CN110788884A - 一种气动软体机器人实验平台及其使用方法 - Google Patents

一种气动软体机器人实验平台及其使用方法 Download PDF

Info

Publication number
CN110788884A
CN110788884A CN201910900499.4A CN201910900499A CN110788884A CN 110788884 A CN110788884 A CN 110788884A CN 201910900499 A CN201910900499 A CN 201910900499A CN 110788884 A CN110788884 A CN 110788884A
Authority
CN
China
Prior art keywords
soft robot
pneumatic soft
pneumatic
module
screw rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910900499.4A
Other languages
English (en)
Other versions
CN110788884B (zh
Inventor
王朝晖
胡家栋
周文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201910900499.4A priority Critical patent/CN110788884B/zh
Publication of CN110788884A publication Critical patent/CN110788884A/zh
Application granted granted Critical
Publication of CN110788884B publication Critical patent/CN110788884B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/007Means or methods for designing or fabricating manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0095Means or methods for testing manipulators

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

本发明公开一种气动软体机器人实验平台及其使用方法,包括气动软体机器人、气压驱动模块、视觉检测模块和控制模块;控制模块用于控制气压驱动模块动作,气压驱动模块用于驱动气动软体机器人产生运动,视觉检测模块用于采集气动软体机器人的位姿信息并反馈给控制模块。通过气压驱动模块驱动气动软体机器人的运动,模拟出气动软体机器人的实际运动,通过视觉检测模块测量气动软体执行器的弯曲角度,记录气动软体机器人的运动姿态,从而测试到气动软体机器人模拟实际运动时的运动参数,可以利用得到的参数与理论模型的数据进行对比,对控制模型以及气动软体机器人的实际参数设计进行修正。

Description

一种气动软体机器人实验平台及其使用方法
技术领域
本发明涉及软体机器人技术领域,更具体的,涉及一种气动软体机器人实验平台及其使用方法。
背景技术
软体机器人由柔顺性材料构成,具有极好的环境适应性,能够完成许多传统机器人不能完成的任务,具有广泛的应用前景。但现阶段软体机器人研究仍处于起步阶段,气动软体机器人具有大变形以及软体材料本身的非线性,使得很难完成对其的精确控制,而且其连续变形特性导致无法获得准确的形状反馈信息。以上原因导致气动软体机器人的控制精度不高,也严重影响了其实际应用效果。
为了提高气动软体机器人的控制精度,需要研究气动软体机器人的实际运动与理论模型之间的区别,因此,建立一种气动软体机器人实验平台就显得尤为重要。
发明内容
针对现有技术中存在的问题,本发明提供一种气动软体机器人实验平台及其使用方法,能够模拟并采集气动软体机器人实际工作中的位姿变化。
本发明是通过以下技术方案来实现:
一种气动软体机器人实验平台,包括气动软体机器人、气压驱动模块、视觉检测模块和控制模块;控制模块用于控制气压驱动模块动作,气压驱动模块用于驱动气动软体机器人产生运动,视觉检测模块用于采集气动软体机器人的位姿信息并反馈给控制模块。
优选的,气压驱动模块包括活塞杆式气缸、滑台模块、步进电机和气压传感器;活塞杆式气缸具有活塞杆和出气口,出气口通过气管与气动软体机器人的进气口连接,出气口还与气压传感器连接,气压传感器与控制模块信号连接;
滑台模块包括丝杆支架、滑块和丝杆,丝杆安装在丝杆支架上,滑块滑动安装在丝杆上;活塞杆与滑块通过连接件固定连接,活塞杆与丝杆平行设置;
步进电机的输出轴通过联轴器与丝杆的一端连接。
进一步的,活塞杆端部设置有鱼眼接头,鱼眼接头与滑块通过连接件固定连接。
进一步的,滑台模块还包括导向杆,导向杆与丝杆平行设置,滑块同时安装在丝杆和导向杆上。
进一步的,控制模块包括步进电机驱动器、控制器和电源,电源用于给控制器、步进电机驱动器和步进电机供电;控制器发送指令给步进电机驱动器,步进电机驱动器根据接收的指令控制步进电机转动。
优选的,气动软体机器人由多个气动软体执行器通过关节连接而成,每个气动软体执行器对应设置一个气压驱动模块。
优选的,视觉检测模块包括相机、数据采集卡、电脑和标定板;
相机用于监测气动软体机器人的位姿信息,并传递给数据采集卡,数据采集卡将采集的位姿信息传递到电脑并在电脑上实时显示并记录。
进一步的,还包括实验台支架,实验台支架一侧设有第一竖直放置滑轨,第一竖直放置滑轨上滑动安装有支撑杆,支撑杆上滑动安装有支撑件,支撑件上固定安装相机,实验台支架另一侧设有第二竖直放置滑轨,第二竖直放置滑轨上滑动安装标定板,气动软体机器人位于标定板和相机之间,且标定板与相机的镜头相对设置。
优选的,还包括实验台支架,实验台支架底部设置有水平放置滑轨,水平放置滑轨上设有能够沿着水平放置滑轨滑动的滑台,滑台上固定安装有可升降平台,气动软体机器人固定安装于可升降平台上。
所述的气动软体机器人实验平台的使用方法,控制模块控制气压驱动模块动作,气压驱动模块驱动气动软体机器人产生运动,视觉检测模块采集气动软体机器人的位姿信息并记录。
与现有技术相比,本发明具有以下有益的技术效果:
本发明的气动软体机器人实验平台,通过气压驱动模块驱动气动软体机器人的运动,模拟出气动软体机器人的实际运动,通过视觉检测模块测量气动软体执行器的弯曲角度,记录气动软体机器人的运动姿态,从而测试到气动软体机器人模拟实际运动时的运动参数,可以利用得到的参数与理论模型的数据进行对比,对控制模型以及气动软体机器人的实际参数设计进行修正。本发明有利于促进对气动软体机器人驱动控制方法研究的开展,具有重要意义。
进一步的,本发明的气压驱动模块结构简单、制作成本低,适用于气动机器人的气动控制,且气压驱动模块为模块化结构,可以进行多模块的并联设计,适应需要多气路控制的气动机器人,具有很好的适用性和推广性。
进一步的,导向杆的设置,可以为滑块的运动提供导向,使其能更平稳的带动活塞杆运动。
进一步的,多个气动软体执行器连接形成气动软体机器人,从而可以研究从而获得更多的不同的模型。
进一步的,竖直放置滑轨和支撑杆的设置,使得可以在水平方向和竖直方向上调整相机的位置,使其与气动软体机器人位置能更好的对应。
进一步的,水平放置滑轨和可升降平台的设置,使得可以在水平方向和竖直方向上调整气动软体机器人的位置,使其与相机的位置更好的对应。
附图说明
图1是气动软体机器人实验平台的总体结构图;
图2是气压驱动模块驱动气动软体执行器运动的示意图;
图中:实验台支架1、气动软体机器人2、气压驱动模块3、视觉检测模块4、气动软体执行器5、活塞杆式气缸6、滑台模块7、步进电机8、气压传感器9、步进电机驱动器10、控制器11、电源12、联轴器13、丝杆14、鱼眼接头15、滑块16、连接件17、活塞杆18、气管19、出气口20、相机21、数据采集卡22、电脑23、标定板24、支撑杆25、支撑件26、第一竖直放置滑轨27、水平放置滑轨28、滑台29、可升降平台30。
具体实施方式
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
需要说明的是,如无特殊说明,当某一特征被称为“固定”、“连接”在另一个特征,它可以直接固定、连接在另一个特征上,也可以间接地固定、连接在另一个特征上。此外,本发明中所使用的上、下、左、右、前、后等描述仅仅是相对于附图中本发明各组成部分的相互位置关系来说的。
参照图1,本发明的气动软体机器人实验平台,包括实验台支架1、气动软体机器人2、气压驱动模块3、视觉检测模块4和控制模块;控制模块控制气压驱动模块3动作,以驱动气动软体机器人2产生运动,视觉检测模块4对气动软体机器人2的运动信息进行记录并反馈给控制模块。
参照图1,实验台支架1底部设置有水平放置滑轨28,水平放置滑轨28上设有能够沿着水平放置滑轨28滑动的滑台29,滑台29上固定安装有可升降平台30。气动软体机器人2固定安装于可升降平台30上,从而可以在水平方向或者竖直方向调整气动软体机器人2的位置。
参照图1和图2,气动软体机器人2由多个气动软体执行器5通过关节连接组成,每个气动软体执行器5由一个单独的气压驱动模块3驱动。气压驱动模块3包括活塞杆式气缸6、滑台模块7、步进电机8和气压传感器9。
参照图2,活塞杆式气缸6具有活塞杆18和出气口20,出气口20通过气管19与相应的气动软体执行器5的进气口连接,出气口20还与气压传感器9连接;活塞杆18端部设置有鱼眼接头15。
参照图2,滑台模块7包括丝杆支架、滑块16和丝杆14,丝杆14安装在丝杆支架上,滑块16滑动安装在丝杆14上;活塞杆18上的鱼眼接头15与滑块16通过连接件17固定连接,连接件17以销连接的形式固定在所述滑块16上,活塞杆18与丝杆14平行设置。
在一个实施例中,滑台模块7还包括两个导向杆,导向杆与丝杆14平行设置,且两个导向杆分别位于丝杆14的两侧,滑块16同时安装在丝杆14和两个导向杆上,导向杆在滑块16滑动时起到很好的导向作用,使运动更加平稳。
参照图2,步进电机8的输出轴通过联轴器13与丝杆14的一端连接。
控制模块包括步进电机驱动器10、控制器11和电源12。电源12给控制器11、步进电机驱动器10和步进电机8供电;控制器11发送指令给步进电机驱动器10,步进电机驱动器10根据接收的指令控制步进电机8转动或停止转动,步进电机8转动时通过联轴器13带动丝杆14转动,丝杆14转动带动滑块16直线运动,滑块16带动活塞杆18直线运动,从而使得步进电机8的转动能够带动活塞杆式气缸6的活塞杆18沿所述活塞杆式气缸轴线方向移动,从而拉伸或压缩活塞式气缸6产生气压。活塞式气缸6内的气体进入气动软体执行器5,用于实现对气动软体执行器5的驱动控制。气压传感器9用于实现对气动执行器5实时气压的检测,并将数据反馈给控制器11完成气压闭环控制。
参照图1,视觉检测模块4包括相机21、数据采集卡22、电脑23和标定板24。实验台支架1一侧设有两个第一竖直放置滑轨27,两个第一竖直放置滑轨27之间滑动安装有支撑杆25,支撑杆25上滑动安装有支撑件26,支撑件26可在支撑杆25上左右移动,在支撑件26上固定安装相机21,从而可以在水平方向和竖直方向上调整相机21的位置,并且支撑杆25的方向与水平放置滑轨28的方向垂直。实验台支架1另一侧设有两个第二竖直放置滑轨,两个第二竖直放置滑轨之间滑动安装标定板24,气动软体机器人2位于标定板24和相机21之间,即标定板24固定在实验台支架1上与相机21正对的一侧。相机21采用高速相机。标定板24是带有固定间距图案阵列的平板,相机21拍摄标定板24,将图像信息反馈给电脑23,电脑23通过标定算法对图像信息进行计算,就可以得到相机21成像的几何模型,从而确定空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系,得到高精度的测量结果。
相机21用于监测气动软体机器人2的运动信息(位姿变化),并传递给数据采集卡22,数据采集卡22将采集的运动信息传递到电脑23并在电脑23上实时显示并记录。
通过采集得到的图像数据,经过图像处理算法处理,可以得到气动软体机器人的弯曲角度等运动参数。然后可通过研究不同气压下理论模型与实际模拟时气动软体机器人的弯曲角度等运动参数的变化与不同,有利于进一步改进气动软体机器人的理论控制模型。也可通过实验测试,检验所设计的气动软体机器人的实际运动性能,对其参数设计进行优化。
本发明的工作原理为:控制器11发送指令给步进电机驱动器10,步进电机驱动器10根据接收的指令驱动步进电机8转动,带动丝杆14转动,丝杆14通过滑块16带动活塞杆18做直线运动,从而活塞杆式气缸6给气动软体机器人2提供气压驱动或放气,从而带动气动软体机器人2运动,同时气压传感器9将采集的气压信息传输给控制器11;相机21采集气动软体机器人2的运动信息,通过数据采集卡22传递为电脑13,在电脑23进行显示和记录。
气压闭环控制原理:在电脑23上输入气压的期望值,电脑23将这一信息通过串口传递给控制器11。控制器11对比气压的期望值与气压传感器9的检测值,进行基于气压值的闭环PID控制算法计算,将计算结果即脉冲信号发送给步进电机驱动器10。步进电机驱动器10接收到脉冲信号后,步进电机8就会转动,拉伸或压缩活塞式气缸6给气动软体机器人提供气压驱动或放气,使气压传感器9的实时检测值达到气压的期望值,从而实现了基于气压值的闭环控制。
需要注意,本发明实施例公开的气动软体机器人只是本发明一些优选的实施例,本领域技术人员可以增加软体机器人模块的数量、增加气压驱动模块的数量从而获得更多的模型,这些应该在本发明的保护范围内。
以上是对本发明的较佳实施进行的具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (10)

1.一种气动软体机器人实验平台,其特征在于,包括气动软体机器人(2)、气压驱动模块(3)、视觉检测模块(4)和控制模块;控制模块用于控制气压驱动模块(3)动作,气压驱动模块(3)用于驱动气动软体机器人(2)产生运动,视觉检测模块(4)用于采集气动软体机器人(2)的位姿信息并反馈给控制模块。
2.根据权利要求1所述的气动软体机器人实验平台,其特征在于,气压驱动模块(3)包括活塞杆式气缸(6)、滑台模块(7)、步进电机(8)和气压传感器(9);活塞杆式气缸(6)具有活塞杆(18)和出气口(20),出气口(20)通过气管(19)与气动软体机器人(2)的进气口连接,出气口(20)还与气压传感器(9)连接,气压传感器(9)与控制模块信号连接;
滑台模块(7)包括丝杆支架、滑块(16)和丝杆(14),丝杆(14)安装在丝杆支架上,滑块(16)滑动安装在丝杆(14)上;活塞杆(18)与滑块(16)通过连接件(17)固定连接,活塞杆(18)与丝杆(14)平行设置;
步进电机(8)的输出轴通过联轴器(13)与丝杆(14)的一端连接。
3.根据权利要求2所述的气动软体机器人实验平台,其特征在于,活塞杆(18)端部设置有鱼眼接头(15),鱼眼接头(15)与滑块(16)通过连接件(17)固定连接。
4.根据权利要求2所述的气动软体机器人实验平台,其特征在于,滑台模块(7)还包括导向杆,导向杆与丝杆(14)平行设置,滑块(16)同时安装在丝杆(14)和导向杆上。
5.根据权利要求2所述的气动软体机器人实验平台,其特征在于,控制模块包括步进电机驱动器(10)、控制器(11)和电源(12),电源(12)用于给控制器(11)、步进电机驱动器(10)和步进电机(8)供电;控制器(11)发送指令给步进电机驱动器(10),步进电机驱动器(10)根据接收的指令控制步进电机(8)转动。
6.根据权利要求1所述的气动软体机器人实验平台,其特征在于,气动软体机器人(2)由多个气动软体执行器(5)通过关节连接而成,每个气动软体执行器(5)对应设置一个气压驱动模块(3)。
7.根据权利要求1所述的气动软体机器人实验平台,其特征在于,视觉检测模块(4)包括相机(21)、数据采集卡(22)、电脑(23)和标定板(24);
相机(21)用于监测气动软体机器人(2)的位姿信息,并传递给数据采集卡(22),数据采集卡(22)将采集的位姿信息传递到电脑(23)并在电脑(23)上实时显示并记录。
8.根据权利要求7所述的气动软体机器人实验平台,其特征在于,还包括实验台支架(1),实验台支架(1)一侧设有第一竖直放置滑轨(27),第一竖直放置滑轨(27)上滑动安装有支撑杆(25),支撑杆(25)上滑动安装有支撑件(26),支撑件(26)上固定安装相机(21),实验台支架(1)另一侧设有第二竖直放置滑轨,第二竖直放置滑轨上滑动安装标定板(24),气动软体机器人(2)位于标定板(24)和相机(21)之间,且标定板(24)与相机(21)的镜头相对设置。
9.根据权利要求1所述的气动软体机器人实验平台,其特征在于,还包括实验台支架(1),实验台支架(1)底部设置有水平放置滑轨(28),水平放置滑轨(28)上设有能够沿着水平放置滑轨(28)滑动的滑台(29),滑台(29)上固定安装有可升降平台(30),气动软体机器人(2)固定安装于可升降平台(30)上。
10.权利要求1-9任一项所述的气动软体机器人实验平台的使用方法,其特征在于,控制模块控制气压驱动模块(3)动作,气压驱动模块(3)驱动气动软体机器人(2)产生运动,视觉检测模块(4)采集气动软体机器人(2)的位姿信息并记录。
CN201910900499.4A 2019-09-23 2019-09-23 一种气动软体机器人实验平台及其使用方法 Active CN110788884B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910900499.4A CN110788884B (zh) 2019-09-23 2019-09-23 一种气动软体机器人实验平台及其使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910900499.4A CN110788884B (zh) 2019-09-23 2019-09-23 一种气动软体机器人实验平台及其使用方法

Publications (2)

Publication Number Publication Date
CN110788884A true CN110788884A (zh) 2020-02-14
CN110788884B CN110788884B (zh) 2021-04-20

Family

ID=69439661

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910900499.4A Active CN110788884B (zh) 2019-09-23 2019-09-23 一种气动软体机器人实验平台及其使用方法

Country Status (1)

Country Link
CN (1) CN110788884B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113214991A (zh) * 2021-05-28 2021-08-06 西安交通大学 一种模拟细胞力学微环境的细胞培养装置
CN114800614A (zh) * 2022-04-28 2022-07-29 西北工业大学 一种复杂环境下的刚柔耦合机器人状态测量与控制系统、装置和方法
WO2022166514A1 (zh) * 2021-02-04 2022-08-11 东南大学 一种用于柔性机器人驱动器的自动标定系统及标定方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070156019A1 (en) * 2005-12-30 2007-07-05 Larkin David Q Robotic surgery system including position sensors using fiber bragg gratings
CN206259119U (zh) * 2016-11-24 2017-06-16 深圳市盛泰奇科技有限公司 光机电气及信息处理一体化机器人实训平台
CN107389054A (zh) * 2017-07-12 2017-11-24 重庆邮电大学 机器人测试平台
CN207172108U (zh) * 2017-08-08 2018-04-03 北京软体机器人科技有限公司 电动柱塞式柔性爪手气动控制器
CN108931194A (zh) * 2018-07-10 2018-12-04 苏州艾弗伦智能技术有限公司 一种智能机器人3d精密测量系统
CN109227538A (zh) * 2018-07-13 2019-01-18 哈尔滨工业大学(深圳) 一种基于视觉的柔性机械臂的定位控制方法及系统
CN110065094A (zh) * 2019-05-29 2019-07-30 华南理工大学 一种柔性关节机械臂的运动检测装置与方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070156019A1 (en) * 2005-12-30 2007-07-05 Larkin David Q Robotic surgery system including position sensors using fiber bragg gratings
CN206259119U (zh) * 2016-11-24 2017-06-16 深圳市盛泰奇科技有限公司 光机电气及信息处理一体化机器人实训平台
CN107389054A (zh) * 2017-07-12 2017-11-24 重庆邮电大学 机器人测试平台
CN207172108U (zh) * 2017-08-08 2018-04-03 北京软体机器人科技有限公司 电动柱塞式柔性爪手气动控制器
CN108931194A (zh) * 2018-07-10 2018-12-04 苏州艾弗伦智能技术有限公司 一种智能机器人3d精密测量系统
CN109227538A (zh) * 2018-07-13 2019-01-18 哈尔滨工业大学(深圳) 一种基于视觉的柔性机械臂的定位控制方法及系统
CN110065094A (zh) * 2019-05-29 2019-07-30 华南理工大学 一种柔性关节机械臂的运动检测装置与方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022166514A1 (zh) * 2021-02-04 2022-08-11 东南大学 一种用于柔性机器人驱动器的自动标定系统及标定方法
CN113214991A (zh) * 2021-05-28 2021-08-06 西安交通大学 一种模拟细胞力学微环境的细胞培养装置
CN113214991B (zh) * 2021-05-28 2022-12-09 西安交通大学 一种模拟细胞力学微环境的细胞培养装置
CN114800614A (zh) * 2022-04-28 2022-07-29 西北工业大学 一种复杂环境下的刚柔耦合机器人状态测量与控制系统、装置和方法
CN114800614B (zh) * 2022-04-28 2024-01-16 西北工业大学 一种刚柔耦合机器人状态测量与控制系统和方法

Also Published As

Publication number Publication date
CN110788884B (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
CN110788884B (zh) 一种气动软体机器人实验平台及其使用方法
CN104851279A (zh) 一种红外遥控器自动测试设备、测试系统及其测试方法
CN106949883B (zh) 一种三坐标测绘仪及测绘方法
CN110954024A (zh) 一种连接件视觉测量装置及其测量方法
CN105823456A (zh) 一种支撑轴弯曲间隙及刚度自动测量装置及其测量方法
CN104786035A (zh) 一种汽车仪表自动压针装置
CN100336635C (zh) 一种五自由度立体视觉监控装置
CN104515487A (zh) 二合一全自动三z轴测量仪
CN1862285A (zh) 三维动态变形矢量模拟装置
CN112730439A (zh) 一种飞机发动机涡轮叶片缺陷智能检测系统及其检测方法
CN108942927A (zh) 一种基于机器视觉的像素坐标与机械臂坐标统一的方法
CN113978756B (zh) 一种基于试装配仿真的大部件筒段对接实验台和对接方法
CN107186701B (zh) 一种三自由度并联机构的示教机械臂参数标定装置及方法
CN110124941A (zh) 用于电池模组涂胶的智能快速编程平台及其编程方法
CN208420338U (zh) 一种3d摄像头自动检测设备
CN110421565B (zh) 一种用于实训的机器人全局定位与测量系统和方法
CN209746931U (zh) 一种用于机器人视觉技术教学的机器人运动机构
CN111571596A (zh) 利用视觉修正冶金接插装配作业机器人误差的方法及系统
CN113858265B (zh) 机械臂的位姿误差的检测方法及系统
CN109059820A (zh) 一种三坐标多工位自动测量装置和方法
CN208374672U (zh) 一种用于大功率发动机的对接装配装置
CN215642797U (zh) 一种视觉引导多点对位装置
CN216083994U (zh) 一种多功能数字化工业机器人实训系统
CN219872617U (zh) 一种基于机器视觉的五轴联动平台
CN218597778U (zh) 一种多轴机械臂桁架钢筋绑扎系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant