CN110793459B - 一种二维激光位移传感器标定装置 - Google Patents

一种二维激光位移传感器标定装置 Download PDF

Info

Publication number
CN110793459B
CN110793459B CN201911057260.1A CN201911057260A CN110793459B CN 110793459 B CN110793459 B CN 110793459B CN 201911057260 A CN201911057260 A CN 201911057260A CN 110793459 B CN110793459 B CN 110793459B
Authority
CN
China
Prior art keywords
support arm
laser
arm
fixing base
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911057260.1A
Other languages
English (en)
Other versions
CN110793459A (zh
Inventor
吴帮明
冯艳波
姚培
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Anke Taifeng Technology Co ltd
Original Assignee
Chengdu Anke Taifeng Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Anke Taifeng Technology Co ltd filed Critical Chengdu Anke Taifeng Technology Co ltd
Priority to CN201911057260.1A priority Critical patent/CN110793459B/zh
Publication of CN110793459A publication Critical patent/CN110793459A/zh
Application granted granted Critical
Publication of CN110793459B publication Critical patent/CN110793459B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明涉及一种龙门架激光2D传感器全局标定装置,对于大尺寸的物体断面非接触测量需要通过多个2D激光传感器数据融合进行廓形的测量。它包括了旋转支臂部分和底部横梁调整部分,旋转支臂部分包含了高精度阶梯块模型、旋转臂、伺服电机、高精度角度编码器、支撑臂、支臂安装底座;底部横梁调整部分包括横梁、横梁定位脚、垂直和水平位置360°面激光、面激光固定底座、支臂固定底座、横梁绝缘底座、横梁固定夹具。根据装置设计要求可以快速组装设备并达到相应的精度要求。本发明装置能够实现龙门架激光2D传感器的快速高精度的全局标定。

Description

一种二维激光位移传感器标定装置
技术领域
本发明涉及超大尺寸物体的非接触式廓形测量领域,实现便携式大型龙门架上多个激光2D传感器基于基准坐标系的全局标定,具体涉及一种多个大量程激光2D传感器全局标定的标定装置及全局标定方法,该标定装置基于空间坐标变换原理,通过对多个激光2D传感器的共面调整及标定装置的结构参数校准实现多个大量程激光2D传感器的全局坐标系标定。
背景技术
随着非接触式检测方法快速发展,目前可以采用激光2D传感器实现物体全断面廓形的检测,对于小型的零部件能够通过单个或者两个激光2D传感器就能实现物体断面廓形测量,对于大尺寸的物体外形测量需要通过多个大量程激光2D传感器进行廓形的测量。针对地铁车辆廓形测量时,通过龙门架上安装的大量程激光2D传感器实现非接触式测量。采用量程800~1400mm,视角35°~45°范围的激光2D传感器时,需要19个大量程激光2D传感器才能实现整个车体断面廓形测量。如图1所示,图中:1是龙门架框架,2是激光2D传感器,3是测量模型断面示意图。
针对于大型龙门架上多个大量程激光2D传感器全局坐标系标定,目前没有快速、高精度的标定设备和标定方法。为了实现大尺寸物体断面尺寸高精度测量,需要实现多个激光2D传感器基于基准坐标系的全局标定,对于标定设备本身也需要进行高精度的校准,同时需要对多个激光2D传感器进行共面调整,防止不同传感器之间激光的干涉影响并保证测量结果是同一个截面廓形。
发明内容
本发明所要解决的问题:为了实现大尺寸物体断面尺寸高精度测量,需要实现大型龙门架上面多个大量程激光2D传感器基于基准坐标系的全局标定,提出了一种基于空间坐标变换算法的标定装置及全局标定方法,并完成该标定装置的结构参数校准及多个激光2D传感器的共面调整。通过该方案,可以实现龙门架测量系统基准坐标系的高精度全局标定。
为了解决上述的技术问题,本发明采用了以下的技术方案:
一种应用于便携式龙门架上多个大量程激光2D传感器的全局标定装置,其特征在于:它包括了旋转支臂部分和底部横梁固定调整部分。旋转支臂部分包含了高精度标准阶梯块、旋转转臂、伺服电机、高精度角度编码器、支撑臂、支臂安装底座;底部横梁固定调整部分包括横梁、横梁定位脚、垂直360°面激光、水平位置360°面激光、面激光固定底座、支臂固定底座、横梁绝缘底座、横梁固定夹具。支臂固定底座和安装底座设计时,有较高的平面度和垂直度要求。标定装置安装时,根据上下模块之间的关系可以快速组装设备并达到相应的精度要求,各部件具体连接关系为:横梁绝缘底座安装在横梁端部;面激光固定底座安装在横梁左侧中部上方位置;支臂固定底座安装在横梁中部上方位置;支臂安装底座和支臂固定底座通过支臂压紧块1和支臂压紧块2在垂直方向固定;垂直支臂一端通过螺栓固定在支臂安装底座,另外一端通过伺服电机与旋转转臂端部连接,垂直支臂和横梁为垂直安装关系;标定块安装在旋转转臂端部位置;旋转转臂可在360°旋转圆平面内按顺时针或逆时针转动任意角度。
通过标定装置上安装的垂直360°面激光器,采用共面调整方法实现龙门架上多个激光2D传感器共面。所述共面调整方法为:步骤一,在单个激光2D传感器有效量程前后位置间隔一定距离分别放置两张白纸,通过观察激光2D传感器投射在白纸上的激光光条和标定装置上安装的垂直360°面激光器投射在白纸上的激光光条,调整激光2D传感器使两种激光光条在白纸上完全重合;步骤二,通过对每个激光2D传感器采用该共面调整方法,实现所有激光2D传感器共面。
通过标定装置上安装的水平位置360°面激光器、垂直360°面激光器和龙门架顶部横梁中部安装的十字激光器,通过快速定位组装方法,实现龙门架快速重新定位组装,避免每次龙门架拆解之后都需要对所有激光2D传感器进行全局标定,实现快速测量的目的。所述快速定位组装方法为:步骤一,龙门架按设计要求安装完成之后,通过共面调整方法完成所有激光2D传感器的共面调整;步骤二,通过安装在标定装置上的水平位置360°面激光器投射激光线条在龙门架上,在龙门架两侧上做水平定位标记;步骤三,通过安装在标定装置上的垂直360°面激光器投射激光线条在龙门架上,在龙门架两侧上部和下部做垂直定位标记;步骤三,通过龙门架顶部横梁中部安装的十字激光器投射激光线条在标定装置横梁上面,在标定装置上面做十字定位标记;步骤四,每次重新安装龙门架时,先将标定装置按要求放置在钢轨上,打开所述的水平位置360°面激光器、垂直360°面激光器和十字激光器,调整龙门架底部调整机构使所述三种激光线条和对应定位标记重合,即完成龙门架的重新组装。采用所述快速定位组装方法,因为龙门架及所有激光2D传感器相对标定装置位置固定不变从而不需要重新进行全局标定,可以实现快速测量的目的。
采用设计的机械固定结构实现旋转支臂部分和底部横梁固定调整部分高精度配合,使用螺栓压紧连接部件,能够实现装置的快速安装与拆卸,并保证了重新组装后不需要进行设备结构参数的重新校准。具体安装步骤为:步骤一,先将支臂安装底座右侧面和支臂固定底座右上方斜切面紧密接触;步骤二,在支臂安装底座和支臂固定底座左侧面用支臂压紧块1进行螺栓压紧固定;步骤三,在支臂安装底座和支臂固定底座前侧面用支臂压紧块2进行螺栓压紧固定。
底部横梁固定调整部分一端采用横梁定位脚进行左右定位,横梁固定采用夹具固定方式,横梁多个位置分别采用夹具紧夹(对于地铁车辆测量时,通过夹具把设备固定在轨道上面进行固定)。
角度编码器安装在垂直支臂端部位置与伺服电机轴承连接,旋转转臂可以360°自由旋转到平面空间任意位置,通过角度编码器记录旋转角度。
在对多个激光2D传感器基于基准坐标系的全局标定之前需要对标准装置进行结构参数校准,校准方法为:步骤一,用全站仪建立原点坐标系,在标准装置横梁中部位置设有坐标原点以及方向定位点,通过换算得到最终需要的基准坐标系(地铁车辆廓形测量时,以轨道基准坐标系建立基准坐标系);步骤二,转动旋转转臂到空间任意位置获取角度信息,通过全站仪获取标准阶梯块上面特征点在基准坐标系中的坐标值;步骤三,由于测量数据点在旋转圆上面,通过获取足够的多组数据点,采用非线性最小二乘法求解特征点对应的旋转圆的圆心和半径,然后根据特征点与标准阶梯块廓形的几何位置关系,计算得到标定装置结构参数。求解得到标定装置结构参数后,就可以根据角度编码器获取的角度计算任意位置时标准阶梯块廓形数据点在基准坐标系中的坐标值。
龙门架多个激光2D传感器基于基准坐标系的全局标定方法,其特征在于包括了以下的测量方法:系统采用世界坐标全局标定方法,即确定各传感器坐标系到全局基准坐标系的旋转矩阵及平移矢量。根据激光2D传感器采集的标准阶梯块廓形在传感器坐标系中的数据与根据角度传感器计算得到的标准阶梯块廓形在基准坐标系中的数据进行匹配,计算两种坐标系之间的转换矩阵,匹配算法采用迭代最近点算法。通过对每个激光2D传感器采用该标定方法,实现龙门架多个激光2D传感器在基准坐标系中的全局标定。
有益效果:本发明采用标准阶梯块进行全局标定,标准阶梯块具有多个垂直面和平行面以及角点,在获取的廓形坐标中,具有便于识别的功能,在数据处理中具有指向性,操作人员可以根据标准阶梯块的廓形特征进行数据提取,可以提高数据处理效率和标定精度;支臂固定底座、支臂压紧块1和支臂压紧块2和支臂安装底座的安装方式,可以在保证安装精度的同时,达到快速拆装,不用每次安装都需要校准的功能,同时,本装置可以便于拆卸安装的特征,可以将其应用到铁轨的任何部段,能快速组装、定位,完成高精度的标定工作,并且在重新组装后不需要进行校准,可以直接进行标定工作;通过发明的标定装置及全局标定方法可以快速完成大型龙门架上多个大量程激光2D传感器基于基准坐标系的高精度全局标定;通过发明的共面调整方法实现多个激光2D传感器共面测量,快速实现19个激光2D传感器的共面,从而对超大尺寸物体的廓形测量完成共面调整;通过快速定位组装方法,实现龙门架快速重新定位组装,避免每次龙门架拆解之后都需要对所有激光2D传感器进行全局标定,实现快速测量的目的;通过发明的标定装置机械固定结构实现标定装置的快速安装固定,保证每次拆装后的精度满足技术要求;通过发明的标定装置校准方法可以简单、快速、高精度的完成标定装置的结构参数校准;本发明具有精度高,拆装方便的特点,对复杂多变的现场测量条件提供了简便易行的标定方式。
附图说明
为了更好的说清楚本发明实施例的装置和方法,下面对本发明实施例中描述需要使用的的附图进行简要介绍,显而易见的,下面描述中的附图仅仅是本发明的一个实施例,对于本领域普通技术员来讲,在不付出创造性劳动的前提下,还可以根据这些附图的原理获得其他的设计方案。
图1所示为本发明实施例龙门架及激光2D传感器安装示意图;
图2所示为本发明实施例标定装置的整体安装示意图;
图3所示为本发明实施例标定装置面激光安装示意图;
图4所示为本发明实施例标定装置机械固定结构示意图;
图5所示为本发明实施例标准阶梯块加工要求示意图;
图6所示为本发明实施例标定原理坐标系转换示意图;
图7所示为本发明实施例全局标定整体示意图;
图例说明
1、龙门架框架 2、激光2D传感器 3、测量模型断面示意图
4、横梁定位脚 5、面激光固定底座 6、水平位置360°面激光
7、垂直360°面激光 8、垂直支臂 9、横梁绝缘底座1
10、横梁绝缘底座2 11、支臂安装底座 12、支臂固定底座
13、支臂压紧块1 14、支臂转臂固定件 15、伺服电机
16、角度编码器 17、标准阶梯块 18、旋转转臂
19、定位脚安装座 20、横梁 21、轨道模型
22、垂直激光调整座 23、支臂压紧块2
具体实施方式
下面,将结合本发明附图,对本发明实施例中的技术方案,进行描述,显然,所描述的实施例仅仅是本发明的一部分具体实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参见图2,本发明主要包含旋转支臂部分和底部横梁固定调整两部分:旋转支臂部分包含了标准阶梯块(17)、旋转转臂(18)、伺服电机(15)、高精度角度编码器(16)、支撑臂(8)、支臂安装底座(11)、支臂压紧块1(13)、支臂压紧块2(23);底部横梁固定调整部分包括横梁(20)、横梁定位脚(4)、垂直360°面激光(7)、水平位置360°面激光(6)、面激光固定底座(5)、支臂固定底座(12)、横梁绝缘底座1(9)、横梁绝缘底座2(10)。支臂固定底座(11)和支臂固定底座(12)设计加工时,有较高的平面度和垂直度要求。设备安装时,横梁(20)贴近轨道内侧面,采用夹具把横梁(20)夹紧在轨道上面,安装上下模块,可以快速组装设备并达到相应的精度要求。安装完成后可以在旋转圆平面内任意旋转转臂(18),使得龙门架中每个激光2D传感器(2)都能获得标准阶梯块(17)的廓形坐标。
如图3所示,描述了标定装置上的水平位置360°面激光和垂直360°面激光的安装示意图,其中水平位置360°面激光(6)和垂直360°面激光器(7)用于龙门架位置定位,同时在龙门架横梁(20)中部上安装十字激光器投射激光线条在标定装置上面进行位置定位,方便龙门架的重新组装。垂直360°面激光器(7)用于龙门架激光2D传感器(2)调整共面,在激光2D传感器(2)前后上下位置一定距离分别放置两张白纸,通过观察激光2D传感器(2)投射的激光光条和标定装置上垂直360°面激光投射的激光光条,调整激光2D传感器(2)使激光光条在白纸上面完全重合后,前后上下移动白纸位置进行微调,实现激光器的完全重合。通过调整激光2D传感器(2)与标定装置垂直360°面激光器(7)共面的方式实现所有激光2D传感器(2)激光共面。
如图4所示,描述了模块之间通过机械固定结构连接组装的方式,底座加工时有平面度和垂直度要求,材质要求为铁。支臂安装底座(11)由具有切角设置的水平底板和竖直部分组成,支臂固定底座(12)具有矩形块一和矩形块二,矩形块一左侧为阶梯状,矩形块二左侧突出于矩形块一的上表面,形成一个凹形槽,在矩形块二右侧设置有斜向上的左斜切面,支臂压紧块1(13)大致成U形,由水平部分、竖直部分和右斜角部分组成,其中,水平部分卡扣于支臂固定底座的凹形槽里,支臂压紧块1(13)的右斜角部分和支臂固定底座(12)的左斜切面部分分别扣紧支臂安装底座(11)水平底板的左右切角部分。
安装步骤为:步骤一,先将支臂安装底座(11)右侧面和支臂固定底座(12)右上方斜切面紧密接触;步骤二,在支臂安装底座(11)和支臂固定底座(12)左侧面用支臂压紧块1(13)进行螺栓压紧固定;步骤三,在支臂安装底座(11)和支臂固定底座(12)前侧面用支臂压紧块2(23)进行螺栓压紧固定。支臂安装底座(11)和支臂固定底座(12)均为一体成型,可以在快速拆装的同时保证安装精度。
如图5所示,描述了标准阶梯块(17)的加工要求,为达到较高的标定精度,标准阶梯块(17)的平行度和垂直度以及表面粗糙度要满足一定的加工要求。
如图6所示,描述了激光2D传感器(2)坐标系到全局基准坐标系的转换过程。要实现坐标系的转换,需要得到全局基准坐标系下的数据坐标和对应激光2D传感器(2)坐标系数据坐标,然后求解数据集的转换关系。通过获取标准阶梯块(17)的廓形数据进行全局标定。
全局基准坐标系下,求解旋转转臂(18)在任意位置时标准阶梯块(17)廓形坐标。需要通过标定装置的结构参数以及角度编码器(16)获得的角度来计算廓形坐标。标定装置的结构参数采用高精度的全站仪进行标定求解。根据旋转转臂(18)在不同角度位置时获取标准阶梯块(17)上面两个特征点的全局坐标,特征点在不同角度位置的坐标在同一个旋转圆上面,通过非线性最小二乘法求解特征点对应的圆心和半径。求解方法如下:
设圆弧方程为:
(x+D)2+(y+E)2=r2 (1)
已知圆弧上的数据点(xi,yl),设:
Figure GDA0003678344890000071
对于基于非线性最小二乘法的圆弧拟合,其目标函数为:
Figure GDA0003678344890000072
其中m为参与拟合计算的数据点个数。
若能够求得函数f(x,y)的最小值,便可得到圆心坐标(-D,-E)以及半径r的最优解。因此,圆弧拟合问题转换为非线性最小二乘最优化问题。
求解得到特征点圆心和半径后,根据特征点和标准阶梯块(17)廓形之间几何位置关系可以求解标定装置的结构参数。根据得到的结构参数和旋转转臂(18)旋转角度可以求解任意位置时标准阶梯块(17)廓形的全局坐标。
设标准阶梯块(17)上面特征点的坐标A(Ax,Ay),B(Bx,By),标准阶梯块(17)廓形坐标[x,y]T,标准阶梯块(17)置于角度0点位置时,根据标定得到的圆心坐标和半径以及A点和B点间距离d,可以求得特征点在零点位置的坐标A1(Ax1,Ay1),B1(Bx1,By1),根据向量
Figure GDA0003678344890000073
和向量
Figure GDA0003678344890000074
之间的旋转平移关系:
Figure GDA0003678344890000075
可以求解θ,tx,ty,得到向量
Figure GDA0003678344890000076
和向量
Figure GDA0003678344890000077
的转换矩阵,然后可以求得标准阶梯块(17)廓形转换后的位置坐标[X,Y]T
得到标准阶梯块(17)任意位置的全局坐标以及激光2D传感器(2)测量坐标需要求解坐标系之间转换关系,如图6所示,传感器坐标系为U、V、W。传感器坐标系OSUVW相对全局坐标系OTXYZ的旋转角度分别为α、β、θ,再将OSUVW经过平移x′、y′、z′后,可得测量基准坐标系OTXYZ,根据旋转矩阵法求解2个坐标系之间的变换关系。
在计算坐标变换时,旋转更方便的表示形式是旋转矩阵(Rotation Matrix)。三维空间的旋转矩阵可以表示成3x3的矩阵,旋转矩阵的计算方式如下:
(1)绕Z轴旋转矩阵:
Figure GDA0003678344890000081
(2)绕Y轴旋转矩阵:
Figure GDA0003678344890000082
(3)绕X轴旋转矩阵:
Figure GDA0003678344890000083
(4)X,Y,Z旋转平移:
Figure GDA0003678344890000084
式中:x=[X Y Z]T、u=[U V W]T分别为被测点在测量基准坐标系和传感器坐标系下的坐标向量。传感器标定即是求解旋转矩阵R和平移向量t的过程。
对于R和t的求解,已知条件是2个数据点集:一个是轨道基准坐标系下特制标准阶梯块(17)上通过使用全站仪和角度编码器(16)计算得到点集Q;另一点集为激光2D传感器(2)采集获取得到标准阶梯块(17)的数据点集P。通过最小二乘法迭代计算最优坐标变换,即旋转矩阵R与平移矩阵t,使误差函数最小。
Figure GDA0003678344890000091
其中,旋转矩阵R和平移矩阵T,就是找到的待配准数据与参考点数据之间的旋转参数和平移参数,使得两点集数据之间满足某种度量准则下的最优匹配。通过该算法实现了激光2D传感器(2)坐标系到全局坐标系的标定。
本发明的误差分析方法为:误差主要来源于激光平面校准误差E1、激光2D传感器(2)原始数据精度误差E2、和迭代阈值设定误差E(R,T)、标定装置误差E3。
E=E1+E2+E(R,T)+E3,其中E1可以通过一定方法可以进行校准,E(R,T)在算法收敛的情况下可以尽可能小。
设定激光2D传感器(2)采集数据最大误差为Δx、Δy mm。激光平面存在夹角Δθ,迭代误差趋近于0(θ=0),计算由于激光平面引起的误差。
Figure GDA0003678344890000092
Figure GDA0003678344890000093
Figure GDA0003678344890000094
当Δβ=0.5°,Δα=0.5;Δx=0.1mm;Δy=0.1mm;Δz=0.5;U=800mm;V=500mm,W=0;
Figure GDA0003678344890000101
Δα的大小对Y方向影响较大约为(cos(Δα)-1)*V,Δβ的大小x方向约为(cos(Δβ)-1)*U。当Δα、Δβ小于2°,U、V小于500时误差小与0.4mm,通过误差分析可得该发明能够满足一般的标定精度要求。
本发明实现了便携式大型龙门架多个大量程激光2D传感器(2)的全局标定,能达到较高的标定精度,满足一般的大尺寸物体的高精度测量。
以上所述的具体实施方式,对于本发明的技术路线,激光共面调整方法,设备的快速定位组装方法,标定装置结构参数校准方法,系统全局标定方法以及系统的精度误差分析进行了详细的说明,应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡是在本发明的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种龙门架2D传感器全局标定装置,其特征在于:包括旋转支臂部分和底部横梁调整部分;旋转支臂部分包括标准阶梯块(17)、旋转转臂(18)、伺服电机(15)、高精度角度编码器(16)、垂直支臂(8)、支臂安装底座(11)、支臂压紧块1(13)、支臂压紧块2(23)、多个激光2D传感器(2);底部横梁调整部分包括横梁(20)、横梁定位脚(4)、垂直360°面激光(7)、水平位置360°面激光(6)、面激光固定底座(5)、支臂固定底座(12)、横梁绝缘底座1(9)、横梁绝缘底座2(10);通过水平位置360°面激光(6)实现系统的组装定位;垂直360°面激光(7)实现激光2D传感器(2)的共面调整;通过旋转转臂(18)旋转标准阶梯块(17)到每个激光2D传感器(2)视角范围,实现每个激光2D传感器(2)的标定;通过支臂固定底座(12)和支臂安装底座(11)之间的关系可以快速组装设备并达到相应的精度要求。
2.如权利要求1所述的全局标定装置,其特征在于,各部件具体连接关系为:横梁绝缘底座1(9)和横梁绝缘底座2(10)分别安装在横梁(20)的两端部;面激光固定底座(5)安装在横梁(20)左侧中部上方位置;支臂固定底座(12)安装在横梁(20)中部上方位置;支臂安装底座(11)和支臂固定底座(12)通过支臂压紧块1(13)和支臂压紧块2(23)在垂直方向固定;垂直支臂(8)一端通过螺栓固定在支臂安装底座(11),另外一端通过伺服电机(15)与旋转转臂(18)一端端部连接,垂直支臂(8)和横梁(20)为垂直安装关系;标准阶梯块(17)安装在旋转转臂(18)另一端的端部位置;旋转转臂(18)可在360°旋转圆平面内按顺时针或逆时针转动任意角度,使得龙门架中每个激光2D传感器(2)都能获得标准阶梯块(17)的廓形坐标;安装时,横梁(20)贴近轨道内侧面,采用夹具将横梁(20)夹紧在轨道上面。
3.如权利要求1所述的全局标定装置,其特征在于,激光2D传感器(2)的个数为19个。
4.如权利要求1所述的全局标定装置,其特征在于,激光2D传感器(2)的量程为800-1400mm,视角范围为35°-45°。
5.如权利要求1所述的全局标定装置,其特征在于,支臂安装底座(11)由具有切角设置的水平底板和竖直部分组成,支臂固定底座(12)具有矩形块一和矩形块二,矩形块一左侧为阶梯状,矩形块二左侧突出于矩形块一的上表面,形成一个凹形槽,在矩形块二右侧设置有斜向上的左斜切面,支臂压紧块1(13)成U形,由水平部分、竖直部分和右斜角部分组成,其中,水平部分卡扣于支臂固定底座(12)的凹形槽里,支臂压紧块1(13)的右斜角部分和支臂固定底座(12)的左斜切面部分分别扣紧支臂安装底座(11)水平底板的左右切角部分,支臂固定底座(12)、支臂压紧块1(13)、支臂安装底座(11)和支臂压紧块2(23)的安装方法包括:步骤一,先将支臂安装底座(11)右侧面和支臂固定底座(12)右上方的左斜切面紧密接触;步骤二,在支臂安装底座(11)和支臂固定底座(12)左侧面用支臂压紧块1(13)进行螺栓压紧固定;步骤三,在支臂安装底座(11)和支臂固定底座(12)前侧面用支臂压紧块2(23)进行螺栓压紧固定。
CN201911057260.1A 2019-10-30 2019-10-30 一种二维激光位移传感器标定装置 Active CN110793459B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911057260.1A CN110793459B (zh) 2019-10-30 2019-10-30 一种二维激光位移传感器标定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911057260.1A CN110793459B (zh) 2019-10-30 2019-10-30 一种二维激光位移传感器标定装置

Publications (2)

Publication Number Publication Date
CN110793459A CN110793459A (zh) 2020-02-14
CN110793459B true CN110793459B (zh) 2022-07-22

Family

ID=69440652

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911057260.1A Active CN110793459B (zh) 2019-10-30 2019-10-30 一种二维激光位移传感器标定装置

Country Status (1)

Country Link
CN (1) CN110793459B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111780687B (zh) * 2020-08-05 2022-02-22 中国铁道科学研究院集团有限公司 廓形检测系统的校准装置及其工作方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043874A (en) * 1998-04-10 2000-03-28 Spectra Precision, Inc. System and method for calibrating a laser transmitter
CN103257342A (zh) * 2013-01-11 2013-08-21 大连理工大学 三维激光传感器与二维激光传感器的联合标定方法
CN104656097A (zh) * 2015-01-28 2015-05-27 武汉理工大学 基于旋转式二维激光三维重构系统的标定装置及方法
CN106056587A (zh) * 2016-05-24 2016-10-26 杭州电子科技大学 全视角线激光扫描三维成像标定装置及方法
CN106840033A (zh) * 2017-03-13 2017-06-13 武汉理工大学 一种基于图像处理的钢轨廓形检测装置及方法
CN107792116A (zh) * 2017-09-30 2018-03-13 成都安科泰丰科技有限公司 一种便携式接触轨检测装置及检测方法
CN208026219U (zh) * 2018-04-20 2018-10-30 华中科技大学 一种基于激光位移传感器的标定装置
CN108759714A (zh) * 2018-05-22 2018-11-06 华中科技大学 一种多线激光轮廓传感器坐标系融合及转轴标定方法
CN109304730A (zh) * 2017-07-28 2019-02-05 华中科技大学 一种基于激光测距仪的机器人运动学参数标定方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011000304B4 (de) * 2011-01-25 2016-08-04 Data M Sheet Metal Solutions Gmbh Kalibrierung von Laser-Lichtschnittsensoren bei gleichzeitiger Messung
CN105091807B (zh) * 2014-04-30 2017-12-01 鸿富锦精密工业(深圳)有限公司 机器人工具坐标系的校正方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043874A (en) * 1998-04-10 2000-03-28 Spectra Precision, Inc. System and method for calibrating a laser transmitter
CN103257342A (zh) * 2013-01-11 2013-08-21 大连理工大学 三维激光传感器与二维激光传感器的联合标定方法
CN104656097A (zh) * 2015-01-28 2015-05-27 武汉理工大学 基于旋转式二维激光三维重构系统的标定装置及方法
CN106056587A (zh) * 2016-05-24 2016-10-26 杭州电子科技大学 全视角线激光扫描三维成像标定装置及方法
CN106840033A (zh) * 2017-03-13 2017-06-13 武汉理工大学 一种基于图像处理的钢轨廓形检测装置及方法
CN109304730A (zh) * 2017-07-28 2019-02-05 华中科技大学 一种基于激光测距仪的机器人运动学参数标定方法
CN107792116A (zh) * 2017-09-30 2018-03-13 成都安科泰丰科技有限公司 一种便携式接触轨检测装置及检测方法
CN208026219U (zh) * 2018-04-20 2018-10-30 华中科技大学 一种基于激光位移传感器的标定装置
CN108759714A (zh) * 2018-05-22 2018-11-06 华中科技大学 一种多线激光轮廓传感器坐标系融合及转轴标定方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Study on welded seam recognition using circular laser vision sensor;Peiquan Xu等;《Chinese Optics Letters》;20070610;第05卷(第06期);328-331 *
关节式坐标测量机激光测量头参数标定;王从军 等;《光电工程》;20070715(第07期);39-44、49 *
大尺寸工件直线度视觉测量系统中摄像机标定的研究;周兴林 等;《宇航计测技术》;20070825;第27卷(第04期);1-5 *

Also Published As

Publication number Publication date
CN110793459A (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
CN108253906B (zh) 一种桥壳圆度圆柱度检测装置工件轴线定位误差补偿方法
CN111578866B (zh) 一种多线激光传感器组合测量的空间位姿标定方法
CN110926364B (zh) 基于线结构光的叶片检测方法
CN108827187B (zh) 一种三维轮廓测量系统
CN108507466B (zh) 采用二维线激光扫描仪获取三维精确数据的方法
CN109520420B (zh) 一种转台回转中心的空间坐标确定方法
CN109269422B (zh) 一种点激光位移传感器测量误差校对的实验方法及装置
CN112902880A (zh) 一种平面构件平行度的测量方法和装置
CN110455198B (zh) 基于线结构光视觉的矩形花键轴键宽及直径测量方法
CN108662997B (zh) 通用crtsⅲ型无砟轨道板关键几何尺寸加工偏差快速检测方法
CN110926365B (zh) 一种基于线结构光检测物标定方法
CN113465513B (zh) 基于圆柱角尺的激光传感器倾角误差测量补偿方法及系统
CN106705880B (zh) 一种大口径反射镜面形轮廓在位检测方法及装置
CN110793459B (zh) 一种二维激光位移传感器标定装置
CN113624136B (zh) 零件检测设备和零件检测设备标定方法
CN113295092B (zh) 一种针对薄壁零件的线激光三维测量系统和方法
CN110561500A (zh) 空间定位误差测量装置及其测量方法
CN110793458B (zh) 一种二维激光位移传感器共面调整方法
CN210570538U (zh) 一种2d传感器校准设备
CN113175869A (zh) 适用于大型平板类工业零件的尺寸检测设备
CN116862995A (zh) 一种用于大间距、无公共视场的相机外参标定装置及方法
CN117232432A (zh) 一种叶片三维轮廓检测系统及其检测方法
CN113513986B (zh) 几何公差测量设备及其测量方法
CN112894490B (zh) 基于旋转l型阵列实现数控机床垂直度误差检测的方法
CN215064382U (zh) 几何公差测量设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant