CN110773217A - 一种含有过渡金属的氮掺杂碳纳米管材料的制备方法 - Google Patents

一种含有过渡金属的氮掺杂碳纳米管材料的制备方法 Download PDF

Info

Publication number
CN110773217A
CN110773217A CN201910906158.8A CN201910906158A CN110773217A CN 110773217 A CN110773217 A CN 110773217A CN 201910906158 A CN201910906158 A CN 201910906158A CN 110773217 A CN110773217 A CN 110773217A
Authority
CN
China
Prior art keywords
transition metal
nitrogen
doped carbon
carbon nanotube
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910906158.8A
Other languages
English (en)
Other versions
CN110773217B (zh
Inventor
李孟丽
曹雪波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiaxing University
Original Assignee
Jiaxing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiaxing University filed Critical Jiaxing University
Priority to CN201910906158.8A priority Critical patent/CN110773217B/zh
Publication of CN110773217A publication Critical patent/CN110773217A/zh
Application granted granted Critical
Publication of CN110773217B publication Critical patent/CN110773217B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种含有过渡金属的氮掺杂碳纳米管材料的制备方法。该材料通过简单的原位催化生长法合成。所述的氮掺杂的碳纳米管具有一维(1D)材料结构特征和均匀的尺寸分布,材料具有高的比表面积和孔容,有利于反应物和产物分子的吸附、扩散和脱附,例如H2O、CO2以及小分子醇类、羧酸类等物质。且制备的碳纳米管具有金属‑无机杂原子掺杂杂化的特征,在电催化、光电催化、生物、分析、吸附分离等领域具有广泛的应用前景。本发明的合成方法简单易行、方法新颖、成本低、效率高。

Description

一种含有过渡金属的氮掺杂碳纳米管材料的制备方法
技术领域
本发明属于催化材料以及纳米材料技术领域,涉及一维氮掺杂碳纳米管材料的新型制备方法。
背景技术
一维碳基材料由于其高的比表面积,大的孔容,可调控的介观结构和孔径尺寸,而备受关注。很多研究表明,粒径大小和孔径大小都是决定介孔材料应用范围的重要因素,尤其是在吸附生物大分子(酶,蛋白质等)和涉及高分子催化反应的领域中。
自从1991年日本电子公司(NEC)的饭岛博士发现碳纳米管以来,包含碳纳米管和石墨烯纳米片在内的碳基材料由于其优异的热、电、光和机械等性能,已经在传感器、超级电容器、纳米发电机、电极和电池等领域得到了广泛的应用。碳纳米管是由sp2杂化的碳六元环组成的中空圆柱状结构,该材料的比表面积大,长径比大。碳纳米管可以看做是2D石墨烯卷曲而成,因此按照石墨烯片的层数,可以将碳纳米管分为单层(单壁)碳纳米管或者多层(多壁)碳纳米管。目前合成碳纳米管的方法存在成本高、能耗大等问题,限制了该材料的进一步应用;而且由于材料合成条件比较苛刻,制备均匀分散的碳纳米管仍然比较困难。
近几年来,通过自下而上的有机合成法制备直径和长度可控的碳纳米管逐渐成为一种有效的方法。二维金属有机化合物是一类具有介孔孔径、排列有序的晶体材料。通过改变金属离子和有机配体的种类及有效比例,可以合成多种功能化的MOFs材料。以此类型材料为前驱体,通过自模板法可形成尺寸均一、包含过渡金属的氮掺杂碳纳米管(M@NCNTs)。
发明内容
本发明提供了一种原位催化、有序生长氮掺杂碳纳米管材料(M@NCNTs)的方法,该方法在制备过程中可以实现有效的氮掺杂,得到的材料具有具有较高的比表面积、材料的尺寸大小均一、排列有序。
本发明的技术方案如下:
一种含有过渡金属的氮掺杂碳纳米管的制备方法,包括以下步骤:
(1)将富含碳、氮的前驱体材料在300~700℃条件下煅烧形成类石墨氮化碳(g-C3N4);
(2)将二甲基甲酰胺、乙醇和水混合形成均一溶液,然后加入对苯二甲酸和过渡金属盐,完全溶解后再加入三乙胺,搅拌均匀后超声4~12小时,反应液经过离心、洗涤、干燥得到2D过渡金属MOFs材料;
(3)将步骤(1)得到的类石墨氮化碳和步骤(2)得到的2D过渡金属MOFs材料分散到无水乙醇中,研磨均匀、干燥后在惰性气氛中煅烧2~8小时得到所述的氮掺杂碳纳米管。
本发明的制备方法以二维金属有机框架为C源和模板,以g-C3N4为N源和C源,煅烧过程中,通过自模板原位催化生长法制备M@NCNTs材料。制备得到的催化剂氮掺杂碳纳米管具有比表面积高、材料的尺寸大小均一、排列有序的优点。该方法合成的复合半导体催化剂可以作为一种有效的共催化剂,实现室温下H2O光催化裂解制备清洁能源——H2;实现CO2向HC化合物的转化,具有较高的催化活性和稳定性。
本发明中,可以通过调节前驱体类型、超声功率的大小和时间以及反应温度、反应物的比例、煅烧温度以及升温速率,实现催化剂的优化设计。
作为优选,步骤(1)中所述的前驱体材料可选用尿素、三聚氰胺、单氰氨和双氰氨中的一种或者多种。
作为优选,步骤(2)中二甲基甲酰胺与无水乙醇的体积比例为30:1~5:1,无水乙醇与水的体积比例为5:1~1:1。
作为优选,步骤(2)中所述过渡金属盐可以为过渡金属的盐酸盐、硝酸盐或者硫酸盐;
所述的过渡金属为Fe、Co或Ni,进一步优选为Fe。
作为优选,步骤(2)中所述超声过程的温度为25~50℃。
作为优选,步骤(2)中所述干燥的温度为25~50℃。
作为优选,步骤(3)中所述类石墨氮化碳与2D过渡金属MOFs材料之间的质量比例为5:1~1:1。
作为优选,步骤(3)中所述的惰性保护气可以为N2、Ar和He。
作为优选,步骤(3)中,所述惰性气氛的煅烧温度为300~900℃。
作为优选,所述的氮掺杂碳纳米管的长度可达100μm,材料的直径为20~40nm,且直径尺寸均匀分布。
作为优选,所述碳纳米管材料为1D结构材料,比表面积为50~300m2 g-1,孔容为0.5~2cm3 g-1
本发明探索简单的原位自模板法制备尺寸均一、结构有序的过渡金属@氮掺杂碳纳米管材料:首先通过室温超声法制备具有二维结构的过渡金属有机框架结构材料(MOFs);洗涤干燥后将此材料与g-C3N4材料研磨、混合均匀;最后在惰性气氛Ar中煅烧,得到排列整齐、尺寸均一的M@NCNTs材料。
本发明采用的技术方案,包括以下步骤:
(1)将g-C3N4的前驱体(尿素、三聚氰胺单氰氨、双氰氨)置于加盖的研钵中,300~700℃煅烧1~8小时;
(2)将二甲基甲酰胺、乙醇和水超声形成澄清溶液,随后将对苯二甲酸和过渡金属盐溶解在溶液中,最后加入三乙胺,分散均匀后超声处理数小时;
(3)离心、洗涤数次后,之后在烘箱中隔夜干燥;
(4)研磨、均匀混合g-C3N4和MOFs;
(5)之后置于Ar惰性气氛中煅烧获得M@CNTs材料。
作为优选方案,步骤(1)中所述g-C3N4前驱体的质量为2~50g。
作为优选方案,步骤(2)中二甲基甲酰胺的体积为5~60mL。
作为优选方案,步骤(2)中乙醇和水的体积为2~5mL。
作为优选方案,步骤(2)中所述三乙胺的体积为0~2mL。
作为优选方案,步骤(2)中所述烘箱温度25~50℃。
作为优选方案,步骤(2)中所述超声器温度为25~50℃。
作为优选方案,步骤(3)中所述气氛炉的煅烧温度300~900℃。
作为优选方案,步骤(3)中所述气氛炉升温速率为1~10K min-1
作为优选方案,所述功能化碳纳米管的有序长度可达~100μm。
作为优选方案,所述碳纳米材料为1D结构,比表面积为50~300m2 g-1,孔容为0.5~2cm3 g-1
同现有技术相比,本发明的有益效果体现在:
本发明提供一种制备具有尺寸均一、长径比高、排列有序的氮掺杂碳纳米管材料的新方法。本发明的制备工艺简单易行,方法新颖,成本低,效率高,在CO2光电催化转化等领域显示出广阔的应用前景
该材料在电催化、光电催化领域可以实现电能和化学能的转化。
本发明的目的提供一种制备具有尺寸均一、排列有序,包含过渡金属的碳纳米材料的方法,并且将其用于室温CO2光电催化转化。
附图说明
图1(a、b和c)为实施例1所得的2D MOFs材料(图1a)和M@NCNTs材料(图1b和1c)的扫描电子显微镜(SEM)照片。由照片可以看出:所制备的MOFs材料为纳米片状结构;合成的M@NCNTs材料排列规整,直径大小均一,且从1c图中可以看出,1D结构材料末端暴露出的典型的碳纳米管状结构。碳纳米管的直径约为50nm,壁厚约为几纳米。
具体实施方式
下面参照附图,通过具体的实施例对本发明作进一步说明,以更好地理解本发明。
实施例1
以制备Fe@NCNTs材料为例:
称取3g尿素,室温下将其研磨后置于加盖的氧化铝坩埚中,空气气氛下马弗炉中煅烧,煅烧温度为550℃。
将10mL二甲基甲酰胺、1mL水和0.5mL无水乙醇混合,随后向混合溶液中加入0.25mol对苯二甲酸;室温搅拌、直至苯二甲酸溶解完全。向上述溶液加入0.2mol的FeCl2,待FeCl2溶解完全后,加入0.1mL三乙胺。室温下超声4小时,离心、洗涤、干燥得到2D结构的Fe-MOFs。
最后称取0.1g g-C3N4和0.2g Fe-MOFs,分散在2mL无水乙醇中,研磨混合均匀,干燥后置于Ar气氛中,1k/min升温至900℃,保温2小时后得到最终产物Fe@NCNTs。
光催化活性测试,以H2O裂解制备H2为例:向气密性良好的光催化反应器中加入60mL H2O和10mL三乙醇胺(TEOA),称取20mg光敏化剂(EY)和10mg Fe@CNTs,抽真空除去反应系统内的空气,打开光源照射,每隔1小时在线取气分析产生的H2。实验结果表明,H2的产量为69.01μmol/h。
以上对本发明的具体实施例进行了详细描述,但其只是作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对本发明进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。

Claims (10)

1.一种含有过渡金属的氮掺杂碳纳米管的制备方法,其特征在于,包括以下步骤:
(1)将富含碳、氮的前驱体材料在300~700℃条件下煅烧形成类石墨氮化碳;
(2)将二甲基甲酰胺、乙醇和水混合形成均一溶液,然后加入对苯二甲酸和过渡金属盐,完全溶解后再加入三乙胺,搅拌均匀后超声4~12小时,反应液经过离心、洗涤、干燥得到2D过渡金属MOFs材料;
(3)将步骤(1)得到的类石墨氮化碳和步骤(2)得到的2D过渡金属MOFs材料分散到无水乙醇中,研磨均匀、干燥后在惰性气氛中煅烧2~8小时得到所述的氮掺杂碳纳米管。
2.根据权利要求1所述的含有过渡金属的氮掺杂碳纳米管的制备方法,其特征在于,步骤(1)中所述的前驱体材料可选用尿素、三聚氰胺、单氰氨和双氰氨中的一种或者多种。
3.根据权利要求1所述的含有过渡金属的氮掺杂碳纳米管的制备方法,其特征在于,步骤(2)中二甲基甲酰胺与无水乙醇的体积比例为30:1~5:1,无水乙醇与水的体积比例为5:1~1:1。
4.根据权利要求1所述的含有过渡金属的氮掺杂碳纳米管的制备方法,其特征在于,步骤(2)中所述过渡金属盐可以为过渡金属的盐酸盐、硝酸盐或者硫酸盐;
所述的过渡金属为Fe、Co或Ni。
5.根据权利要求1所述的所述的含有过渡金属的氮掺杂碳纳米管的制备方法,其特征在于,步骤(2)中所述超声过程的温度为25~50℃。
6.根据权利要求1所述的含有过渡金属的氮掺杂碳纳米管的制备方法,其特征在于,步骤(2)中所述干燥的温度为25~50℃。
7.根据权利要求1所述的所述的含有过渡金属的氮掺杂碳纳米管的制备方法,其特征在于,步骤(3)中所述类石墨氮化碳与2D过渡金属MOFs材料之间的质量比例为5:1~1:1。
8.根据权利要求1所述的所述的含有过渡金属的氮掺杂碳纳米管的制备方法,其特种在于,步骤(3)中,所述惰性气氛的煅烧温度为300~900℃。
9.根据权利要求1所述的所述的含有过渡金属的氮掺杂碳纳米管的制备方法,其特征在于,所述的氮掺杂碳纳米管的长度可达100μm,材料的直径为20~40nm,且直径尺寸均匀分布。
10.根据权利要求1所述的所述的含有过渡金属的氮掺杂碳纳米管的制备方法,其特征在于,所述碳纳米管材料为1D结构材料,比表面积为50~300m2 g-1,孔容为0.5~2cm3 g-1
CN201910906158.8A 2019-09-24 2019-09-24 一种含有过渡金属的氮掺杂碳纳米管材料的制备方法 Active CN110773217B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910906158.8A CN110773217B (zh) 2019-09-24 2019-09-24 一种含有过渡金属的氮掺杂碳纳米管材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910906158.8A CN110773217B (zh) 2019-09-24 2019-09-24 一种含有过渡金属的氮掺杂碳纳米管材料的制备方法

Publications (2)

Publication Number Publication Date
CN110773217A true CN110773217A (zh) 2020-02-11
CN110773217B CN110773217B (zh) 2022-11-04

Family

ID=69384288

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910906158.8A Active CN110773217B (zh) 2019-09-24 2019-09-24 一种含有过渡金属的氮掺杂碳纳米管材料的制备方法

Country Status (1)

Country Link
CN (1) CN110773217B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113394413A (zh) * 2021-06-16 2021-09-14 福州大学 一种基于二维石墨相氮化碳钴掺杂多孔碳材料阴极氧还原反应催化剂的制备方法
CN114524419A (zh) * 2022-01-25 2022-05-24 安徽理工大学环境友好材料与职业健康研究院(芜湖) 一种蓖麻果状的石墨氮化碳纳米管/钴/碳复合材料及其制备方法
CN114808009A (zh) * 2021-11-18 2022-07-29 青岛科技大学 一种N,O共调控的Ni/N掺杂的多孔碳管的制备及其CO2电还原的应用
CN115845893A (zh) * 2022-10-14 2023-03-28 景德镇陶瓷大学 一种原位构建金属掺杂二维氮化碳纳米片/碳纳米管多级结构的方法及其制品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104953135A (zh) * 2015-04-30 2015-09-30 北京化工大学 一种氮掺杂碳纳米管负载钴基电催化材料及其制备方法
JP2016178005A (ja) * 2015-03-20 2016-10-06 富士フイルム株式会社 複合体、複合体の製造方法及び燃料電池触媒
CN108923051A (zh) * 2018-07-06 2018-11-30 郑州大学 一种封装金属钴纳米颗粒的氮掺杂碳纳米管复合型催化剂及其应用
CN109616333A (zh) * 2018-12-07 2019-04-12 武汉工程大学 一种氮掺杂碳纳米管/四氧化三钴复合材料及其制备方法
CN110048128A (zh) * 2019-04-19 2019-07-23 江苏师范大学 一种氮掺杂碳纳米管氧还原电催化剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016178005A (ja) * 2015-03-20 2016-10-06 富士フイルム株式会社 複合体、複合体の製造方法及び燃料電池触媒
CN104953135A (zh) * 2015-04-30 2015-09-30 北京化工大学 一种氮掺杂碳纳米管负载钴基电催化材料及其制备方法
CN108923051A (zh) * 2018-07-06 2018-11-30 郑州大学 一种封装金属钴纳米颗粒的氮掺杂碳纳米管复合型催化剂及其应用
CN109616333A (zh) * 2018-12-07 2019-04-12 武汉工程大学 一种氮掺杂碳纳米管/四氧化三钴复合材料及其制备方法
CN110048128A (zh) * 2019-04-19 2019-07-23 江苏师范大学 一种氮掺杂碳纳米管氧还原电催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RUWEN WANG ET AL.: "Tuning the dimensions and structures of nitrogen-doped carbon nanomaterials derived from sacrificial g-C3N4/metal-organic frameworks for enhanced electrocatalytic oxygen reduction", 《JOURNAL OF MATERIALS CHEMISTRY A》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113394413A (zh) * 2021-06-16 2021-09-14 福州大学 一种基于二维石墨相氮化碳钴掺杂多孔碳材料阴极氧还原反应催化剂的制备方法
CN113394413B (zh) * 2021-06-16 2022-06-03 福州大学 一种基于二维石墨相氮化碳钴掺杂多孔碳材料阴极氧还原反应催化剂的制备方法
CN114808009A (zh) * 2021-11-18 2022-07-29 青岛科技大学 一种N,O共调控的Ni/N掺杂的多孔碳管的制备及其CO2电还原的应用
CN114808009B (zh) * 2021-11-18 2024-04-05 青岛科技大学 一种N,O共调控的Ni/N掺杂的多孔碳管的制备及其CO2电还原的应用
CN114524419A (zh) * 2022-01-25 2022-05-24 安徽理工大学环境友好材料与职业健康研究院(芜湖) 一种蓖麻果状的石墨氮化碳纳米管/钴/碳复合材料及其制备方法
CN114524419B (zh) * 2022-01-25 2024-01-09 安徽理工大学 一种蓖麻果状的石墨氮化碳纳米管/钴/碳复合材料及其制备方法
CN115845893A (zh) * 2022-10-14 2023-03-28 景德镇陶瓷大学 一种原位构建金属掺杂二维氮化碳纳米片/碳纳米管多级结构的方法及其制品
CN115845893B (zh) * 2022-10-14 2024-03-05 景德镇陶瓷大学 一种原位构建金属掺杂二维氮化碳纳米片/碳纳米管多级结构的方法及其制品

Also Published As

Publication number Publication date
CN110773217B (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
CN110773217B (zh) 一种含有过渡金属的氮掺杂碳纳米管材料的制备方法
Ndlwana et al. Sustainable hydrothermal and solvothermal synthesis of advanced carbon materials in multidimensional applications: A review
Shen et al. Facile synthesis and application of Ag-chemically converted graphene nanocomposite
Wang et al. Photoreduction of CO2 over the well-crystallized ordered mesoporous TiO2 with the confined space effect
Lv et al. Facile synthesis of ZnO nanorods grown on graphene sheets and its enhanced photocatalytic efficiency
CN105271217B (zh) 一种氮掺杂的三维石墨烯的制备方法
Xiao et al. CNTs threaded (001) exposed TiO 2 with high activity in photocatalytic NO oxidation
Zhang et al. Co 3 O 4 nanoparticles on the surface of halloysite nanotubes
CN105517707B (zh) 制造具有可控堆密度的碳纳米管团聚体的方法
Gu et al. Synthesis of graphene supported graphene-like C3N4 metal-free layered nanosheets for enhanced electrochemical performance and their biosensing for biomolecules
Bai et al. Facile urea-assisted precursor pre-treatment to fabricate porous g-C3N4 nanosheets for remarkably enhanced visible-light-driven hydrogen evolution
Fang et al. CuO/TiO 2 nanocrystals grown on graphene as visible-light responsive photocatalytic hybrid materials
WO2016140227A1 (ja) カーボンナノチューブ被覆触媒粒子
Maimaiti et al. Photocatalytic synthesis of urea (CO2/N2/H2O) on coal-based carbon nanotubes with the Fe-core-supported Ti3+-TiO2 composite catalyst
CN113044831A (zh) 一种氮掺杂碳纳米管阵列的制备方法
Bin et al. Ordered mesoporous necklace-like ZnS on graphene for use as a high performance photocatalyst
CN109759041A (zh) 一种中空片状结构二氧化钛纳米管光催化材料及其制备方法
Wu et al. One-step synthesis of hierarchical metal oxide nanosheet/carbon nanotube composites by chemical vapor deposition
CN102658153B (zh) 铜基体表面生长富勒烯掺杂多孔碳纳米纤维的制备方法
Yadav et al. Advances in the application of carbon nanotubes as catalyst support for hydrogenation reactions
Fu et al. Onion-like carbon-modified TiO2 coating by suspension plasma spray with enhanced photocatalytic performances
Chen et al. Carbon nanotube-induced preparation of vanadium oxide nanorods: Application as a catalyst for the partial oxidation of n-butane
Veeranna et al. Metal nanoparticles as emerging catalysts: A mini review.
US20220305468A1 (en) Alloy Nanoparticles Loaded Network Structure and Method for Producing Alloy Nanoparticles Loaded Porous Body
CN108620110B (zh) 一种碳化钒/石墨烯纳米片复合材料、制备方法及其在水裂解产氢方面的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant