CN110776651B - 一种中空纳米材料及其制备方法 - Google Patents

一种中空纳米材料及其制备方法 Download PDF

Info

Publication number
CN110776651B
CN110776651B CN201911108324.6A CN201911108324A CN110776651B CN 110776651 B CN110776651 B CN 110776651B CN 201911108324 A CN201911108324 A CN 201911108324A CN 110776651 B CN110776651 B CN 110776651B
Authority
CN
China
Prior art keywords
metal salt
nano material
hollow
transition metal
hollow nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911108324.6A
Other languages
English (en)
Other versions
CN110776651A (zh
Inventor
曹雪琴
顾宏伟
卢忆冬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201911108324.6A priority Critical patent/CN110776651B/zh
Publication of CN110776651A publication Critical patent/CN110776651A/zh
Application granted granted Critical
Publication of CN110776651B publication Critical patent/CN110776651B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/2243At least one oxygen and one nitrogen atom present as complexing atoms in an at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Composite Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种中空纳米材料的制备方法,包括以下步骤:将过渡金属有机框架配合物与金属盐水溶液在溶剂中混合,并在60‑70℃下反应,反应结束后,得到所述中空纳米材料;其中,金属盐水溶液包括水解后呈酸性的金属盐。本发明利用金属盐水溶液蚀刻过渡金属有机框架配合物,金属盐水解产生的酸度以及金属离子与有机配体的配位作用,形成空心的纳米材料,整个合成过程绿色环保,试验简单温和、速度快、产率高。

Description

一种中空纳米材料及其制备方法
技术领域
本发明涉及材料制备技术领域,尤其涉及一种中空纳米材料及其制备方法。
背景技术
中空纳米材料是一类在固体壳内部具有空白的空间(空心)的材料,由于其空心形态相关的独特性质,近年来受到了越来越密切的关注。中空纳米材料的一些固有的特征,例如大比表面积、低密度和丰富的内部空隙空间,这种功能型材料被广泛用于催化、储能、生物医学、环保、化学传感、光学等领域,其独特的结构和可调成分为其带来了诸多优势与发展前景。
目前,空心纳米材料主要是通过模板介导的方法合成的,使用的是硬模板(如二氧化硅或聚苯乙烯)和软模板(如微乳液,囊泡、胶束甚至气泡)。通过吸附或者化学反应使产物或前驱体包覆在模板表面,形成核/复合结构,然后采用加热煅烧或化学反应的方法去除模板,而得到相应的中空纳米材料。外层壳的尺寸与模板尺寸息息相关。
硬模板法是以一定形状的固体粒子为模板来制备中空纳米材料。该法的特点是:都以具有一定尺寸的固体颗粒作为模板,模板的尺寸决定了空心球的尺寸,最后都要通过一定工艺除去模板,并且需要表面修饰才能使核-壳结构连接紧密。而该过程涉及煅烧的温度、时间、溶剂的选择等问题,这些因素都会对最终产物造成一定的影响,因此限制了该方法的大规模使用。如CN 104659358A公开了一种钴酸镍纳米中空多面体的制备方法,将金属有机框架配合物ZIF-67与硝酸镍的醇溶液混合均匀,在80-100℃温度条件下进行反应,然后在300-500℃下加热退火,该合成方法需要在高温下去除模板。
与硬模板法相比,软模板法不用具有固定形态、尺寸的固体粒子作为模板,而是选用微乳液滴、表面活性剂胶束、气泡、微囊、大分子聚集体、细菌等模板,省去了模板合成操作。其除去模板的过程也比较简单。缺点是:产物粒径大小不均一,对溶液环境(如pH、溶剂、离子强度等)要求高,并且需要使用大量有机溶剂制备(反相)胶束或(反相)微乳液,容易造成环境污染且产品产率较低,不适合大规模的生产应用。
现有的模板法制备中空纳米材料的过程,都需要最终去除这个模板,造成模板的浪费,与绿色环保的理念冲突;并且在去除模板的过程中需要用高温煅烧,强酸(氢氟酸)刻蚀等方式,都极具危险,且成本大;同时在使用上述模板法制备时,需要外加特定的条件才可形成前驱体,操作繁琐。
文献“Porous nano-structured Co3O4 anode materials generated fromcoordination-driven selfassembled aggregates for advanced lithiumionbatteries,Nanoscale,2014,6,9689-9694”报道了一种Co3O4多孔纳米材料的制备方法,该材料中的多孔是由实心Co-MOF纳米粒子堆砌后形成,并非真正意义的中空纳米材料。文献“Convenient Synthesis of Novel Nitrones:(Z)-4-Amino-5-hydroxyimino-2,5-dihydro-1H-imidazole 3-Oxides,Heterocycles,2009,78,1445-1452”报道了一种含碳、氮元素的有机配体,但是并未揭示该有机配体可用于制备中空纳米材料。
发明内容
为解决上述技术问题,本发明的目的是提供一种中空纳米材料及其制备方法,本发明利用金属盐水溶液蚀刻过渡金属有机框架配合物,形成空心的纳米材料,不需额外去除模板,整个合成过程绿色环保,试验简单温和,速度快,产率高。
本发明的第一个目的是公开一种中空纳米材料的制备方法,包括以下步骤:
将过渡金属有机框架配合物与金属盐水溶液在溶剂中混合,所述金属盐水溶液的pH值为2-2.2,并在60-70℃下反应,反应结束后,得到所述中空纳米材料;其中,所述过渡金属有机框架配合物中,有机配体包括如下结构式的结构:
Figure GDA0003362394810000021
其中,R为-H或-(CH2)n-1CH3,n=1~12中任一整数;
所述金属盐水溶液包括水解后呈酸性的金属盐。
进一步地,过渡金属有机框架配合物中的过渡金属为钴(Co)、镍(Ni)、锰(Mn)或铜(Cu)。优选地,过渡金属为钴。
优选地,R为C8烷基,即,有机配体包括如下结构式的结构:
Figure GDA0003362394810000031
优选地,过渡金属有机框架配合物为Co-MOF,该化合物由Co和(Z)-4-氨基-5-羟肟基-2-(4-正辛氧基苯基)-2,5-二氢-1H-咪唑-3-氧化物配位得到,具体合成方法参考文献“Porous nano-structured Co3O4 anode materials generated from coordination-driven selfassembled aggregates for advanced lithium ion batteries,Nanoscale,2014,6,9689-9694”。
进一步地,金属盐为三氯化钌(RuCl3)和/或三氯化铁(FeCl3)。
进一步地,过渡金属有机框架配合物与金属盐的质量比为6:4-10。优选地,当金属盐为氯化钌时,过渡金属有机框架配合物与金属盐的质量比为6:5;,当金属盐为氯化铁的时,过渡金属有机框架配合物与金属盐的质量比为6:9。
进一步地,具体反应时,将金属盐水溶液加入温度为60-70℃的过渡金属有机框架配合物的溶液中。
进一步地,溶剂包括水和有机溶剂,所述有机溶剂包括乙醇。
进一步地,反应时间为0.5-3h。
进一步地,金属盐水溶液的浓度为0.02-0.04mol/L。加入的金属盐水溶液的量,是由其水解程度决定的,其浓度设置保证整个反应体系的酸度为2-2.2即可,该条件下,可有助于形成中空纳米材料。优选地,氯化钌水溶液的浓度为0.0241mol/L,氯化铁水溶液的浓度为0.0308mol/L。
进一步地,在搅拌条件下回流反应。
进一步地,反应完全后,还包括离心、洗涤并烘干产物的步骤。
本发明利用独特的富含碳、氮元素的有机配体与过渡金属形成的实心纳米球,即过渡金属有机框架(MOFs),作为模板,进一步通过外加额外金属离子溶液,在60-70℃下回流搅拌,生成中空纳米材料。此技术在MOFs基础上,可以调控过渡金属种类含量以及相应的形貌,外加的金属盐也是多变的,最终形成的双金属元素组分的中空纳米材料。原料中的MOFs一方面作为自模板牺牲,为整体的中空形貌打下基础,另一方面分解出的金属离子与有机配体又参与了外壳的构建。而选用其他有机配体的MOFs,则不存在上述相互作用,不能形成中空纳米材料。整个蚀刻中空的过程是,外加的金属盐中的金属离子会先与原料MOFs外表面的配体发生配位反应,从而在球状MOFs的表面形成一层外加金属元素的MOFs配合物,而这层新的MOFs层在整个溶液酸度体系下是稳定的,类似于一坚固的外壳,但是里面的Co-MOFs由于在此酸度体系下不能稳定存在,所以慢慢的内部被蚀刻成中空结构,而外壳依然保持完整。这也依赖于本发明的有机配体在一定的酸度范围内的不稳定性而导致的。
本发明的第二个目的是公开采用上述制备方法所制备的中空纳米材料。
进一步地,所述中空纳米材料的粒径为400-500nm。
本发明的中空纳米材料包括壳层和内部的空心,其中,壳层的厚度为30-40nm,壳层元素包括过渡金属有机框架配合物中的过渡金属、有机配体和金属盐。
本发明的方法所制备的中空纳米材料可以在电催化反应中重复使用。
借由上述方案,本发明至少具有以下优点:
1、本发明利用过渡金属有机框架配合物作为模板,较之可以变化不同过渡金属,且有机配体仍然存在于中空纳米材料中。
2、利用过渡金属有机框架配合物与金属盐水溶液反应,金属盐水解产生的酸度以及金属盐水解产生的金属离子与有机配体的配位作用,形成外壳,不需额外去除模板。
3、整个合成过程蚀刻速度快,效率高,绿色环保,试验简单温和,产率高。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合详细附图说明如后。
附图说明
图1是Co-MOF的扫描电镜图,透射电镜图和能量色散X射线光谱仪分析结果;
图2是实施例2制备的中空纳米材料的扫描电镜图,透射电镜图和能量色散X射线光谱仪分析结果;
图3是实施例3制备的中空纳米材料的扫描电镜图,透射电镜图和能量色散X射线光谱仪分析结果;
图4是CoRu-MOF钴钌双组分中空纳米材料用作HER催化的LSV图及在10mA/cm2恒电流下的电压随时间变化的稳定性图;
图5a是CoFe-MOF钴铁双组分中空纳米材料用作HER催化的LSV图及在10mA/cm2恒电流下的电压随时间变化的稳定性图。
具体实施方式
下面结合实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1:合成Co-MOF
首先,按照文献“Convenient Synthesis ofNovel Nitrones:(Z)-4-Amino-5-hydroxyimino-2,5-dihydro-1H-imidazole 3-Oxides,Heterocycles,2009,78,1445-1452”的方法合成有机配体HL10,有机配体的结构如下:
Figure GDA0003362394810000051
合成步骤分为4步:
第一步合成乙二肟:将盐酸羟胺与氢氧化钠在冰浴下反应,然后在温度10度以下滴加入乙二醛水溶液进行反应,30min后静置过夜得到白色固体产物。
第二步合成DAG:将一定量的盐酸羟胺与氢氧化钠在冰浴下反应10min后,加入乙二肟100度下反应5h后,静置于0-5℃下24h。得到结晶状产物。
第三步合成C-8醛:将一定量的对羟基苯甲醛、碳酸钾、溴辛烷溶于丙酮,55-60℃反应12-18h后,过滤滤液旋蒸,加入饱和碳酸钠乙醚萃取,得到淡黄色液体产物。
第四步合成HL10:先将一定量的DAG溶于乙醇,在加入C-8醛与对甲苯磺酸,在65℃下反应12-18h,过滤得到白色产物。
上述有机配体的结构中,苯环上所连接的烷氧基的链长可以变化,其长度可以为1~12个碳原子,或者苯环上的烷氧基可替换为氢或羟基。
然后,按照文献“Porous nano-structured Co3O4 anode materials generatedfrom coordination-driven selfassembled aggregates for advanced lithium ionbatteries,Nanoscale,2014,6,9689-9694”中的方法,在甲醇溶液中通过摩尔比为1:2的乙酸钴与有机配体(Z)-4-氨基-5-羟肟基-2-(4-正辛氧基苯基)-2,5-二氢-1H-咪唑-3-氧化物(即HL10)的简单配位反应合成Co-MOF。
图1中a图,b图和c图分别是Co-MOF的扫描电镜图(SEM),透射电镜图(TEM)和能量色散X射线光谱仪分析结果(EDS)。该Co-MOF材料的粒径为400-500nm。
实施例2:中空纳米材料的制备
取0.03g实施例1制备的Co-MOF自模板置于50mL圆底瓶中,加入10mL去离子水和10mL乙醇,室温搅拌30min;采用油浴加热至60到70℃,再向反应瓶中加入5mL浓度为5mg/mL的三氯化钌水溶液,搅拌3h;反应结束,将产物用乙醇离心洗涤三次,置于红外灯下烘干,即得到了CoRu-MOF钴钌双组分的中空纳米材料。
图2中a图,b图和c图分别是CoRu-MOF钴钌双组分中空纳米材料的扫描电镜图(SEM),透射电镜图(TEM)和能量色散X射线光谱仪分析结果(EDS)。从SEM和TEM图的结果都能看出与图1比较,原先实心球变成空心球,且尺寸相同。从EDS的变化中看出纳米材料中的金属组分由原料中的单一元素Co变成双组分元素Co和Ru。
实施例3:中空纳米材料的制备
取0.03g实施例1制备的Co-MOF自模板置于50mL圆底瓶中,加入10mL去离子水和10mL乙醇,室温搅拌30min;采用油浴加热至60到70℃,再向反应瓶中加入9mL浓度为5mg/mL的三氯化铁水溶液,搅拌3h;反应结束,将产物用乙醇离心洗涤三次,置于红外灯下烘干,即得到了CoFe-MOF钴铁双组分的中空纳米材料。
图3中a图,b图和c图分别是CoFe-MOF钴铁双组分中空纳米材料的扫描电镜图(SEM),透射电镜图(TEM)和能量色散X射线光谱仪分析结果(EDS)。从SEM和TEM图的结果都能看出与图1比较原先实心球变成空心球,且尺寸相同。从EDS的变化中看出纳米材料中的金属组分由原料中的单一元素Co变成双组分元素Co和Fe。
本发明以上实施例中所制备的中空纳米材料可以作为电解水析氢(HER)催化剂,在电催化反应中重复使用。图4a是CoRu-MOF钴钌双组分中空纳米材料用作HER催化的LSV图,图4b是材料在10mA/cm2恒电流下的电压随时间变化的稳定性图。图5a是CoFe-MOF钴铁双组分中空纳米材料用作HER催化的LSV图,图5b是材料在10mA/cm2恒电流下的电压随时间变化的稳定性图。
以上所述仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (8)

1.一种中空纳米材料的制备方法,其特征在于,包括以下步骤:
将过渡金属有机框架配合物与金属盐水溶液在溶剂中混合,所述金属盐水溶液的pH值为2-2.2,并在60-70℃下反应,反应结束后,得到所述中空纳米材料;其中,所述过渡金属有机框架配合物中,有机配体包括如下结构式的结构:
Figure FDA0003362394800000011
其中,R为-H或-(CH2)n-1CH3,n=1~12中任一整数;
所述过渡金属有机框架配合物中的过渡金属为钴、镍、锰或铜;
金属盐为三氯化钌和/或三氯化铁。
2.根据权利要求1所述的制备方法,其特征在于:过渡金属有机框架配合物与金属盐的质量比为6:4-10。
3.根据权利要求1所述的制备方法,其特征在于:所述溶剂包括水和有机溶剂,所述有机溶剂包括乙醇。
4.根据权利要求1所述的制备方法,其特征在于:反应时间为0.5-3h。
5.根据权利要求1所述的制备方法,其特征在于:所述金属盐水溶液的浓度为0.02-0.04mol/L。
6.根据权利要求1所述的制备方法,其特征在于:反应完全后,还包括离心、洗涤并烘干产物的步骤。
7.一种权利要求1-6中任一项所述的制备方法所制备的中空纳米材料。
8.根据权利要求7所述的中空纳米材料,其特征在于:所述中空纳米材料的粒径为400-500nm。
CN201911108324.6A 2019-11-13 2019-11-13 一种中空纳米材料及其制备方法 Active CN110776651B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911108324.6A CN110776651B (zh) 2019-11-13 2019-11-13 一种中空纳米材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911108324.6A CN110776651B (zh) 2019-11-13 2019-11-13 一种中空纳米材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110776651A CN110776651A (zh) 2020-02-11
CN110776651B true CN110776651B (zh) 2022-02-01

Family

ID=69390894

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911108324.6A Active CN110776651B (zh) 2019-11-13 2019-11-13 一种中空纳米材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110776651B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112871214A (zh) * 2020-12-06 2021-06-01 理工清科(北京)科技有限公司 一种制备基于金属有机骨架材料的可常温降解甲醛过滤膜的方法
CN112642457B (zh) * 2020-12-21 2022-07-08 安徽师范大学 中空铁基金属有机框架材料和铁掺杂的碳氮纳米材料及制备方法
CN113059178B (zh) * 2021-03-16 2022-06-14 中国石油大学(北京) 中空合金纳米颗粒及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004031732A3 (en) * 2002-10-03 2005-04-14 Univ Arkansas Nanocrystals in ligand boxes exhibiting enhanced chemical, photochemical, and thermal stability, and methods of making the same
CN106565964A (zh) * 2016-11-04 2017-04-19 石家庄学院 一种微/纳米多层次复合结构金属多酚囊泡材料的制备方法
CN108962616A (zh) * 2018-07-04 2018-12-07 东北电力大学 一种CoS/CoNi(OH)4多孔纳米复合材料及其制备方法
CN110136980A (zh) * 2019-06-14 2019-08-16 南阳理工学院 水解调控的硫化镍钴/碳布多孔超级电容电极材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004031732A3 (en) * 2002-10-03 2005-04-14 Univ Arkansas Nanocrystals in ligand boxes exhibiting enhanced chemical, photochemical, and thermal stability, and methods of making the same
CN106565964A (zh) * 2016-11-04 2017-04-19 石家庄学院 一种微/纳米多层次复合结构金属多酚囊泡材料的制备方法
CN108962616A (zh) * 2018-07-04 2018-12-07 东北电力大学 一种CoS/CoNi(OH)4多孔纳米复合材料及其制备方法
CN110136980A (zh) * 2019-06-14 2019-08-16 南阳理工学院 水解调控的硫化镍钴/碳布多孔超级电容电极材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Homogeneous cobalt and iron oxide hollow nanocages derived from ZIF-67 etched by Fe species for enhanced water oxidation";Xiaona Ren et al;《Electrochimica Acta》;20181108;第296卷;第418-426页 *
"Porous nano-structured Co3O4 anode materials generated from coordination-driven self-assembled aggregates for advanced lithium ion batteries";Danhua Ge et al;《Nanoscale》;20140610;第6卷;第9689-9694页 *

Also Published As

Publication number Publication date
CN110776651A (zh) 2020-02-11

Similar Documents

Publication Publication Date Title
CN110776651B (zh) 一种中空纳米材料及其制备方法
Tan et al. Rational design and construction of nanoporous iron-and nitrogen-doped carbon electrocatalysts for oxygen reduction reaction
Li et al. Metal–organic frameworks: a promising platform for constructing non-noble electrocatalysts for the oxygen-reduction reaction
Zhang et al. Rice husks as a sustainable silica source for hierarchical flower-like metal silicate architectures assembled into ultrathin nanosheets for adsorption and catalysis
CN109208030B (zh) 一种金属氢氧化物-金属有机框架复合材料及其制备方法
Chen et al. Uniform and porous Mn-doped Co3O4 microspheres: Solvothermal synthesis and their superior supercapacitor performances
CN103553137B (zh) 一种采用水热合成法制备不同形貌纳米二氧化锰的方法
CN109970039B (zh) 一种二元过渡金属纳米颗粒原位嵌入多孔氮掺杂碳球及其制备方法
CN107954483B (zh) 一种α相氢氧化镍超薄纳米片及其制备方法
CN103551094B (zh) 核壳结构Fe3O4@MCM-41磁性纳米材料的制备方法
CN107649160A (zh) 一种石墨烯负载过渡族金属单分散原子催化剂及其制备方法和应用
CN104692445A (zh) 一种氧化铜纳米空心球的制备及其应用
Xu et al. Zinc cobalt bimetallic nanoparticles embedded in porous nitrogen-doped carbon frameworks for the reduction of nitro compounds
CN105834446B (zh) 一种超薄层状NiO‑CoOx纳米片负载NiCo纳米粒子复合材料的合成方法
CN111233048A (zh) 一种双壳层MnCo2O4中空纳米球材料及其合成方法
CN111704732B (zh) 一种负载金属有机框架的石墨烯微米球及其制备方法和应用
CN104817120A (zh) 一种海胆状镍钴复合碱式碳酸盐的制备方法
CN107452512A (zh) 一种用于超级电容器电极材料的空心钴酸镍的制备方法
CN103934471A (zh) 一种石墨烯负载锡镍纳米合金粒子复合材料的制备方法
CN106395765B (zh) 一种二碲化钼电化学储能材料、制备方法及其应用
CN108559101A (zh) 一种制备二维片状Cu-MOF材料的方法
CN105110384B (zh) 多孔四氧化三钴及其制备方法
Xu et al. Fabrication of ZIF-8 based on lignin with high yield for dye removal from water
CN104891580A (zh) 一种氢氧化镍超薄纳米片组装体的制备方法
Xing et al. High-valence-state nickel-iron phosphonates with urchin-like hierarchical architecture for highly efficient oxygen evolution reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant