WO2022166514A1 - 一种用于柔性机器人驱动器的自动标定系统及标定方法 - Google Patents

一种用于柔性机器人驱动器的自动标定系统及标定方法 Download PDF

Info

Publication number
WO2022166514A1
WO2022166514A1 PCT/CN2022/070409 CN2022070409W WO2022166514A1 WO 2022166514 A1 WO2022166514 A1 WO 2022166514A1 CN 2022070409 W CN2022070409 W CN 2022070409W WO 2022166514 A1 WO2022166514 A1 WO 2022166514A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis motor
flexible
motor
horizontal axis
driver
Prior art date
Application number
PCT/CN2022/070409
Other languages
English (en)
French (fr)
Inventor
宋爱国
赖健伟
李会军
曾洪
徐宝国
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Priority to US17/774,317 priority Critical patent/US20230211504A1/en
Publication of WO2022166514A1 publication Critical patent/WO2022166514A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • F15B19/002Calibrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/04Viewing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1653Programme controls characterised by the control loop parameters identification, estimation, stiffness, accuracy, error analysis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/10Characterised by the construction of the motor unit the motor being of diaphragm type
    • F15B15/103Characterised by the construction of the motor unit the motor being of diaphragm type using inflatable bodies that contract when fluid pressure is applied, e.g. pneumatic artificial muscles or McKibben-type actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1692Calibration of manipulator
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39462Pneumatic actuator, imitates human muscle

Definitions

  • the invention relates to an automatic calibration system and a calibration method for a flexible robot driver, belonging to the technical field of robot calibration.
  • the software driver is a new type of driver, which has the advantages of high flexibility and simple driving. It is widely used in the fields of robotic grippers, rehabilitation medicine, and bionic robots.
  • the output characteristics are calibrated to obtain the corresponding relationship between the input and output, and the static indicators (maximum output force, maximum bending angle) and dynamic indicators (force response curve, displacement response curve) of the driver are determined.
  • Output displacement calibration method fix one end of the driver, increase the output signal, measure the displacement difference and angle difference between the other end and the initial position, and obtain the relationship between the input air pressure and the output displacement and rotation angle.
  • Maximum force calibration method fix one end of the flexible driver, place a baffle plate in the opposite direction of the output direction of the driver, place a force sensor on the other end of the driver, gradually increase the input signal from zero, detect the signal of the sensor, and get the input air pressure relationship with output power.
  • the automatic calibration system will design an algorithm for automatic calibration. The person inputs the calibration instructions, and the system automatically completes the calibration steps.
  • the purpose of the present invention is to provide an automatic calibration system and calibration method for flexible robots with high precision and simple use, aiming at the above-mentioned shortcomings of the prior art.
  • An automatic calibration system for a flexible robot driver comprising a support frame, on which a visual positioning system, a pressure measurement system, and an air pressure control system are respectively installed;
  • the visual positioning system is used to measure the relative displacement and angle of both ends of the flexible actuator
  • the air pressure control system is used to inflate the driving end of the flexible actuator and measure the input air pressure of the flexible actuator;
  • the pressure measurement system includes a pressure gauge mounted on a support frame by a longitudinal axis motor system and a flexible driver to be calibrated mounted on the support frame by a horizontal axis motor system and a rotating motor system; the support frame is connected by a horizontal axis
  • the motor system is provided with a rotary motor system, the driving end of the flexible driver is fixed on the rotary motor system, and the free end of the flexible driver is in contact with the measuring end of the pressure gauge for pressure measurement.
  • the automatic calibration system of the flexible robot driver also includes a personal computer for inputting commands, calculating and outputting motor positions, processing camera data, and recording data.
  • the visual positioning system includes two camera systems installed at both ends of the upper part of the support frame and marking points arranged on the flexible driver to be calibrated.
  • the air pressure control system includes an air supply system, an air supply pipeline for connecting with the driving end of the flexible driver, and an air pressure gauge installed on the air supply pipeline.
  • each of the camera systems includes a camera bracket connected to the support frame, and the camera bracket is connected to the camera body through a camera rotary joint.
  • the longitudinal axis motor system includes two longitudinal axis motor brackets for connecting with the upper and lower ends of the support frame, and two longitudinal axis motor brackets are connected between the two longitudinal axis motor brackets.
  • a motor slider, the pressure gauge is installed on the longitudinal axis motor slider.
  • the horizontal axis motor system includes two horizontal axis motor brackets for connecting with the support frame, and two horizontal axis motors are connected between the two horizontal axis motor brackets.
  • the guide rail and a horizontal axis motor lead screw, the horizontal axis motor lead screw is connected to the power output end of the horizontal axis motor through the horizontal axis motor coupling, and the horizontal axis motor slide is installed on the horizontal axis motor lead screw and the horizontal axis motor guide rail.
  • the rotating motor system is installed on the horizontal axis motor slider.
  • the rotary motor system includes a rotary motor bracket connected with the horizontal axis motor slider, a rotary motor is installed on the rotary motor bracket, and a rotary motor is installed on the rotary motor for fixing Flex drive bays for flex drives.
  • the support frame includes a bottom beam and bottom legs at both ends of the bottom beam, and three vertical columns are arranged on the bottom beam, two of which are used to install the horizontal axis motor system, and the other is used to install the horizontal axis motor system.
  • One column is used to install the barometer
  • the top of the three columns is provided with a top beam
  • the longitudinal axis motor system is arranged between the bottom beam and the top beam
  • two ends of the top beam are installed for the camera system.
  • a method for automatic calibration of a flexible robot driver by using the automatic calibration system of the above-mentioned flexible robot driver includes:
  • B Calibration of the output force of the input air pressure at different bending angles: Obtain the output displacement and angle of the flexible drive under different air pressures from A, and then adjust the horizontal axis motor system, vertical axis motor system, and rotary motor system to make the pressure The measuring end of the gauge, that is, the force point of the pressure gauge is in contact with the free end of the flexible actuator at the vertical point.
  • the numerical analysis of the specific movement is as follows:
  • the axis of the horizontal axis motor system is the X axis
  • the axis of the vertical axis motor system is the Y axis
  • A is the midpoint of the end line segment of the drive end of the flexible drive
  • B is the midpoint of the end line segment of the free end of the flexible actuator, connecting two points AB to form a line segment L AB
  • the angle between the line segment L AB and the X-axis is ⁇
  • the end line segment of the driving end of the flexible actuator is perpendicular to the point B.
  • Line, the vertical foot is O point
  • Y L BO
  • the auxiliary line L AF parallel to the Y coordinate axis is drawn through point A, and the auxiliary line L BE parallel to the vertical axis is drawn through point B.
  • the end is vertical, the analysis can be
  • the x motor coordinate output is -LA AE
  • the y-axis motor coordinate output is L BE . Therefore, according to the displacement and angle of the driver under different air pressures obtained in step A, each (X, Y, ⁇ ) point is obtained.
  • the output of the three motor shafts uses the air pressure control system to control the air pressure in the flexible drive.
  • the air pressure value increases from zero, and the step size is the minimum calibration unit until the maximum air pressure value is calibrated, and the data of the pressure gauge is recorded. The calibration is completed.
  • the calibration system adopts an automatic calibration system with high work efficiency, which can save labor costs and reduce calibration errors caused by human factors.
  • the calibration system can not only calibrate the relationship between input air pressure, output displacement, and output angle, but also calibrate the response relationship of different relative displacements and relative coordinates, with simple operation and high calibration accuracy.
  • Fig. 1 is the structural schematic diagram of the automatic calibration system of the flexible robot driver according to the present invention
  • Fig. 2 is the structural schematic diagram of the vertical axis motor system in Fig. 1;
  • Fig. 3 is the structural representation of the support frame in Fig. 1;
  • Fig. 4 is the structural representation of the horizontal axis motor system in Fig. 1;
  • FIG. 5 is a schematic structural diagram of the example flexible actuator in FIG. 1;
  • Fig. 6 is the structural representation of the rotating electrical machine in Fig. 1;
  • Fig. 7 is the structural representation of the camera system in Fig. 1;
  • FIG. 8 is a schematic diagram of the bending of the flexible actuator under different pressures
  • Fig. 9 is the measurement schematic diagram of X3, Y3 coordinates of flexible driver data
  • Figure 10 is a schematic diagram of the measurement position and origin coordinates of the flexible actuator at X1, Y1 coordinates;
  • Figure 11 is a schematic diagram of the measurement position coordinates of the flexible actuator in X, Y coordinates;
  • Figure 12 is a schematic diagram of a simplified bending model analysis of a flexible actuator
  • Figure 13 is a schematic diagram of the model analysis after the flexible actuator is bent and the three motor shafts are moved.
  • the automatic calibration system of the flexible robot driver of the present invention includes a support frame 1, and a visual positioning system 2, a pressure measurement system 3, and an air pressure control system 4 are respectively installed on the support frame;
  • the visual positioning system is used to measure the relative displacement and angle of both ends of the flexible actuator 5;
  • the air pressure control system is used to inflate the driving end of the flexible actuator 5 and measure the input air pressure of the flexible actuator;
  • the pressure measurement system includes a pressure gauge 32 installed on the support frame 1 through a longitudinal axis motor system 31 and a flexible driver 5 to be calibrated installed on the support frame 1 through a horizontal axis motor system 33 and a rotating motor system 34;
  • the rotating motor system 34 is installed on the support frame through the horizontal axis motor system 33, the driving end 51 of the flexible driver 5 is fixed on the rotating motor system, and the free end 52 of the flexible driver is in contact with the measuring end of the pressure gauge 32. pressure measurement.
  • the automatic calibration system of the flexible robot driver also includes a personal computer 6 for command input, motor position calculation and output, camera data processing, and data recording.
  • the visual positioning system 2 includes two camera systems 21 installed at both ends of the upper part of the support frame and marking points 53 arranged on the flexible driver to be calibrated.
  • the air pressure control system 4 includes an air supply system 41 , an air supply pipeline 42 for connecting with the driving end of the flexible driver, and an air pressure gauge 43 installed on the air supply pipeline.
  • each of the camera systems 21 includes a camera bracket 211 connected to the support frame, and the camera bracket 213 is connected to the camera body 213 through a camera rotary joint 212 .
  • the longitudinal axis motor system 31 includes two longitudinal axis motor brackets 311 for connecting with the upper and lower ends of the support frame, and the two longitudinal axis motor brackets are connected between the two longitudinal axis motor brackets.
  • Two longitudinal axis motor guide rails 312 and one longitudinal axis motor lead screw 313, the longitudinal axis motor lead screw is connected to the power output end of the longitudinal axis motor 315 through the longitudinal axis coupling 314, the longitudinal axis motor lead screw and the longitudinal axis
  • the longitudinal axis motor slider 316 is installed on the motor guide rail, and the pressure gauge is installed on the longitudinal axis motor slider.
  • the horizontal axis motor system 33 includes two horizontal axis motor brackets 331 for connecting with the support frame, and two horizontal axis motor brackets are connected between the two horizontal axis motor brackets.
  • the horizontal axis motor slider 336 is installed on the horizontal axis motor slider, and the rotating motor system is installed on the horizontal axis motor slider.
  • the rotary motor system 34 includes a rotary motor bracket 341 connected with the horizontal axis motor slider, the rotary motor bracket 342 is installed on the rotary motor bracket, and the rotary motor is installed on the rotary motor.
  • Flexible drive bay 343 for securing the flexible drive.
  • the support frame 1 includes a bottom beam 11 and bottom legs 12 at both ends of the bottom beam, and three vertical columns 13 are arranged on the bottom beam, two of which are used to install the horizontal shaft.
  • Motor system another column is used to install the barometer
  • the top of the three columns is provided with a top beam 14
  • the longitudinal axis motor system is arranged between the bottom beam and the top beam, and two ends of the top beam are provided for Mount the support profile 15 of the camera system.
  • a method for automatically calibrating a flexible robot driver by using the automatic calibration system of the above-mentioned flexible robot driver includes:
  • the record information is in Table 1.
  • B Calibration of the output force of the input air pressure at different bending angles: Obtain the output displacement and angle of the flexible drive under different air pressures from A, and then adjust the horizontal axis motor system, vertical axis motor system, and rotary motor system to make the pressure
  • the measuring end of the gauge that is, the force point of the pressure gauge, is in contact with the free end of the flexible actuator at the vertical.
  • the numerical analysis of the specific movement is as follows: The origin of the set coordinate axis is shown in Figure 10.
  • the axis of the horizontal axis motor system is the X axis
  • the axis of the vertical axis motor system is the Y axis
  • A is the midpoint of the end line segment of the drive end of the flexible drive
  • B is the midpoint of the end line segment of the free end of the flexible actuator, connecting two points AB to form a line segment L AB
  • the angle between the line segment L AB and the X-axis is ⁇
  • the end line segment of the driving end of the flexible actuator is perpendicular to the point B.
  • Line, the vertical foot is O point
  • Y L BO
  • the auxiliary line L AF parallel to the Y coordinate axis is drawn through point A, and the auxiliary line L BE parallel to the vertical axis is drawn through point B.
  • the x motor coordinate output is -LA AE
  • the y-axis motor coordinate output is L BE . Therefore, according to the displacement and angle of the driver under different air pressures obtained in step A, each (X, Y, ⁇ ) point is obtained.
  • the output of the three motor shafts uses the air pressure control system to control the air pressure in the flexible drive.
  • the air pressure value increases from zero, and the step size is the minimum calibration unit until the maximum air pressure value is calibrated, and the data of the pressure gauge is recorded. The calibration is completed. Recorded in Table 2:

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Manipulator (AREA)

Abstract

一种用于柔性机器人驱动器的自动标定系统,包括支撑框架(1),支撑框架(1)上分别安装有视觉定位系统(2)、压力测量系统(3)和气压控制系统(4);视觉定位系统(2)用于测量柔性驱动器(5)两端的相对位移及角度;气压控制系统(4)用于给柔性驱动器的驱动端(51)充气并测定柔性驱动器(5)的输入气压;压力测量系统(3)包括通过纵轴电机系统(31)安装在支撑框架(1)上的压力计(32)以及通过横轴电机系统(33)和旋转电机系统(34)安装在支撑框架(1)上的待标定柔性驱动器(5);支撑框架(1)上通过横轴电机系统(33)安装旋转电机系统(34),旋转电机系统(34)上固定柔性驱动器的驱动端(51),柔性驱动器的自由端(52)与压力计(32)的测量端接触进行压力测量。标定系统精度高、使用简单。还提供了一种用于柔性机器人驱动器的标定方法。

Description

一种用于柔性机器人驱动器的自动标定系统及标定方法 技术领域
本发明涉及一种用于柔性机器人驱动器的自动标定系统及标定方法,属于机器人的标定技术领域。
背景技术
在机器人领域中,软体驱动器是一种新型的驱动器,具有柔顺性高,驱动简单等优点,在机器人手爪、康复医疗、仿生机器人领域有广泛的应用,软体驱动器在使用之前,需要对其的输出特性进行标定,获得其输入量与输出量的对应关系,并确定驱动器的静态指标(最大输出力,最大弯曲角度)和动态指标(力响应曲线、位移响应曲线)。
目前,常见的标定方式有:
输出位移标定法:将驱动器的一端固定,增加输出信号,测量另一端与初始位置的位移差和角度差,得到输入气压与输出位移、旋转角度之间的关系。
最大力标定法:将柔性驱动器一端固定,在驱动器的输出方向反向放置一个挡板,在驱动器的另一端放置一个力传感器,将输入信号由零逐渐增大,检测传感器的信号,得到输入气压与输出力之间的关系。
这些方式有手动误差大,不同标定方法得出的数据不统一,难以统一比较,只能得到部分输出性能的特点。
自动标定系统将设计自动标定的算法,由人物输入标定的指令,系统自动完成标定的步骤。
发明内容
本发明的目的是针对上述现有技术的不足,提供一种精度高、使用简单的用于柔性机器人的自动标定系统及标定方法。
为实现上述的技术目的,本发明将采取如下的技术方案:
一种柔性机器人驱动器的自动标定系统,包括支撑框架,所述支撑框架上分别安装有视觉定位系统、压力测量系统、气压控制系统;
所述视觉定位系统用于测量柔性驱动器两端的相对位移及角度;
所述气压控制系统用于给柔性驱动器的驱动端充气并测定柔性驱动器的输入气压;
所述压力测量系统包括通过纵轴电机系统安装在支撑框架上的压力计以及通过横轴电机系统和旋转电机系统安装在所述支撑框架上的待标定柔性驱动器;所述支撑框架上通过横轴电机系统安装旋转电机系统,所述旋转电机系统上固定柔性驱动器的驱动端,所述柔性驱动器的自由端与所述压力计的测量端接触进行压力测量。
所述的柔性机器人驱动器的自动标定系统,还包括用于指令的输入,电机位置计算及输出,摄像头数据处理,数据记录的个人电脑。
所述的柔性机器人驱动器的自动标定系统,所述视觉定位系统包括安装在所述支撑框架上部两端的两个摄像头系统以及设置在待标定柔性驱动器上的标记点。
所述的柔性机器人驱动器的自动标定系统,所述气压控制系统包括供气系统、用于与柔性驱动器驱动端连接的供气管道以及安装在供气管道上的气压计。
所述的柔性机器人驱动器的自动标定系统,每个所述的摄像头系统包括与所述支撑框架连接的摄像头支架,所述摄像头支架上通过摄像头旋转接头连接摄像头本体。
所述的柔性机器人驱动器的自动标定系统,所述纵轴电机系统包括用于与所述支撑框架上下两端连接的两个纵轴电机支架,两个所述纵轴电机支架之间连接两条纵轴电机导轨和一条纵轴电机丝杠,所述纵轴电机丝杠通过纵轴联轴器连接纵轴电机的动力输出端,所述纵轴电机丝杠和纵轴电机导轨上安装纵轴电机滑块,所述纵轴电机滑块上安装所述压力计。
所述的柔性机器人驱动器的自动标定系统,所述横轴电机系统包括用于与所述支撑框架连接的两个横轴电机支架,两个所述横轴电机支架之间连接两条横轴电机导轨和一条横轴电机丝杠,所述横轴电机丝杠通过横轴电机联轴器连接横轴电机的动力输出端,所述横轴电机丝杠和横轴电机导轨上安装横轴电机滑块,所述横轴电机滑块上安装所述旋转电机系统。
所述的柔性机器人驱动器的自动标定系统,所述旋转电机系统包括与所述横轴电机滑块连接的旋转电机支架,所述旋转电机支架上安装旋转电机,所述旋转电机上安装用于固定柔性驱动器的柔性驱动器托架。
所述的柔性机器人驱动器的自动标定系统,所述支撑框架包括底部横梁以及位于底部横梁两端的底部支脚,所述底部横梁上设置有三条立柱,其中两条立柱用于安装横轴电机系统,另一条立柱用于安装气压计,三条所述立柱顶部设置有顶部横梁,底部横梁和顶部横梁之间设置所述的纵轴电机系统,所述顶部横梁两端设置两个用于安装所述摄像头系统的支撑型材。
用上述柔性机器人驱动器的自动标定系统进行柔性机器人驱动器自动标定的方法,该方法包括:
A:输入气压与输出位移的标定:固定柔性驱动器的驱动端在柔性 驱动器托架处,利用气压控制系统,控制柔性驱动器中的气压,气压值从零开始增大,步进量为最小标定单位,直到最大气压值,摄像头系统采集不同的气压下的图像,计算得到不同气压下的驱动器的位移及角度,记录数据的具体数值;
B:输入气压在不同的弯曲角度下的输出力的标定:由A得到不同的气压下,柔性驱动器的输出位移及角度,然后通过调整横轴电机系统、纵轴电机系统、旋转电机系统使得压力计的测量端,即压力计的受力点与柔性驱动器的自由端垂直处相接触,具体移动的数值分析如下:
设定横轴电机与纵轴电机的交点为坐标轴的原点,横轴电机系统的轴线为X轴,纵轴电机系统的轴线为Y轴,A为柔性驱动器的驱动端的端部线段的中点,B为柔性驱动器的自由端的端部线段的中点,连接AB两点形成线段L AB,线段L AB与X轴的夹角为θ,过B点向柔性驱动器的驱动端的端部线段做垂线,垂足为O点,令Y=L BO,X=L AO
过A点作平行Y坐标轴辅助线L AF,过B点作平行纵轴坐标轴辅助线L BE
过A点作垂直于L AO辅助线L AD,过B点作垂直于柔性驱动器的固定端的垂线L BO
当θ=0时,压力计刚好与驱动器末端,这时候的X轴电机坐标输出为-Y1,y轴电机坐标输出为0,Z轴电机的输出为0;
当θ>0时,当旋转电机逆旋转θ角时,驱动器末端与压力计受力
端垂直,分析可得
Figure PCTCN2022070409-appb-000001
Figure PCTCN2022070409-appb-000002
EAO=θ,
BAE=α-∠ EAO,
其中,
Figure PCTCN2022070409-appb-000003
可以得到:
L BE=sin∠ BAE*L AB,
L AE=cos∠ BAE*L AB
这时候的x电机坐标输出为-L AE,y轴电机坐标输出为L BE,由此根据步骤A中得到的不同气压下的驱动器的位移及角度得到每一个(X,Y,θ)点的三个电机轴的输出,利用气压控制系统,控制柔性驱动器中的气压,气压值从零开始增大,步进量为最小标定单位,直到标定最大气压值,记录压力计的数据,标定完成。
有益效果:
1.标定系统采用自动标定系统,工作效率高,可以节省人力成本,降低由人为因素导致的标定误差。
2.本标定系统不仅可以标定输入气压与输出位移、输出角度之间的关系、还可以标定不同的相对位移、相对坐标的响应关系,操作简单,标定精度高。
附图说明
图1是本发明所述的柔性机器人驱动器的自动标定系统的结构示意图;
图2是图1中纵轴电机系统的结构示意图;
图3是图1中支撑框架的结构示意图;
图4是图1中横轴电机系统的结构示意图;
图5是图1中示例柔性驱动器的结构示意图;
图6是图1中旋转电机的结构示意图;
图7是图1中摄像头系统的结构示意图;
图8是柔性驱动器在不同压力下的弯曲示意图;
图9是柔性驱动器数据X3,Y3坐标的测量示意图;
图10是柔性驱动器在X1,Y1坐标的测量位置及原点坐标示意图;
图11是柔性驱动器在X,Y坐标的测量位置坐标示意图;
图12是柔性驱动器弯曲简化模型分析示意图;
图13是柔性驱动器弯曲后,三个电机轴移动后的模型分析示意图。
图中:1、支撑框架;11、底部横梁;12、底部支脚;13、三条立柱;14、顶部横梁;15、支撑型材;2、视觉定位系统;21、摄像头系统;211、摄像头支架;212、摄像头旋转接头;213、摄像头本体;3、压力测量系统;31、纵轴电机系统;311、纵轴电机支架;312、纵轴电机导轨;313、纵轴电机丝杠;314、纵轴联轴器;315、纵轴电机;316、纵轴电机滑块;32、压力计;33、横轴电机系统;331、 横轴电机支架;332、横轴电机导轨;333、横轴电机丝杠;334、横轴电机联轴器;335、横轴电机;336、横轴电机滑块;34、旋转电机系统;341、旋转电机支架;342、旋转电机;343、柔性驱动器托架;4、气压控制系统;41、供气系统;42、供气管道;43、气压计;5、柔性驱动器;51、柔性驱动器的驱动端;52、柔性驱动器的自由端;53、标记点;6、个人电脑。
具体实施方式
下面结合附图对本发明的技术方案作进一步说明,但本发明的实施方式不限于此。
如图1-7所示,本发明的柔性机器人驱动器的自动标定系统,包括支撑框架1,所述支撑框架上分别安装有视觉定位系统2、压力测量系统3、气压控制系统4;
所述视觉定位系统用于测量柔性驱动器5两端的相对位移及角度;
所述气压控制系统用于给柔性驱动器5的驱动端充气并测定柔性驱动器的输入气压;
所述压力测量系统包括通过纵轴电机系统31安装在支撑框架1上的压力计32以及通过横轴电机系统33和旋转电机系统34安装在所述支撑框架1上的待标定柔性驱动器5;所述支撑框架上通过横轴电机系统33安装旋转电机系统34,所述旋转电机系统上固定柔性驱动器5的驱动端51,所述柔性驱动器的自由端52与所述压力计32的测量端接触进行压力测量。
所述的柔性机器人驱动器的自动标定系统,还包括用于指令的输入,电机位置计算及输出,摄像头数据处理,数据记录的个人电脑6。
所述的柔性机器人驱动器的自动标定系统,所述视觉定位系统2包括安装在所述支撑框架上部两端的两个摄像头系统21以及设置在待标定柔性驱动器上的标记点53。
所述的柔性机器人驱动器的自动标定系统,所述气压控制系统4包括供气系统41、用于与柔性驱动器驱动端连接的供气管道42以及安装在供气管道上的气压计43。
所述的柔性机器人驱动器的自动标定系统,每个所述的摄像头系统21包括与所述支撑框架连接的摄像头支架211,所述摄像头支架上通过摄像头旋转接头212连接摄像头本体213。
所述的柔性机器人驱动器的自动标定系统,所述纵轴电机系统31包括用于与所述支撑框架上下两端连接的两个纵轴电机支架311,两个所述纵轴电机支架之间连接两条纵轴电机导轨312和一条纵轴电机丝杠313,所述纵轴电机丝杠通过纵轴联轴器314连接纵轴电机315的动力输出端,所述纵轴电机丝杠和纵轴电机导轨上安装纵轴电机滑块316,所述纵轴电机滑块上安装所述压力计。
所述的柔性机器人驱动器的自动标定系统,所述横轴电机系统33包括用于与所述支撑框架连接的两个横轴电机支架331,两个所述横轴电机支架之间连接两条横轴电机导轨332和一条横轴电机丝杠333,所述横轴电机丝杠通过横轴电机联轴器334连接横轴电机335的动力输出端,所述横轴电机丝杠和横轴电机导轨上安装横轴电机滑块336,所述横轴电机滑块上安装所述旋转电机系统。
所述的柔性机器人驱动器的自动标定系统,所述旋转电机系统34包括与所述横轴电机滑块连接的旋转电机支架341,所述旋转电机支架上安装旋转电机342,所述旋转电机上安装用于固定柔性驱动器的柔性驱动器托架343。
所述的柔性机器人驱动器的自动标定系统,所述支撑框架1包括底部横梁11以及位于底部横梁两端的底部支脚12,所述底部横梁上设置有三条立柱13,其中两条立柱用于安装横轴电机系统,另一条立柱用于安装气压计,三条所述立柱顶部设置有顶部横梁14,底部横梁和顶部横梁之间设置所述的纵轴电机系统,所述顶部横梁两端设置两个用于安装所述摄像头系统的支撑型材15。
用上述柔性机器人驱动器的自动标定系统进行柔性机器人驱动器自动标定的方法,该方法包括:
A:输入气压与输出位移的标定:固定柔性驱动器的驱动端在柔性驱动器托架处,利用气压控制系统,控制柔性驱动器中的气压,气压值从零开始增大,步进量为最小标定单位,直到最大气压值,摄像头系统采集不同的气压下的图像,计算得到不同气压下的驱动器的位移及角度,记录数据的具体数值;。记录信息在表格1中。
表1
Figure PCTCN2022070409-appb-000004
B:输入气压在不同的弯曲角度下的输出力的标定:由A得到不同的气压下,柔性驱动器的输出位移及角度,然后通过调整横轴电机系统、纵轴电机系统、旋转电机系统使得压力计的测量端,即压力计的受力点与柔性驱动器的自由端垂直处相接触,具体移动的数值分析如下:设定坐标轴的原点如图10所示。
设定横轴电机与纵轴电机的交点为坐标轴的原点,横轴电机系统 的轴线为X轴,纵轴电机系统的轴线为Y轴,A为柔性驱动器的驱动端的端部线段的中点,B为柔性驱动器的自由端的端部线段的中点,连接AB两点形成线段L AB,线段L AB与X轴的夹角为θ,过B点向柔性驱动器的驱动端的端部线段做垂线,垂足为O点,令Y=L BO,X=L AO
过A点作平行Y坐标轴辅助线L AF,过B点作平行纵轴坐标轴辅助线L BE
过A点作垂直于L AO辅助线L AD,过B点作垂直于柔性驱动器的固定端的垂线L BO
当θ=0时,压力计刚好与驱动器末端,这时候的X轴电机坐标输出为-Y1,y轴电机坐标输出为0,Z轴电机的输出为0;
当θ>0时,压力计刚好与驱动器末端垂直接触如图11所示,简化弯曲后的模型为图12所示,当旋转电机逆旋转θ角时,驱动器末端与压力计受力端垂直,这时的模型简化为图13,分析可得:
Figure PCTCN2022070409-appb-000005
Figure PCTCN2022070409-appb-000006
EAO=θ,
BAE=α-∠ EAO,
其中,
Figure PCTCN2022070409-appb-000007
可以得到:
L BE=sin∠ BAE*L AB,
L AE=cos∠ BAE*L AB
这时候的x电机坐标输出为-L AE,y轴电机坐标输出为L BE,由此根据步骤A中得到的不同气压下的驱动器的位移及角度得到每一个(X,Y,θ)点的三个电机轴的输出,利用气压控制系统,控制柔性驱动器中的气压,气压值从零开始增大,步进量为最小标定单位,直到标定最大气压值,记录压力计的数据,标定完成,记录在表2中:
表2
气压(KPa) 0 20 40 60 80 100
(X1,Y1,θ 1) 0          
(X2,Y2,θ 2) 0 0        
(X1,Y1,θ 3) 0 0 0      

Claims (10)

  1. 一种柔性机器人驱动器的自动标定系统,其特征在于:包括支撑框架,所述支撑框架上分别安装有视觉定位系统、压力测量系统、气压控制系统;
    所述视觉定位系统用于测量柔性驱动器两端的相对位移及角度;
    所述气压控制系统用于给柔性驱动器的驱动端充气并测定柔性驱动器的输入气压;
    所述压力测量系统包括通过纵轴电机系统安装在支撑框架上的压力计以及通过横轴电机系统和旋转电机系统安装在所述支撑框架上的待标定柔性驱动器;所述支撑框架上通过横轴电机系统安装旋转电机系统,所述旋转电机系统上固定柔性驱动器的驱动端,所述柔性驱动器的自由端与所述压力计的测量端接触进行压力测量。
  2. 根据权利要求1所述的柔性机器人驱动器的自动标定系统,其特征在于:还包括用于指令的输入,电机位置计算及输出,摄像头数据处理,数据记录的个人电脑。
  3. 根据权利要求1或2所述的柔性机器人驱动器的自动标定系统,其特征在于:所述视觉定位系统包括安装在所述支撑框架上部两端的两个摄像头系统以及设置在待标定柔性驱动器上的标记点。
  4. 根据权利要求1或2所述的柔性机器人驱动器的自动标定系统,其特征在于:所述气压控制系统包括供气系统、用于与柔性驱动器驱动端连接的供气管道以及安装在供气管道上的气压计。
  5. 根据权利要求3所述的柔性机器人驱动器的自动标定系统,其特征在于:每个所述的摄像头系统包括与所述支撑框架连接的摄像头支架,所述摄像头支架上通过摄像头旋转接头连接摄像头本体。
  6. 根据权利要求1或2所述的柔性机器人驱动器的自动标定系统, 其特征在于:所述纵轴电机系统包括用于与所述支撑框架上下两端连接的两个纵轴电机支架,两个所述纵轴电机支架之间连接两条纵轴电机导轨和一条纵轴电机丝杠,所述纵轴电机丝杠通过纵轴联轴器连接纵轴电机的动力输出端,所述纵轴电机丝杠和纵轴电机导轨上安装纵轴电机滑块,所述纵轴电机滑块上安装所述压力计。
  7. 根据权利要求1或2所述的柔性机器人驱动器的自动标定系统,其特征在于:所述横轴电机系统包括用于与所述支撑框架连接的两个横轴电机支架,两个所述横轴电机支架之间连接两条横轴电机导轨和一条横轴电机丝杠,所述横轴电机丝杠通过横轴电机联轴器连接横轴电机的动力输出端,所述横轴电机丝杠和横轴电机导轨上安装横轴电机滑块,所述横轴电机滑块上安装所述旋转电机系统。
  8. 根据权利要求1或2所述的柔性机器人驱动器的自动标定系统,其特征在于:所述旋转电机系统包括与所述横轴电机滑块连接的旋转电机支架,所述旋转电机支架上安装旋转电机,所述旋转电机上安装用于固定柔性驱动器的柔性驱动器托架。
  9. 根据权利要求1或2所述的柔性机器人驱动器的自动标定系统,其特征在于:所述支撑框架包括底部横梁以及位于底部横梁两端的底部支脚,所述底部横梁上设置有三条立柱,其中两条立柱用于安装横轴电机系统,另一条立柱用于安装气压计,三条所述立柱顶部设置有顶部横梁,底部横梁和顶部横梁之间设置所述的纵轴电机系统,所述顶部横梁两端设置两个用于安装所述摄像头系统的支撑型材。
  10. 一种用上述柔性机器人驱动器的自动标定系统进行柔性机器人驱动器自动标定的方法,其特征在于:该方法包括:
    A:输入气压与输出位移的标定:固定柔性驱动器的驱动端在柔性驱动器托架处,利用气压控制系统,控制柔性驱动器中的气压,气压 值从零开始增大,步进量为最小标定单位,直到最大气压值,摄像头系统采集不同的气压下的图像,计算得到不同气压下的驱动器的位移及角度,记录数据的具体数值;
    B:输入气压在不同的弯曲角度下的输出力的标定:由A得到不同的气压下,柔性驱动器的输出位移及角度,然后通过调整横轴电机系统、纵轴电机系统、旋转电机系统使得压力计的测量端,即压力计的受力点与柔性驱动器的自由端垂直处相接触,具体移动的数值分析如下:
    设定横轴电机与纵轴电机的交点为坐标轴的原点,横轴电机系统的轴线为X轴,纵轴电机系统的轴线为Y轴,A为柔性驱动器的驱动端的端部线段的中点,B为柔性驱动器的自由端的端部线段的中点,连接AB两点形成线段L AB,线段L AB与X轴的夹角为θ,过B点向柔性驱动器的驱动端的端部线段做垂线,垂足为O点,令Y=L BO,X=L AO
    过A点作平行Y坐标轴辅助线L AF,过B点作平行纵轴坐标轴辅助线L BE
    过A点作垂直于L AO辅助线L AD,过B点作垂直于柔性驱动器的固定端的垂线L BO
    当θ=0时,压力计刚好与驱动器末端,这时候的X轴电机坐标输出为-Y1,y轴电机坐标输出为0,Z轴电机的输出为0;
    当θ>0时,当旋转电机逆旋转θ角时,驱动器末端与压力计受力端垂直,分析可得
    Figure PCTCN2022070409-appb-100001
    Figure PCTCN2022070409-appb-100002
    EAO=θ,
    BAE=α-∠ EAO,
    其中,
    Figure PCTCN2022070409-appb-100003
    可以得到:
    L BE=sin∠ BAE*L AB,
    L AE=cos∠ BAE*L AB
    这时候的x电机坐标输出为-L AE,y轴电机坐标输出为L BE,由此根据步骤A中得到的不同气压下的驱动器的位移及角度得到每一个(X,Y,θ)点的三个电机轴的输出,利用气压控制系统,控制柔性驱动器中的气压,气压值从零开始增大,步进量为最小标定单位,直到标定最大气压值,记录压力计的数据,标定完成。
PCT/CN2022/070409 2021-02-04 2022-01-06 一种用于柔性机器人驱动器的自动标定系统及标定方法 WO2022166514A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/774,317 US20230211504A1 (en) 2021-02-04 2022-01-06 Automated calibration system and calibration method for flexible robot actuator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110155682.3A CN112976060B (zh) 2021-02-04 2021-02-04 一种用于柔性机器人驱动器的自动标定系统及标定方法
CN202110155682.3 2021-02-04

Publications (1)

Publication Number Publication Date
WO2022166514A1 true WO2022166514A1 (zh) 2022-08-11

Family

ID=76347144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070409 WO2022166514A1 (zh) 2021-02-04 2022-01-06 一种用于柔性机器人驱动器的自动标定系统及标定方法

Country Status (3)

Country Link
US (1) US20230211504A1 (zh)
CN (1) CN112976060B (zh)
WO (1) WO2022166514A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112976060B (zh) * 2021-02-04 2022-07-12 东南大学 一种用于柔性机器人驱动器的自动标定系统及标定方法
CN114136263B (zh) * 2021-10-29 2023-02-28 中国地质大学(武汉) 一种弯曲传感器自动、连续、均匀标定曲率的方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070156019A1 (en) * 2005-12-30 2007-07-05 Larkin David Q Robotic surgery system including position sensors using fiber bragg gratings
CN101281073A (zh) * 2008-05-21 2008-10-08 中国科学院合肥物质科学研究院 一种力学传感器阵列标定装置及其工作方法
CN109227538A (zh) * 2018-07-13 2019-01-18 哈尔滨工业大学(深圳) 一种基于视觉的柔性机械臂的定位控制方法及系统
CN110274569A (zh) * 2019-07-23 2019-09-24 南开大学 一种传感器标定系统
CN110788884A (zh) * 2019-09-23 2020-02-14 西安交通大学 一种气动软体机器人实验平台及其使用方法
CN110842907A (zh) * 2019-12-16 2020-02-28 大连理工大学 一种气动力软体驱动器控制平台及控制方法
CN112976060A (zh) * 2021-02-04 2021-06-18 东南大学 一种用于柔性机器人驱动器的自动标定系统及标定方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016063583A (ja) * 2014-09-17 2016-04-25 国立研究開発法人産業技術総合研究所 高分子アクチュエータの伸縮評価方法
CN106441108B (zh) * 2016-09-14 2020-02-14 苏州市建筑科学研究院集团股份有限公司 一种视觉位移测量系统及其测量方法
CN107064561B (zh) * 2017-03-21 2023-04-21 华南理工大学 一种单轴加速度传感器的标定装置及标定方法
CN209022098U (zh) * 2018-09-14 2019-06-25 南京理工大学 一种关节式内骨骼气动软体手爪
CN109620146B (zh) * 2018-11-29 2020-06-09 华中科技大学 一种用于人体运动测量的柔性传感器及其应用
CN109676600B (zh) * 2019-01-21 2021-12-14 合肥工业大学 一种基于簧片式的变刚度柔性驱动器及其运动控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070156019A1 (en) * 2005-12-30 2007-07-05 Larkin David Q Robotic surgery system including position sensors using fiber bragg gratings
CN101281073A (zh) * 2008-05-21 2008-10-08 中国科学院合肥物质科学研究院 一种力学传感器阵列标定装置及其工作方法
CN109227538A (zh) * 2018-07-13 2019-01-18 哈尔滨工业大学(深圳) 一种基于视觉的柔性机械臂的定位控制方法及系统
CN110274569A (zh) * 2019-07-23 2019-09-24 南开大学 一种传感器标定系统
CN110788884A (zh) * 2019-09-23 2020-02-14 西安交通大学 一种气动软体机器人实验平台及其使用方法
CN110842907A (zh) * 2019-12-16 2020-02-28 大连理工大学 一种气动力软体驱动器控制平台及控制方法
CN112976060A (zh) * 2021-02-04 2021-06-18 东南大学 一种用于柔性机器人驱动器的自动标定系统及标定方法

Also Published As

Publication number Publication date
US20230211504A1 (en) 2023-07-06
CN112976060A (zh) 2021-06-18
CN112976060B (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
WO2022166514A1 (zh) 一种用于柔性机器人驱动器的自动标定系统及标定方法
CN108297101B (zh) 多关节臂串联机器人末端位姿误差检测和动态补偿方法
CN107042528B (zh) 一种工业机器人的运动学标定系统及方法
KR102022750B1 (ko) 비파괴 검사를 위한 자립식 홀로노믹 추적 방법 및 장치
CN105823456B (zh) 一种支撑轴弯曲间隙及刚度自动测量装置及其测量方法
EP2910894B1 (en) Shape measuring apparatus and shape measurement error correction method
CN106064379B (zh) 一种机器人自动计算实际臂长的方法
CN105758360B (zh) 一种转向轴承轴圈沟道参数测量仪及其测量方法
CN102192999B (zh) 基于探针自动测量气流压力和速度的装置
CN111409067B (zh) 一种机器人用户坐标系自动标定系统及其标定方法
CN105157569B (zh) 一种消失模模具激光测量机
US20130185010A1 (en) Measurement coordinate correction method and coordinate measuring apparatus
CN111678434B (zh) 机床直线轴运行的六自由度误差同时检测装置及方法
CN109282785A (zh) 一种基于应变监测的弹性支承板的变形监测方法
CN107202692A (zh) 一种滚珠丝杠副轴向静刚度测量装置及方法
CN203426822U (zh) 硬质脆性板的磨削装置
US9046354B2 (en) Apparatus, system and method for measuring straightness of components of rotating assemblies
CN112665477B (zh) 用于测试端拾器平面定位精度的检具及方法
CN104923590B (zh) 压力校正机及其校正方法
CN111624091A (zh) 工程板材承压检测用坐标定位装置及定位方法
CN115816511A (zh) 一种检测并联机器人平台位姿的装置和计算方法
TWI717230B (zh) 機台編碼器安裝偏移的修正方法
JP2933187B2 (ja) 三次元測定器
CN206095196U (zh) 一种转向轴承轴圈沟道参数测量仪
CN109238218B (zh) 一种大型抛光机盘面平面度检测装置及其工作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22748793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22748793

Country of ref document: EP

Kind code of ref document: A1