CN110794051A - 一种利用caf测定水中氨氮含量的方法 - Google Patents

一种利用caf测定水中氨氮含量的方法 Download PDF

Info

Publication number
CN110794051A
CN110794051A CN201911036342.8A CN201911036342A CN110794051A CN 110794051 A CN110794051 A CN 110794051A CN 201911036342 A CN201911036342 A CN 201911036342A CN 110794051 A CN110794051 A CN 110794051A
Authority
CN
China
Prior art keywords
caf
concentration
water
ammonia nitrogen
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911036342.8A
Other languages
English (en)
Other versions
CN110794051B (zh
Inventor
孙佩哲
刘瑞妮
孟坛
张若纯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201911036342.8A priority Critical patent/CN110794051B/zh
Publication of CN110794051A publication Critical patent/CN110794051A/zh
Application granted granted Critical
Publication of CN110794051B publication Critical patent/CN110794051B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/36Control of physical parameters of the fluid carrier in high pressure liquid systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/067Preparation by reaction, e.g. derivatising the sample
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment

Abstract

本发现具体涉及一种用CAF测定水中氨氮的方法,主要包括咖啡因(CAF)、氯化铵(NH4Cl)、磷酸缓冲溶液(PBS)以及自由氯(FAC)在水中的溶解、混合、取样以及测定等过程,改变NH4Cl在体系中加入的浓度会影响CAF在体系中的去除率的变化,所以根据CAF去除率和NH4Cl浓度的线性关系可以达到测定水中氨氮含量的目的。采用此方法,可以有效且精确的测定水中氨氮含量。

Description

一种利用CAF测定水中氨氮含量的方法
技术领域
本发明属于环境中水质监测领域,具体是一种利用CAF测定水中氨氮含量的方法,利用CAF在自由氯/氨氮体系中可发生反应以此来达到测定水中氨氮含量的目的。
背景技术
我国地表水污染情况较严重,饮用水源大多受到氨氮污染。水体中的氨氮是指以游离态氨NH3和离子态铵NH4+形式存在的氮。作为营养盐污染物,氨氮在水体中含量较高时会导致水质恶化,生态系统失衡,引发富营养化危害。导致藻类和微生物的大量繁殖,水中的溶解氧过度消耗,复氧速率明显小于耗氧效率,最终导致鱼类大量的死亡。另外由于一些工业排放的氨氮废水成分复杂,毒性强,又具有很强的致癌性,加深水体的污染。同时也给给水工程带来很大的困难,出现水质恶化,形成生物垢堵塞管道及设备,影响热效益等问题。较高的氨氮浓度不仅对鱼类等水生动物有致命的毒害作用,对人体也有不同程度的危害。
目前,包括我国在内的许多国家对饮用水水源水和出厂水的氨氮浓度有较为严格的限值。因此,氨氮含量的多少是判断水体污染程度的重要标志之一,也是工业污水排放物的重要控制指标之一。水样中氨氮的测定方法种类较多,各有特点。主要包括分光光度法,氨气敏电极法,吹脱-电导法,蒸馏-滴定法,酶法等。
分光光度法是最常用的测量水中氨氮的方法,纳氏试剂比色法是氨的经典测定方法,其缺点是灵敏度较低,容易受到污水色度影响,且试剂毒性大,容易产生二次污染;氨气敏电极法易受高浓度离子的影响,尤其是待测溶液中含有有机成分则会对测定造成较大影响;吹脱-电导法较适合于氨氮含量较低的天然水样品的测定,但是却存在挥发胺使结果偏高的缺点;蒸馏-滴定法适用于测定高浓度氨氮,但费电、费水、费时;酶法具有简便、快速、灵敏、准确和干扰少的优点,其对操作人员技术水平要求很高,且实验材料为生物制剂,不便于贮存使用、价格高。
发明内容
本发明的目的在于克服现有测定水中氨氮方法的不足,提供一种便捷实用且灵敏度更高的测定水中氨氮的方法。
本发明主要包括以下步骤:
1)在10mL螺口瓶中,加入适量超纯水,以及0mM NH4Cl、10uM CAF、5mM PBS,在磁力搅拌器上保持溶液混合均匀,得到溶液A;
2)在溶液A中加入0.123mM FAC储备液,混合均匀后得到溶液B;
3)立即取B溶液1mL至已加入10uM硫代硫酸钠(Na2S2O3)的高效液相色谱进样瓶中,晃动小瓶使其充分反应,同时使用计时器开始计时,并用高效液相色谱仪测出其在0时刻时CAF在波长为270nm处的峰面积;
4)计时器时间为15分钟时,取1mL B溶液至已加入10uMNa2S2O3的高效液相色谱进样瓶中,晃动小瓶使其充分反应,并用高效液相色谱仪测出CAF在波长为270nm处的峰面积;
5)当NH4Cl浓度分别为0.0123mM,0.0246mM,0.0369mM,0.0492mM,0.0615mM的时候,重复1)~4)的实验步骤;
6)根据0时刻和15分钟时高效液相色谱法测出的FAC的峰面积,得出NH4Cl浓度分别为0mM,0.0123mM,0.0246mM,0.0369mM,0.0492mM,0.0615mM时CAF的去除率以及它们之间的线性关系;
7)当水中氨氮浓度未知时,重复1)~4)实验,测出CAF去除率,根据6)中已知的线性关系,得出其相对应氨氮浓度。
上述步骤中用到的试剂储备液浓度如下:CAF储备液浓度[CAF]=1mM,PBS(pH=7)=100mM,NH4Cl储备液浓度[NH4Cl]=15mM,FAC储备液浓度[FAC]=12.3mM,Na2S2O3储备液浓度
[Na2S2O3]=0.1M
有益效果:
1.利用CAF在自由氯/氨氮体系中可发生反应,用CAF在此体系中的去除率与氨氮的浓度变化呈线性的关系来测定水中氨氮含量,这种方法相比传统氨氮测定方法,操作更简便,在已经得到步骤6)中线性关系的图后,只需得到CAF的消耗量,即可从图中求得氨氮浓度;
2.因为本方法测定CAF在自由氯/氨氮体系中的去除率主要依靠大型仪器高效液相色谱仪,检出限低,可用来测定氨氮含量较小的水样;
3.灵敏度高,不受水样中其它杂质以及色度等因素的影响。
附图说明
图1是CAF去除率得到相对应的氨氮含量线性拟合图(根据上述步骤6)所得数据绘制而成)。
具体实施方式
以下结合附图和实施例来对本发明作进一步的说明。
1.对于含有杂质的水样,具体实施方式如下:
1)需要先对水样进行预处理,利用抽滤装置进行过滤,滤膜采用0.22um滤膜;
2)将水样稀释10倍、50倍、100倍;
3)在三个10mL螺口瓶中,加入适量超纯水,分别加入稀释10倍、50倍、100倍的NH4Cl溶液,以及10uM CAF、5mM PBS,在磁力搅拌器上保持溶液混合均匀,得到溶液A;
4)在溶液A中加入0.123mM FAC储备液,混合均匀后得到溶液B;
5)立即取B溶液1mL至已加入10uMNa2S2O3的高效液相色谱进样瓶中,晃动小瓶使其充分反应,同时使用计时器开始计时,并用高效液相色谱仪测出其在0时刻时CAF在波长为270nm处的峰面积;
6)计时器时间为15分钟时,取1mL B溶液至已加入10uMNa2S2O3的高效液相色谱进样瓶中,晃动小瓶使其充分反应,并用高效液相色谱仪测出CAF在波长为270nm处的峰面积;
7)利用步骤5)和步骤6)中0时刻和15分钟时的峰面积,可分别得出稀释10倍、50倍、100倍的水样中CAF的去除率,根据图1,可由CAF去除率得到相对应的氨氮含量。
2.对于pH较高的水样,具体实施方式如下:
1)通过滴加稀盐酸的方式,使水样pH接近7;
2)将水样稀释10倍、50倍、100倍;
3)在三个10mL螺口瓶中,加入适量超纯水,分别加入稀释10倍、50倍、100倍的NH4Cl溶液,以及10uM CAF、5mM PBS,在磁力搅拌器上保持溶液混合均匀,得到溶液A;
4)在溶液A中加入0.123mM FAC储备液,混合均匀后得到溶液B;
5)立即取B溶液1mL至已加入10uMNa2S2O3的高效液相色谱进样瓶中,晃动小瓶使其充分反应,同时使用计时器开始计时,并用高效液相色谱仪测出其在0时刻时CAF在波长为270nm处的峰面积;
6)计时器时间为15分钟时,取1mL B溶液至已加入10uMNa2S2O3的高效液相色谱进样瓶中,晃动小瓶使其充分反应,并用高效液相色谱仪测出CAF在波长为270nm处的峰面积;
7)利用步骤5)和步骤6)中0时刻和15分钟时的峰面积,可分别得出稀释10倍、5倍、100倍的水样中CAF的去除率,根据图1,可由CAF去除率得到相对应的氨氮含量。

Claims (2)

1.一种利用CAF测定水中氨氮含量的方法,其特征在于,包括以下步骤:
1)在10mL螺口瓶中,加入适量超纯水,以及0mM NH4Cl、10uM CAF、5mMPBS,在磁力搅拌器上保持溶液混合均匀,得到溶液A;
2)在溶液A中加入0.123mM FAC储备液,混合均匀后得到溶液B;
3)立即取B溶液1mL至已加入10uMNa2S2O3的高效液相色谱进样瓶中,晃动小瓶使其充分反应,同时使用计时器开始计时,并用高效液相色谱仪测出其在0时刻时CAF在波长为270nm处的峰面积;
4)计时器时间为15分钟时,取1mL B溶液至已加入10uMNa2S2O3的高效液相色谱进样瓶中,晃动小瓶使其充分反应,并用高效液相色谱仪测出CAF在波长为270nm处的峰面积;
5)当NH4Cl浓度分别为0.0123mM,0.0246mM,0.0369mM,0.0492mM,0.0615mM的时候,重复1)~4)的实验步骤;
6)根据0时刻和15分钟时高效液相色谱法测出的FAC的峰面积,得出NH4Cl浓度分别为0mM,0.0123mM,0.0246mM,0.0369mM,0.0492mM,0.0615mM时CAF的去除率以及它们之间的线性关系;
7)当水中氨氮浓度未知时,重复1)~4)实验,测出CAF去除率,根据6)中已知的线性关系,得出其相对应氨氮浓度。
2.根据权利要求1所述的一种利用CAF测定水中氨氮含量的方法,其特征在于,储备液浓度如下:CAF储备液浓度[CAF]=1mM,PBS(pH=7)=100mM,NH4Cl储备液浓度
[NH4Cl]=15mM,FAC储备液浓度[FAC]=12.3mM,Na2S2O3储备液浓度[Na2S2O3]=0.1M。
CN201911036342.8A 2019-10-29 2019-10-29 一种利用caf测定水中氨氮含量的方法 Active CN110794051B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911036342.8A CN110794051B (zh) 2019-10-29 2019-10-29 一种利用caf测定水中氨氮含量的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911036342.8A CN110794051B (zh) 2019-10-29 2019-10-29 一种利用caf测定水中氨氮含量的方法

Publications (2)

Publication Number Publication Date
CN110794051A true CN110794051A (zh) 2020-02-14
CN110794051B CN110794051B (zh) 2022-09-02

Family

ID=69441747

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911036342.8A Active CN110794051B (zh) 2019-10-29 2019-10-29 一种利用caf测定水中氨氮含量的方法

Country Status (1)

Country Link
CN (1) CN110794051B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111398478A (zh) * 2020-04-23 2020-07-10 珠江水利委员会珠江水利科学研究院 一种水样中氨氮及其同位素含量的气-质谱色谱联用检测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721786A (zh) * 2012-05-24 2012-10-10 武汉巨正环保科技有限公司 一种测定水中氨氮含量的方法
CN104483280A (zh) * 2014-12-23 2015-04-01 阜阳师范学院 一种快速检测氨氮脱除率的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721786A (zh) * 2012-05-24 2012-10-10 武汉巨正环保科技有限公司 一种测定水中氨氮含量的方法
CN104483280A (zh) * 2014-12-23 2015-04-01 阜阳师范学院 一种快速检测氨氮脱除率的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PEIZHE SUN ET.AL: "Degradation of DEET and Caffeine under UV/Chlorine and Simulated Sunlight/Chlorine Conditions", 《ENVIRON. SCI. TECHNOL.》, vol. 50, 21 November 2016 (2016-11-21), pages 13265 - 13273 *
林华荣: "水中总氮测定方法的进展", 《环境科学》, vol. 10, no. 03, 31 December 1989 (1989-12-31), pages 53 - 58 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111398478A (zh) * 2020-04-23 2020-07-10 珠江水利委员会珠江水利科学研究院 一种水样中氨氮及其同位素含量的气-质谱色谱联用检测方法
CN111398478B (zh) * 2020-04-23 2022-09-02 珠江水利委员会珠江水利科学研究院 一种水样中氨氮及其同位素含量的气-质谱色谱联用检测方法

Also Published As

Publication number Publication date
CN110794051B (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
Zhu et al. Development of analytical methods for ammonium determination in seawater over the last two decades
CN111413329B (zh) 一种应用于污染物质和实际水样检测的生物急性毒性检测方法
ITRM20120218A1 (it) Dispositivo e metodo per l'analisi ed il monitoraggio della tossicità nelle acque.
CN101788493A (zh) 一种水质中氨氮测试方法
CN105277535B (zh) 一种可消除试剂空白影响的水中氨氮现场快速检测方法
Paton et al. Use of luminescence-marked bacteria to assess copper bioavailability in malt whisky distillery effluent
CN110794051B (zh) 一种利用caf测定水中氨氮含量的方法
CN105588831A (zh) 一种应用淡水发光细菌检测稀土尾矿库周边地下水污染急性毒性的方法
CN102288653A (zh) 生化需氧量bod在线测定仪及用其检测的方法
CN110887834A (zh) 一种基于靛蓝二磺酸钠褪色的水体硝酸盐含量测定方法
Liang et al. Flow injection analysis of nanomolar level orthophosphate in seawater with solid phase enrichment and colorimetric detection
CN116559393B (zh) 一种利用硝化生物反应检测氨氮含量的方法
Mello et al. Analysis of trace metals Cu2+, Pb2+ and Zn2+ in coastal marine water samples from Florianópolis, Santa Catarina State, Brazil
CN101477105A (zh) 高盐工业废水bod的快速测定方法
CN101625317A (zh) 一种全自动在线化学耗氧量和生物耗氧量的监测仪及其使用方法
CN1670509A (zh) 臭氧氧化-化学发光法检测水体中化学需氧量的装置
Kiso et al. Visual determination of nitrite and nitrate in waters by color band formation method
CN210269598U (zh) 一种用于总氮的化学分析系统
CN108375610B (zh) 一种基于耗氧速率抑制率分析污泥酶活性的校正方法
CN111982847A (zh) 一种利用流动注射分析仪测试总氮的方法及其应用
CN110658138A (zh) 一种硫化物分析系统
Atienza et al. Flow Injection Analysis of Seawater: Anionic and Organic Species
Mandal Effect of temperature on electrical conductivity in industrial effluents
CN217304884U (zh) 一种浸入式多光谱cod在线监测仪
CN211086070U (zh) 一种硫化物分析系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant