酸钠为单体,偶氮二异丁腈为引发剂进行溶剂热共聚合反应,溶剂蒸发得到中间产物,再通过与酸进行离子交换并烘干后得到多级孔聚合物固体酸,其具有较大的BET表面积,分层纳米孔结构和强酸性,同时其结构可控,易于操作,可大规模生产;同时对氨气显示出优异的吸附性能,室温条件1.0 bar时,NH3吸附量达到9.29 mmol/g,而N2和H2在相同条件下的吸附量仅有0.03 mmol/g,性能优于同类氨气吸附材料。其在工业废气中氨气的选择性吸附分离中具有广阔的应用前景。

Description

一种高效吸附低浓度氨气的多级孔聚合物固体酸的制备方法
技术领域
本发明属于有机材料制备及应用领域,具体涉及到一种高效吸附低浓度氨气的多级孔聚合物固体酸的制备方法。
背景技术
随着全球经济的高速发展,化石燃料的过度开发和使用带来的一系列问题促使人们不得不处理环境污染问题并寻求新的可替代清洁能源。尤其是大气污染,其中36%的肺癌死亡是由空气污染造成的。而且,空气污染还增加了患急性呼吸道感染的风险。在大气污染中,NH3作为一种污染物广泛存在于工业生产和畜牧业生产中。且NH3对环境的危害已经引起各国的关注,各个国家都在通过各种途径减少NH3的排放量,并据此设置了相关的排放标准。此外,在众多新能源中,氢被认为是有史以来最为高效的清洁能源,具有安全、热值高、零污染等诸多优点。迄今为止,虽然人们在氢能的开发和利用方面取得了一系列重要进展,但在氢燃料电池的应用方面还面临许多难题。其中,如何为氢燃料电池提供高质量且廉价的氢气是当前面临的主要难题之一。以纯氢为燃料直接用于燃料电池无论在运输还是储存方面都存在诸多问题,而氨分解在线制氢技术可以有效的解决上述两大难题。氨气是一种富氢化合物,能量密度远远高于甲醇、汽油等燃料,常温下容易以液体形式进行存储,且制备技术完善,成本低廉。此外,由于氨气中不含碳元素,因此可从源头上杜绝COx等有毒气体的生成。将氨分解反应用于在线制氢领域是目前解决燃料电池氢能来源的有效途径。受制于热力学限制,氨分解过程并不能达到百分之百转化,而NH3作为一种典型的污染性和强腐蚀性的碱性气体,对人体和环境都有极大危害。直接排放或燃烧等不仅会产生二次污染,还会造成NH3资源严重浪费。从环境保护和资源节约的角度,NH3的净化分离与回收具有重要意义。
目前NH3回收工艺主要包括溶剂吸收法、催化转化法和吸附法。溶剂吸收法又分为化学吸收法和物理吸收法。化学吸收法主要是利用NH3的碱性与酸性物质发生化学反应生成氮肥,具有吸收快、净化度高及操作方便等优点,但存在腐蚀性强和难再生等缺点,正逐渐被淘汰。物理吸收法主要是指水洗法,即先用软水吸收NH3,再通过蒸馏得到浓氨水,进而得到NH3,最后加压冷凝制成液氨再加以利用。物理吸收法是目前脱除NH3最普遍的方法,技术较成熟,但也存在耗水量大、能耗高、回收率低等缺点,限制了工业应用的进一步发展。催化分解法是将NH3催化分解为N2和H2,但催化能耗高、不易回收及运行成本高等缺点在一定程度上制约了该技术的商业化应用。吸附法将NH3组分积聚或浓集在多孔固体吸附剂表面,达到分离NH3的目的。根据作用力不同,吸附类型主要有化学吸附和物理吸附两种,其中依靠分子间范德华力发生的吸附为物理吸附,由物质表面化学键引起的吸附为化学吸附。工业吸附剂一般具有如下优势:(1)吸附能力较大;(2)选择性高;(3)能再生和重复使用;(4)机械强度足够高;(5)化学性质稳定;(6)供应量大、价格低。吸附法可有效去除低浓度NH3,设备简单,去除效率高且可回收有用组分。随着环境保护和绿色可持续发展及对吸附材料研究的深入,多孔吸附材料在气体分离领域展现出越来越重要的应用前景,开发新型NH3吸附分离技术成为该领域的重要发展方向,尤其针对氨分解制氢过程中残留的微量HN3导致氢燃料电池效率低的问题。吸附法主要基于吸附剂的孔道与NH3相互作用,选择高性能的吸附剂是开发吸附新工艺的关键。
有机多孔聚合物具有较大的比表面积、孔径可控、骨架密度低、良好的化学性、可修饰性以及制备方法多样性等特点在气体吸附方面取得了很大的进展。孔结构包括孔径、孔径分布、孔容和微孔孔容等直接影响着气体的吸附性能。固体酸在工业上可替代矿物液体酸而备受关注,其优点是容易从反应介质中分离出催化剂,还原腐蚀,良好的可回收性,绿色化学过程以及增强的产品选择性。基于上述情况,我们报道了强酸性多级孔聚合物固体酸的制备,通过二乙烯基苯在对苯乙烯磺酸钠的官能单体存在情况下进行溶剂热共聚合,然后与酸性溶液进行离子交换,合成的多级孔聚合物固体酸具有较大的BET表面积,分层纳米孔和强酸度。上述特点使得该固体酸具有优良的NH3的吸附性能,并且在混合气体(NH3,N2和H2)吸附中表现出高吸附量与选择性。
发明内容
本发明克服以上不足之处,提供了高效吸附低浓度氨气的多级孔聚合物固体酸的制备方法,以有机溶剂和去离子水为溶剂,二乙烯苯和苯乙烯磺酸钠为单体,偶氮二异丁腈为引发剂进行溶剂热共聚合反应,溶剂蒸发得到具有整体形貌的中间产物,之后再通过与酸性溶液进行离子交换,最后进行干燥处理得到多级孔聚合物固体酸。
为实现上述目的,本发明的技术方案为:
一种高效吸附低浓度氨气的多级孔聚合物固体酸的制备方法,包括以下步骤:
a,二乙烯苯、苯乙烯磺酸钠,偶氮二异丁腈、有机溶剂按照一定摩尔比进行混合,滴加微量的去离子水,在聚四氟乙烯内衬反应釜搅拌均匀;
b,将盛有上述混合物的内衬放入反应釜并转移至烘箱进行溶剂热共聚合反应;
c,待反应结束后将得到的产物在室温下蒸发溶剂后,得到具有整体形貌的固体样品。固体样品放入酸溶液处理后,用大量去离子水洗涤。
d,将上述产物干燥后得到用于氨气选择性吸附的多级孔聚合物固体酸。
进一步地,所述步骤a中二乙烯苯、苯乙烯磺酸钠,偶氮二异丁腈、有机溶剂和水的摩尔比为1:x:0.02:16.1:7.23(x=0.3~1.5),搅拌时间为2-12 h。
所述步骤b,优选溶剂热反应温度为60-180 ℃,时间为12-48 h。
所述步骤c,优选酸性溶液为三氟甲磺酸或硫酸,其浓度为0.5-2 M,添加量为20-100 mL。
所述步骤d,优选干燥温度为60-120 ℃,干燥时间为12-48 h。
上述用于碱性气体吸附的多级孔聚合物固体酸在氨气吸附的应用,具体为:所述NH3吸附分为静态和动态吸附。静态吸附条件为室温,吸附压力为0~1 bar。动态穿透吸附温度为30-70 ℃,原料气体流速为20 mL/min,原料气组成:0.1%NH3/24.9%N2/75%H2
本发明的优点在于:(1)本发明制备多级孔聚合物固体酸,具有较高的BET表面积,分层纳米孔和酸度,以及良好的热稳定性。(2)本发明操作简单,且结构可控,可大规模生产,具有广阔的应用前景。
附图说明
图1为实施例1-4制备的多级孔聚合物固体酸的FTIR谱图;
图2为实施例1-4制备的多级孔聚合物固体酸的N2吸附-脱附等温线和孔径分布;
图3为实施例1-4制备的多级孔聚合物固体酸的SEM图;
图4为吸附剂D室温下的NH3、N2和H2吸附曲线;
图5为吸附剂D室温下的NH3穿透实验测试。
具体实施方法
以下对本发明的具体实施方法进行详细说明。此处所描述的具体实施方法仅用于说明和解释本发明,并不用于限制本发明。
实施例1:称取2.0 g二乙烯苯(DVB)加入到含有0.06 g偶氮二异丁腈(AIBN)和24mL四氢呋喃的溶液中,然后加入2 mL去离子水,最后引入0.3 g对苯乙烯磺酸钠。在室温下搅拌2 h,将混合物在60 ℃下溶剂热处理12 h。然后在室温下蒸发溶剂后,获得具有整体形貌的样品H-PDVB-0.3-SO3Na;(H-PDVB-X-SO3Na代表二乙烯苯(DVB)和对苯乙烯磺酸钠聚合之后的产物,X代表所使用的对苯乙烯磺酸钠的质量)
将0.5 g的H-PDVB-0.3-SO3Na分散在20 mL硫酸溶液(0.5 M)中,在室温下搅拌12 h后,将样品用大量水洗涤直至滤液为中性。最后在烘箱中于60 ℃干燥12 h,待自然冷却后得到多级孔聚合物固体酸H-PDVB-0.4-SO3H,记为吸附剂A,其比表面积为569 m2/g,平均孔径为6.17 nm。
实施例2:将2.0 g二乙烯苯(DVB)加入到含有0.065 g偶氮二异丁腈(AIBN)和25mL乙酸乙酯的溶液中,然后加入2.5 mL去离子水,最后引入0.7 g对苯乙烯磺酸钠。在室温下搅拌5 h,将混合物在120 ℃下溶剂热处理24 h。然后在室温下蒸发溶剂后,获得具有整体形貌的样品(H-PDVB-0.7-SO3Na)。(命名同上)
将0.6 g的H-PDVB-0.7-SO3Na分散在60 mL硫酸溶液(1.2 M)中,在室温下搅拌16 h后,将样品用大量水洗涤直至滤液为中性。最后在烘箱中于80℃ ℃干燥16 h,待自然冷却后便得到用于有氨气选择性吸附的多级孔聚合物固体酸H-PDVB-0.7-SO3H,记为吸附剂B,其比表面积为458 m2/g,平均孔径为6.24 nm。
实施例3:将2.0 g二乙烯苯(DVB)加入到含有0.067 g偶氮二异丁腈(AIBN)和27mL四氢呋喃的溶液中,然后加入2.5 mL去离子水,最后引入1.0 g对苯乙烯磺酸钠。在室温下搅拌8 h,将混合物在160 ℃下溶剂热处理36 h。然后在室温下蒸发溶剂后,获得具有整体形貌的样品(H-PDVB-1.0-SO3Na)。
将0.5 g的H-PDVB-1.0-SO3Na分散在65 mL三氟甲磺酸溶液(1.5 M)中,在室温下搅拌20 h后,将样品用大量水洗涤直至滤液为中性。最后在烘箱中于100 ℃干燥24 h,待自然冷却后便得到用于有氨气选择性吸附的多级孔聚合物固体酸H-PDVB-1.0-SO3H,记为吸附剂C,其比表面积为398 m2/g,平均孔径为6.52 nm。
实施例4:将2.0 g二乙烯苯(DVB)加入到含有0.075 g偶氮二异丁腈(AIBN)和28mL二氯甲烷的溶液中,然后加入3.0 mL去离子水,最后引入1.5 g对苯乙烯磺酸钠。在室温下搅拌12 h,将混合物在180 ℃下溶剂热处理48 h。然后在室温下蒸发溶剂后,获得具有整体形貌的样品(H-PDVB-1.5-SO3Na)。
将0.6 g的H-PDVB-1.5-SO3Na分散在60 mL硫酸溶液(2.0 M)中,在室温下搅拌24h后,将样品用大量水洗涤直至滤液为中性。最后在烘箱中于120 ℃干燥48h,待自然冷却后便得到用于有氨气选择性吸附的多级孔聚合物固体酸H-PDVB-1.5SO3H,记为吸附剂D,其比表面积为319 m2/g,平均孔径为6.78 nm。
对比例1:将4.0 g的聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物(P123)溶于125 g的1.9 M HCl中。加热至40 ℃后,将7.2 mL的硅酸四乙酯(TEOS)加入上述溶液中,搅拌40 min后,快速加入0.77 mL的3-巯基丙基三甲氧基硅烷(3-MPTMS)和1.25 g(30wt%)过氧化氢(H2O2)溶液,并将溶液在40 ℃搅拌20 h。然后将混合物转移到高压釜中,并在100 ℃下热处理24 h。通过提取乙醇和硫酸的混合物来进行P123模板的去除,然后用大量水洗涤并在60 ℃下干燥12 h得到SBA-15-SO3H,记为吸附剂E。
对比例2:将0.75 g PDVB在圆底烧瓶中于100 ℃脱气3 h,然后取50 mL含氯磺酸(10 mL)的二氯甲烷于0 ℃加入烧瓶中,并将溶液于N2气氛下搅拌12 h得到PDVB-SO3H,记为吸附剂F。
对得到的多级孔聚合物固体酸进行物化性质表征和氨气选择性吸附测试:
表征相关信息:采用美国Thermo Fisher Scientific公司生产的型号为Nicolet 6700的傅里叶红外光谱仪对所制备的固体酸吸附剂进行官能团的表征。采用美国Micrometric公司生产的型号为TriStar Ⅱ物理吸附仪对所制备的固体酸吸附剂进行比表面积、孔结构以及孔径分布分析。采用日本Hitachi公司生产的型号为S-4800场发射扫描电子显微镜对所制备的固体酸吸附剂的微观形貌特征进行观察。
吸附性能测试:采用由南通市飞宇石油科技开发有限公司生产的NH3吸收罐和缓冲罐,以及由南京天从电气有限公司生产的压力传感器对所制备的固体酸吸附剂进行NH3吸附性能评价。采用美国Micrometric公司生产的型号为TriStar Ⅱ物理吸附仪进行固体酸的N2和H2的吸附。
穿透试验:NH3穿透试验在美国Micromeritics公司AutoChem2920型自动吸附仪上进行。称取50 mg催化剂(40~60目),先用高纯氩气在150 oC吹扫2 h后降至一定温度,切换为NH3混合气(0.1%NH3/24.9%N2/75%H2)。首先混合气不经过样品管,并由质谱(Hiden,HPR-20 R&D)对管路中的气体进行跟踪记录。待信号稳定后切换气路经过样品,并继续对经过吸附剂的混合气体用质谱跟踪记录,等各组分气体恢复至原料气浓度后停止记录。
图1为不同固体酸吸附剂的FTIR谱图,从图中可看出所有吸附剂均在1010、1035、1125和1174 cm-1处出现红外谱峰。值得注意的是,在1035 cm-1附近的谱带与苯环上存在C-S键相关,而在1010、1125和1174 cm-1附近的谱带与非对称和对称拉伸信号相关。红外结果表明,磺酸基通过共聚途径成功引入多级孔聚合物网络中。
图2为不同固体酸吸附剂的N2吸脱附曲线和孔径分布图,所有样品均表现出典型的IV型等温线,N2吸附量在0.6 <P/P0 <0.9范围内急剧增加,表明存在中孔性。值得注意的是,随着对苯乙烯磺酸钠含量的增加,BET表面积和孔体积趋于减少。
图3为不同固体酸吸附剂的扫描电镜图,均表现出粗糙的丰富纳米孔的表面特性。
表1为本发明实施例1-4,对比例1和2的氨气穿透曲线结果统计表
Figure 621472DEST_PATH_IMAGE001
实施例中,不同对苯乙烯磺酸钠用量制备的固体酸吸附剂,其中对于相同样品在不同温度下,其NH3穿透时间随温度的升高呈现出减少趋势;对于不同对苯乙烯磺酸钠用量在相同温度下,其NH3穿透时间随苯乙烯磺酸钠用量的增加呈现出递增趋势;表1我们可以看出实施例1-4所制备固体酸吸附剂穿透时间明显高于对比例1-2。同时对不同产物经过升温脱附后,在相同温度下(30 ℃)进行循环吸附测试实验,结果表明,我们所制备的固体酸吸附剂在重复循环3次之后仍然有很好的穿透性能,说明所制备的固体酸吸附剂重复利用性好。
图4为固体酸吸附剂D在室温下的NH3、N2和H2吸附曲线,该样品表现出很好的NH3选择性吸附。如在1bar时,NH3吸附量为9.29 mmol/g,而N2和H2在相同条件下的吸附量仅有0.03 mmol/g。
图5为固体酸吸附剂D在室温下的NH3穿透实验曲线,结果表明该吸附在在室温下的穿透效果可达2000 min/g,且3000 min/g之后才吸附饱和,该穿透结果表明所制备固体酸吸附剂在去除低浓度NH3方面的优异性能。

Claims (8)

1.一种高效吸附低浓度氨气的多级孔聚合物固体酸的制备方法,其特征在于:以有机溶剂和去离子水为溶剂,二乙烯苯和苯乙烯磺酸钠为单体,偶氮二异丁腈为引发剂,首先进行溶剂热共聚反应,待溶剂蒸发后得到中间产物,再与酸性溶液进行离子交换,最后经干燥处理后得到高效吸附低浓度氨气的多级孔聚合物固体酸。
2.根据权利要求1所述的制备方法,其特征在于:所述有机溶剂为四氢呋喃,二氯甲烷和乙酸乙酯中的一种。
3.根据权利要求1所述的制备方法,其特征在于:所述溶剂热共聚合反应的反应时间为2-12 h,反应温度为80-180 ℃。
4.根据权利要求1所述的制备方法,其特征在于:所述蒸发过程是在常温常压下进行。
5.根据权利要求1所述的制备方法,其特征在于:所述酸性溶液为三氟甲磺或硫酸,其浓度为0.5-2 M,加入的体积为20-100 mL。
6.根据权利要求1所述的制备方法,其特征在于:所述干燥温度为60-120 ℃,干燥时间为12-48 h。
7.一种如权利要求1-6所述的制备方法制得高效吸附低浓度氨气的多级孔聚合物固体酸。
8.一种如权利要求7所述的高效吸附低浓度氨气的多级孔聚合物固体酸在吸附低浓度氨气中的应用。
CN201911146240.1A 2019-11-21 2019-11-21 一种高效吸附低浓度氨气的多级孔聚合物固体酸的制备方法 Pending CN110813260A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911146240.1A CN110813260A (zh) 2019-11-21 2019-11-21 一种高效吸附低浓度氨气的多级孔聚合物固体酸的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911146240.1A CN110813260A (zh) 2019-11-21 2019-11-21 一种高效吸附低浓度氨气的多级孔聚合物固体酸的制备方法

Publications (1)

Publication Number Publication Date
CN110813260A true CN110813260A (zh) 2020-02-21

Family

ID=69557548

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911146240.1A Pending CN110813260A (zh) 2019-11-21 2019-11-21 一种高效吸附低浓度氨气的多级孔聚合物固体酸的制备方法

Country Status (1)

Country Link
CN (1) CN110813260A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1349420A (zh) * 1999-04-29 2002-05-15 巴斯福股份公司 含有控制气味化合物的超吸收性聚合物
CN104525260A (zh) * 2014-12-25 2015-04-22 江南大学 一种用于酯化反应的聚合型固体酸催化剂及其制备方法
CN108927186A (zh) * 2018-07-05 2018-12-04 常州蓝森环保设备有限公司 一种高活性脱硝催化剂的制备方法
CN109261202A (zh) * 2018-09-30 2019-01-25 中国科学院山西煤炭化学研究所 一种用于山梨醇脱水制备异山梨醇的催化剂及其制法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1349420A (zh) * 1999-04-29 2002-05-15 巴斯福股份公司 含有控制气味化合物的超吸收性聚合物
CN104525260A (zh) * 2014-12-25 2015-04-22 江南大学 一种用于酯化反应的聚合型固体酸催化剂及其制备方法
CN108927186A (zh) * 2018-07-05 2018-12-04 常州蓝森环保设备有限公司 一种高活性脱硝催化剂的制备方法
CN109261202A (zh) * 2018-09-30 2019-01-25 中国科学院山西煤炭化学研究所 一种用于山梨醇脱水制备异山梨醇的催化剂及其制法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUJIAN LIU等: "Design and synthesis of hydrophobic and stable mesoporous polymeric solid acid with ultra strong acid strength and excellent catalytic activities for biomass transformation", 《APPLIED CATALYSIS B: ENVIRONMENTAL》 *
丛明晓: "多孔有机骨架材料的合成及氨气吸附研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Similar Documents

Publication Publication Date Title
Chen et al. The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance
CN102439123B (zh) 具有rho结构的沸石性质微孔晶体材料在天然气加工过程中的应用
CN112679731B (zh) 一类含有磺酸基团的共价有机框架材料及其制备和应用
CN107661748B (zh) 有机胺功能化大孔容二氧化硅co2吸附剂及其制备方法
Hsiao et al. Preparation of high-surface-area PAN-based activated carbon by solution-blowing process for CO2 adsorption
US8636830B2 (en) Aliphatic amine based nanocarbons for the absorption of carbon dioxide
Sun et al. Graphene modified Cu-BTC with high stability in water and controllable selective adsorption of various gases
CN102198360A (zh) 利用胺类固体吸附剂脱除烟气中co2的工艺及设备
Zeng et al. Porous adsorption materials for carbon dioxide capture in industrial flue gas
Qin et al. Nitrogen-doped asphaltene-based porous carbon nanosheet for carbon dioxide capture
CN110732308B (zh) 一种MOFs基固体酸氨气吸附剂的制备方法
Dziejarski et al. CO2 capture materials: a review of current trends and future challenges
Zhu et al. Reutilization of biomass pyrolysis waste: Tailoring dual-doped biochar from refining residue of bio-oil through one-step self-assembly
Cheng et al. Enhanced CO2 selectivity of mixed matrix membranes with carbonized Zn/Co zeolitic imidazolate frameworks
Xu et al. NH 3-SCR performance and characterization over magnetic iron-magnesium mixed oxide catalysts
Gaikwad et al. Bimetallic UTSA-16 (Zn, X; X= Mg, Mn, Cu) metal organic framework developed by a microwave method with improved CO2 capture performances
CN115779860A (zh) 吸附燃煤烟气中二氧化碳的壳聚糖与有机胺复合固体吸附剂及其制备方法、应用和再生方法
Wang et al. Experimental and computational investigation on the organic acid modification of porous carbon for toluene adsorption under humid conditions
Wang et al. Silver-modified porous polystyrene sulfonate derived from Pickering high internal phase emulsions for capturing lithium-ion
Shan et al. Plasma-assisted synthesis of ZIF-8 membrane for hydrogen separation
Duan et al. Adsorptivity and kinetics for low concentration of gaseous formaldehyde on bamboo-based activated carbon loaded with ammonium acetate particles
Lin et al. Comparison of characteristics and performance between PEI and DETA impregnated on SBA-15 for CO2 capture
CN112023887B (zh) 一种TNT@Cu-BTC复合吸附剂的制备方法及其在环己烷吸附中的应用
Sidek et al. Effect of impregnated activated carbon on carbon dioxide adsorption performance for biohydrogen purification
CN110813260A (zh) 一种高效吸附低浓度氨气的多级孔聚合物固体酸的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200221

RJ01 Rejection of invention patent application after publication