CN110808329B - 酞菁铜磺酸掺杂聚合物基热电材料及其制备方法和应用 - Google Patents

酞菁铜磺酸掺杂聚合物基热电材料及其制备方法和应用 Download PDF

Info

Publication number
CN110808329B
CN110808329B CN201911106587.3A CN201911106587A CN110808329B CN 110808329 B CN110808329 B CN 110808329B CN 201911106587 A CN201911106587 A CN 201911106587A CN 110808329 B CN110808329 B CN 110808329B
Authority
CN
China
Prior art keywords
sulfonic acid
thermoelectric material
copper phthalocyanine
cupc
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201911106587.3A
Other languages
English (en)
Other versions
CN110808329A (zh
Inventor
殷勤俭
王乙涵
吴思琦
胡利智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201911106587.3A priority Critical patent/CN110808329B/zh
Publication of CN110808329A publication Critical patent/CN110808329A/zh
Application granted granted Critical
Publication of CN110808329B publication Critical patent/CN110808329B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/856Thermoelectric active materials comprising organic compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明提供一种酞菁铜磺酸掺杂聚合物基热电材料及其制备方法和应用,用酞菁铜二磺酸掺杂聚3,4‑乙烯二氧噻吩:聚苯乙烯磺酸制备复合薄膜。该方法工艺简单,并且获得的复合薄膜即为酞菁铜磺酸掺杂聚合物基热电材料,具有良好的柔韧性和优异的热电性能,可以作为柔性聚合物热电材料使用。

Description

酞菁铜磺酸掺杂聚合物基热电材料及其制备方法和应用
技术领域
本发明属于聚合物基热电功能材料技术领域,尤其涉及酞菁铜磺酸掺杂聚合物基热电材料及其制备方法和应用。
背景技术
热电材料是一类能通过塞贝克效应和帕尔贴效应实现热能和电能之间直接转换的特殊功能材料。用热电材料制造的温差发电器和热电制冷器由于其系统体积小、重量轻、无振动、无噪音、无磨损和泄漏而安全可靠、使用寿命长、对环境不产生任何污染,因此一直是人们追求的优质能原材料和先进的能源技术。但目前能得到实际应用的热电材料基本都为Bi2Te3、PbTe、Si-Ge合金等无机半导体材料体系,这些材料的原料价格都很昂贵、机械性能差、难以加工成型,且要么含有资源匮乏的稀土元素,要么含有毒性很强的重金属元素,用这类材料制备的热电器件成本高,如核电池等仅能用于空天探索、军事装备等特殊的尖端科技领域,难以实现商业化的大规模应用。而有机高分子材料具有资源丰富、原材料价格便宜,密度低、柔韧性好、机械性能佳、热导率低、分子结构可设计等优点,特别是具有较高载流子浓度的导电高分子材料,被认为是最有前途的热电材料。
对于热电材料的性能通常都是用一个无量纲的参数ZT(热电优值)来评价,ZT=S2σT/κ,其中S、σ、T和κ分别为材料的塞贝克系数、电导率、绝对温度和热导率,材料的ZT值越大表示其热电转换效率越高,热电性能越好。由式可知,要想有高的ZT值,则需有高S、σ和低的κ值,然而S、σ和κ与材料本身的电子结构和载流子的输运、散射有关,它们之间相互联系又相互制约,很难通过调节某一参数来得到有高ZT值的材料。高分子材料的σ和κ通常都比较低,因此常用功率因子PF(PF=S2σ)来代替热电优值ZT作为高分子类热电性能的评判标准。
近些年,研究比较成功的聚合物基热电材料主要有聚噻吩、聚苯胺、聚吡咯以及它们的衍生物。与无机半导体热电材料相比,虽然有机高分子热电材料有很好的柔韧性,有利于制备大面积、多种形状的热电器件,特别是可用于可穿戴电子设备等优势,但目前发现的有机高分子材料的ZT值远低于无机类材料。因此,如何进一步提高有机高分子热电材料的热电性能就成了重点发展方向。如2011年,ZL201110379452.1公开了一种将用酸处理后的聚对苯撑纳米颗粒加入到氧化锌溶胶中,再经等离子放电烧结制得一种聚合物基块体复合热电材料的方法。2012年,ZL201210070305.0公开了一种将碳纳米管掺入聚苯胺、聚吡咯、聚噻吩的溶液中,通过静电纺丝方式,使导电聚合物以碳纳米管表面为模板吸附生长,沉淀出分子链定向排布的聚合物/碳纳米管复合纤维,用作可批量生产的热电材料。2016年,ZL201610531535.0公开了一种石墨烯聚苯胺气凝胶热电材料的制备方法,该法是将石墨烯聚苯胺水凝胶冷冻干燥后制成气凝胶,然后与樟脑磺酸研磨后分散到间甲酚溶液中,浇筑成柔性热电薄膜。2018年,ZL201810204243.5公开了一种高分子复合热电薄膜的制备方法,该法通过化学合成导电聚合物纳米线溶液,然后与无机半导体纳米线进行物理共混,再减压抽滤得到高性能的柔性热电薄膜,利用能量过滤效应将复合材料的功率因子提高了35~70%。这些方法的制备工艺都较为复杂,所得材料的功率因子PF和热电优值系数还有待进一步提高。
发明内容
本发明针对以上不足,提供了工艺简单的酞菁铜磺酸掺杂聚合物基热电材料的制备方法。
为了实现上述目标,本发明的技术方案如下:
酞菁铜磺酸掺杂聚合物基热电材料的制备方法,用酞菁铜二磺酸(CuPc-(SO3H)2)掺杂聚3,4-乙烯二氧噻吩:聚苯乙烯磺酸(PEDOT:PSS)制备复合薄膜。
具体的步骤为:将酞菁铜磺酸钠盐与浓盐酸反应,制得可溶于水的酞菁铜二磺酸(CuPc-(SO3H)2),然后将其作为掺杂剂与PEDOT:PSS悬浮液混合反应后,以聚偏氟乙烯(PVDF)膜为基底,采用真空抽滤和乙二醇(EG)滴涂处理的方式制备出CuPc-(SO3H)2掺杂的PEDOT:PSS/CuPc-(SO3H)2复合薄膜。
优选的,在掺杂20wt%浓度CuPc-(SO3H)2时复合薄膜的功率因子(PF)达到48.8μWm-1K-2。用乙二醇(EG)后处理复合薄膜,可使其电导率σ达到2.8×105S/m,是未用EG处理时的285倍。该薄膜可以作为柔性聚合物热电材料使用。
采用该方法获得的复合薄膜即为酞菁铜磺酸掺杂聚合物基热电材料,具有良好的柔韧性和优异的热电性能,可以作为柔性聚合物热电材料使用。
附图说明
图1(a)为酞菁铜的红外光谱图;
图1(b)为酞菁铜二磺酸的红外光谱图;
图2为酞菁铜二磺酸、PEDOT:PSS以及不同CuPc-(SO3H)2含量PEDOT:PSS/CuPc-(SO3H)2复合薄膜的红外光谱图;
图3为酞菁铜二磺酸、PEDOT:PSS以及20wt%CuPc-(SO3H)2含量PEDOT:PSS复合薄膜的拉曼光谱图;
图4为室温下不同CuPc-(SO3H)2掺杂度的PEDOT:PSS/CuPc-(SO3H)2复合薄膜的电导率、Seebeck系数;
图5为室温下不同CuPc-(SO3H)2掺杂度的PEDOT:PSS/CuPc-(SO3H)2复合薄膜的功率因子PF;
图6为室温下不同EG用量后处理的PEDOT:PSS/CuPc-(SO3H)2复合薄膜的电导率、Seebeck系数。
具体实施方式
结合实施例说明本发明的具体技术方案。
1、酞菁铜二磺酸的制备
取10g直接蓝(CuPc-(SO3Na)2)置于250mL圆底烧瓶中,加入36mL盐酸溶液(vol浓盐酸:vol水=2:1)中,反应原理为:CuPc-(SO3Na)2+2HCl=CuPc-(SO3H)2+2NaCl,水浴加热至90℃,磁力搅拌反应4h。将反应溶液静置后以抽滤的方式制得墨绿色粉末,用丙酮溶液(vol丙酮:vol水=1:1)洗涤数次,45℃真空干燥12h得CuPc-(SO3H)2粉末研磨备用。如图1(a)为酞菁铜的红外光谱图;如图1(b)为酞菁铜二磺酸的红外光谱图。
2、CuPc-(SO3H)2掺杂PEDOT:PSS/CuPc-(SO3H)2复合薄膜的制备
配制浓度为0.018mol/L为CuPc-(SO3H)2溶液待用。将PEDOT:PSS悬浮液于超声机中超声2h,分别取4mL PEDOT:PSS悬浮液中加入一定量CuPc-(SO3H)2溶液,在室温下磁力搅拌反应12h后水浴超声2h,确保PEDOT:PSS分散均匀。然后取2mL混合悬浮液,以PVDF膜为基底、真空抽滤的方法成膜,成膜后再滴加10vol%EG(200μL)在薄膜表面,抽滤完成后在60℃干燥12h得到产物。调整CuPc-(SO3H)2与PEDOT:PSS的质量百分比为10wt%、15wt%、20wt%、25%wt、30wt%,得到不同CuPc-(SO3H)2含量掺杂的PEDOT:PSS/CuPc-(SO3H)2复合薄膜。在相同制备条件下,制备未掺杂的PEDOT:PSS薄膜。如图2为酞菁铜二磺酸、PEDOT:PSS以及不同CuPc-(SO3H)2含量PEDOT:PSS/CuPc-(SO3H)2复合薄膜的红外光谱图;如图3为酞菁铜二磺酸、PEDOT:PSS以及20wt%CuPc-(SO3H)2含量PEDOT:PSS复合薄膜的拉曼光谱图;如图4为室温下不同CuPc-(SO3H)2掺杂度的PEDOT:PSS/CuPc-(SO3H)2复合薄膜的电导率、Seebeck系数;如图5,CuPc-(SO3H)2掺杂度的PEDOT:PSS/CuPc-(SO3H)2复合薄膜的功率因子PF。
3、EG后处理PEDOT:PSS/CuPc-(SO3H)2复合薄膜的制备
将PEDOT:PSS悬浮液于超声机中超声2h,取4mL PEDOT:PSS悬浮液中加入0.8mL0.018mol/L CuPc-(SO3H)2溶液,在室温下磁力搅拌反应12h后水浴超声2h,确保PEDOT:PSS分散均匀。然后取2mL混合悬浮液,以PVDF膜为基底,真空抽滤成膜,成膜后再滴加一定比例的EG溶液在薄膜表面进行后处理,抽滤完成后60℃干燥12h得到产物。调整EG溶液与混合悬浮液的体积百分比为5vol%、7.5vol%、10vol%、12.5vol%、15vol%,得到不同EG用量滴涂后处理的PEDOT:PSS/CuPc-(SO3H)2复合薄膜。如图6所示,不同EG用量后处理的PEDOT:PSS/CuPc-(SO3H)2复合薄膜的电导率、Seebeck系数。
4、其它溶剂后处理PEDOT:PSS/CuPc-(SO3H)2复合薄膜的制备
将PEDOT:PSS悬浮液于超声机中超声2h,取4mL PEDOT:PSS悬浮液中加入0.8mL0.018mol/L CuPc-(SO3H)2溶液,在室温下磁力搅拌反应12h后水浴超声2h,确保PEDOT:PSS分散均匀。然后取2mL混合悬浮液,以PVDF膜为基底,真空抽滤成膜,成膜后分别滴加一定比例的EG、H2O、EG水溶液(EG:H2O=1:1)在薄膜表面进行后处理,真空抽滤完成后60℃干燥12h得到产物。调整溶剂与混合悬浮液的体积百分比为5vol%、7.5vol%、10vol%、12.5vol%、15vol%,得到不同溶剂不同用量后处理的PEDOT:PSS/CuPc-(SO3H)2复合薄膜。

Claims (4)

1.酞菁铜磺酸掺杂聚合物基热电材料的制备方法,其特征在于,包括以下步骤:用酞菁铜二磺酸掺杂聚3,4-乙烯二氧噻吩:聚苯乙烯磺酸悬浮液制备所得;具体包括以下步骤:
(1)酞菁铜磺酸钠盐与浓盐酸反应,制得可溶于水的酞菁铜二磺酸;
(2)酞菁铜二磺酸作为掺杂剂与聚3,4-乙烯二氧噻吩:聚苯乙烯磺酸悬浮液混合反应后,以聚偏氟乙烯膜为基底,采用真空抽滤和乙二醇滴涂处理的方式制备出复合薄膜。
2.根据权利要求1所述的酞菁铜磺酸掺杂聚合物基热电材料的制备方法,其特征在于,所述的酞菁铜二磺酸的掺杂浓度为20wt%;
3.酞菁铜磺酸掺杂聚合物基热电材料,其特征在于,由权利要求1到2任一项所述的制备方法制备所得。
4.根据权利要求3所述的酞菁铜磺酸掺杂聚合物基热电材料的应用,其特征在于,作为柔性聚合物热电材料。
CN201911106587.3A 2019-11-13 2019-11-13 酞菁铜磺酸掺杂聚合物基热电材料及其制备方法和应用 Expired - Fee Related CN110808329B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911106587.3A CN110808329B (zh) 2019-11-13 2019-11-13 酞菁铜磺酸掺杂聚合物基热电材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911106587.3A CN110808329B (zh) 2019-11-13 2019-11-13 酞菁铜磺酸掺杂聚合物基热电材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110808329A CN110808329A (zh) 2020-02-18
CN110808329B true CN110808329B (zh) 2021-03-23

Family

ID=69502361

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911106587.3A Expired - Fee Related CN110808329B (zh) 2019-11-13 2019-11-13 酞菁铜磺酸掺杂聚合物基热电材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110808329B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112652698B (zh) * 2020-12-23 2022-09-13 广东省科学院化工研究所 一种热电转换材料和热电转换器件
CN113036029B (zh) * 2021-03-03 2023-08-04 重庆大学 一种高性能低成本的水凝胶热电材料
CN113594346B (zh) * 2021-06-30 2023-11-17 南方科技大学 一种有机热电薄膜及其制备方法
CN114671976B (zh) * 2022-02-11 2023-12-19 香港理工大学深圳研究院 含有氮氧自由基与二茂铁基团的非共轭有机聚合物及其制备方法与应用、复合热电薄膜

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538540A (zh) * 2015-01-16 2015-04-22 武汉大学 一种碲化锑/聚(3,4-亚乙二氧基噻吩):聚苯乙烯磺酸盐热电复合材料及其制备方法
CN105219103A (zh) * 2015-10-10 2016-01-06 同济大学 一种高热电性能的聚合物基复合薄膜及其制备方法
CN105789423A (zh) * 2016-05-04 2016-07-20 哈尔滨工业大学 一种聚苯胺原位聚合包覆pedot修饰纳米碳的热电复合材料的制备方法
CN106784288A (zh) * 2016-12-30 2017-05-31 天津工业大学 一种增强复合热电材料性能的制备方法
CN108893803A (zh) * 2018-05-30 2018-11-27 江西科技师范大学 高性能柔性pedot:pss热电纤维的制备方法
CN110130096A (zh) * 2019-05-30 2019-08-16 上海应用技术大学 一种柔性纤维织物复合热电材料的制备方法
WO2019177538A1 (en) * 2018-03-13 2019-09-19 Agency For Science, Technology And Research Free-standing and transferable highly conductive polymer films, and method of making

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6009423B2 (ja) * 2013-10-01 2016-10-19 富士フイルム株式会社 熱電変換材料及び熱電変換素子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538540A (zh) * 2015-01-16 2015-04-22 武汉大学 一种碲化锑/聚(3,4-亚乙二氧基噻吩):聚苯乙烯磺酸盐热电复合材料及其制备方法
CN105219103A (zh) * 2015-10-10 2016-01-06 同济大学 一种高热电性能的聚合物基复合薄膜及其制备方法
CN105789423A (zh) * 2016-05-04 2016-07-20 哈尔滨工业大学 一种聚苯胺原位聚合包覆pedot修饰纳米碳的热电复合材料的制备方法
CN106784288A (zh) * 2016-12-30 2017-05-31 天津工业大学 一种增强复合热电材料性能的制备方法
WO2019177538A1 (en) * 2018-03-13 2019-09-19 Agency For Science, Technology And Research Free-standing and transferable highly conductive polymer films, and method of making
CN108893803A (zh) * 2018-05-30 2018-11-27 江西科技师范大学 高性能柔性pedot:pss热电纤维的制备方法
CN110130096A (zh) * 2019-05-30 2019-08-16 上海应用技术大学 一种柔性纤维织物复合热电材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Improved thermoeletric performance of PEDOT:PSS films prepared by polar-solvent vapor annealing method";Qinglin Jiang等;《J.Mater SCI:Mater electron》;20130718;第1-7页 *
"掺杂对导电聚合物热电性质的影响";石文等;《爱学术》;20160731;第1页 *

Also Published As

Publication number Publication date
CN110808329A (zh) 2020-02-18

Similar Documents

Publication Publication Date Title
CN110808329B (zh) 酞菁铜磺酸掺杂聚合物基热电材料及其制备方法和应用
Wei et al. Ti3C2Tx MXene/polyaniline (PANI) sandwich intercalation structure composites constructed for microwave absorption
Liu et al. Advancing flexible thermoelectric devices with polymer composites
Zhang et al. Thermoelectric properties of porous multi-walled carbon nanotube/polyaniline core/shell nanocomposites
Hasan et al. Thermoelectric generator: materials and applications in wearable health monitoring sensors and internet of things devices
Huang et al. Hybrid superlattices of two-dimensional materials and organics
WO2018228022A1 (zh) 一种钙钛矿薄膜的制备方法
Wang et al. One-pot fabrication and enhanced thermoelectric properties of poly (3, 4-ethylenedioxythiophene)-Bi 2 S 3 nanocomposites
JP2012009462A (ja) 有機−無機ハイブリッド熱電材料、当該熱電材料を用いた熱電変換素子及び有機−無機ハイブリッド熱電材料の製造方法
Purty et al. Potentially enlarged supercapacitive values for CdS-PPY decorated rGO nanocomposites as electrode materials
Debnath et al. Reduced hopping barrier potential in NiO nanoparticle-incorporated, polypyrrole-coated graphene with enhanced thermoelectric properties
CN108504049A (zh) 一种高分子复合热电薄膜的制备方法
Ugraskan et al. Enhanced thermoelectric properties of highly conductive poly (3, 4-ethylenedioxy thiophene)/exfoliated graphitic carbon nitride composites
KR101972995B1 (ko) 하이브리드 열전소재 및 그 제조 방법
Wang et al. One-step interfacial synthesis and thermoelectric properties of Ag/Cu-poly (3, 4-ethylenedioxythiophene) nanostructured composites
Kishan et al. Room temperature thermoelectric performance of Methyl Ammonium Lead Iodide Perovskite and their MWCNT-PANI composites
Liu et al. Facile fabrication of highly flexible, porous PEDOT: PSS/SWCNTs films for thermoelectric applications
Al-Gamal et al. Promising nitrogen-doped graphene derivatives; a case study for preparations, fabrication mechanisms, and applications in perovskite solar cells
JP4513504B2 (ja) 熱電材料
Ramalingam et al. SYNTHESIS, SURFACE AND TEXTURAL CHARACTERIZATION OF Ag DOPED POLYANILINE-SiO 2 (Pan-Ag/RHA) NANOCOMPOSITESDERIVEDFROM BIOMASS MATERIALS.
JP7221496B2 (ja) カーボンナノチューブ複合体およびその製造方法
Kim et al. Redox-active polyimides for energy conversion and storage: from synthesis to application
Zhang et al. Construction of a hierarchical multiscale conducting network for enhanced thermoelectric response in organic PEDOT: PSS based nanocomposites
CN111009422B (zh) 一种镍基核壳结构NiCo2O4/聚苯胺纳米材料的制备方法
KR102198564B1 (ko) 에어로겔 복합물 및 그의 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210323

Termination date: 20211113

CF01 Termination of patent right due to non-payment of annual fee