CN110765834A - 一种基于改进人工蜂群算法的参数小波阈值信号去噪方法 - Google Patents

一种基于改进人工蜂群算法的参数小波阈值信号去噪方法 Download PDF

Info

Publication number
CN110765834A
CN110765834A CN201910787057.3A CN201910787057A CN110765834A CN 110765834 A CN110765834 A CN 110765834A CN 201910787057 A CN201910787057 A CN 201910787057A CN 110765834 A CN110765834 A CN 110765834A
Authority
CN
China
Prior art keywords
new
threshold
signal
threshold function
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910787057.3A
Other languages
English (en)
Other versions
CN110765834B (zh
Inventor
王景景
李嘉恒
杨星海
施威
郭瑛
张天遨
王綝
郑欣
杨清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Youaiwei Intelligent Technology Co Ltd
Qingdao Lanwan Information Technology Co Ltd
Qingdao University of Science and Technology
Original Assignee
Jiangsu Youaiwei Intelligent Technology Co Ltd
Qingdao Lanwan Information Technology Co Ltd
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Youaiwei Intelligent Technology Co Ltd, Qingdao Lanwan Information Technology Co Ltd, Qingdao University of Science and Technology filed Critical Jiangsu Youaiwei Intelligent Technology Co Ltd
Priority to CN201910787057.3A priority Critical patent/CN110765834B/zh
Publication of CN110765834A publication Critical patent/CN110765834A/zh
Application granted granted Critical
Publication of CN110765834B publication Critical patent/CN110765834B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/02Preprocessing
    • G06F2218/04Denoising
    • G06F2218/06Denoising by applying a scale-space analysis, e.g. using wavelet analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Data Mining & Analysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Complex Calculations (AREA)

Abstract

本发明公开了一种基于改进人工蜂群算法的参数小波阈值信号去噪方法,首先获取待去噪信号,进行小波变换,得到小波系数;在传统阈值函数的基础上设计了一种新的阈值函数,通过数学推导证明其性质,并确定待优化阈值参数;对原始人工蜂群算法进行改进;将待去噪信号和去噪信号之间的均方误差作为S3中改进的人工蜂群算法的适应度函数,在获取最小均方误差情况下得到最优阈值参数;使用S4得到的最优阈值参数应用到S2中新的阈值函数,对小波系数进行收缩处理得到新的小波系数,再进行逆小波变换,得到去噪信号。本发明能够获得更小的均方误差、更高的输出信噪比和更大的噪声抑制比。

Description

一种基于改进人工蜂群算法的参数小波阈值信号去噪方法
技术领域
本发明属于小波阈值信号去噪领域,具体地说,涉及一种基于改进人工蜂群算法的参数小波阈值信号去噪方法。
背景技术
信号在采集、传输和处理过程中经常受到噪声的污染,这种情况将导致信号质量的下降。小波阈值去噪方法可获得原始信号的渐进最优估计,得到了最广泛地应用。常见小波阈值去噪方法的去噪性能取决于噪声方差的精确估计;而实际应用中,难以获知精确的噪声方差。而决定小波阈值去噪方法的去噪性能的另一因素为阈值函数,常见的阈值函数包括硬阈值函数,软阈值函数和半软阈值函数等。这些阈值函数根据固定的结构对小波系数进行收缩处理,但是降低了处理含噪信号的灵活性。
为了解决这些限制,国内外学者采用智能优化算法来进行小波阈值去噪,包括粒子群优化技术,人工鱼群算法,改进粒子群算法等。然而这些方法存在收敛速度慢、容易陷入局部最优值、收敛精度低等问题。
发明内容
本发明提出了一种基于改进人工蜂群算法的参数小波阈值信号去噪方法,以弥补现有技术的不足。
本发明在半软阈值函数的基础上,设计一种新的阈值函数,通过数学推导证明其合理性,并确定待优化的阈值参数;然后基于人工蜂群算法进行阈值参数的优化,首先基于佳点集(Good point set)的方法设计初始种群,增加种群多样性;再以动态精英种群指导(Dynamic elite group guidance)的领域搜索策略进行搜索,产生新解,可在不降低种群多样性的情况下加快收敛速度;然后采用模拟退火(Simulate anneal)选择机制进行选择,增加算法跳出局部极小值的能力。
为实现上述发明目的,本发明采用下述技术方案予以实现:
一种基于改进人工蜂群算法的参数小波阈值信号去噪方法,包括以下步骤:
S1:首先获取待去噪信号,进行小波变换,得到小波系数;
S2:在传统阈值函数的基础上设计一种新的阈值函数,通过数学推导证明其性质,并确定待优化阈值参数;
S3:对原始人工蜂群算法进行改进;
S4:将待去噪信号和去噪信号之间的均方误差作为S3中改进的人工蜂群算法的适应度函数,在获取最小均方误差情况下得到最优阈值参数;
S5:使用S4得到的最优阈值参数应用到S2中新的阈值函数,对小波系数进行收缩处理得到新的小波系数,再进行逆小波变换,得到去噪信号。
上述S2具体为:
S2-1、一种新的阈值函数构造:
阈值函数体现了对小波系数的不同处理策略以及不同的估计方法,直接影响最后的去噪效果。合理的阈值函数需要满足输入-输出曲线连续,处理时相对平滑,对信号的小波系数处理要保持其基本不变。因此本发明针对软、硬阈值函数以及半软阈值函数存在自适应差的缺陷,提出一种新的改进阈值函数,分别对每一层小波系数进行收缩处理,表达式如下:
Figure BDA0002178401310000021
其中sgn(·)为符号函数,wj,k为原始小波系数,α为指数因子,取值非负数,λj为第j层阈值,j,k表示第j层第k个系数。
S2-2:新的阈值函数性质证明
从连续性的定义来看,很容易证明新的阈值函数在(-∞,-λj),(-λj,+λj)和(+λj,+∞)是连续的;当wj,k≥λj时,新的阈值函数可写成:
Figure BDA0002178401310000022
Figure BDA0002178401310000023
当wj,k=λj时,
Figure BDA0002178401310000024
当|wj,k|<λj时,新的阈值函数可写成
Figure BDA0002178401310000025
因此
可得新的阈值函数在点wj,k=λj连续;同理可证明新的阈值函数在wj,k=-λj也连续。所以新的阈值函数在(-∞,+∞)是连续的。
当wj,k→+∞时,
Figure BDA0002178401310000031
同理可证当wj,k→-∞时,所以
Figure BDA0002178401310000033
因此是新的阈值函数的一条渐近线,即新的阈值函数是以硬阈值函数为渐进线的一种半软阈值函数;
S2-3:确定待优化阈值参数
阈值参数的确定是影响小波阈值函数去噪效果的关键因素之一。阈值设定太小,去噪后的信号仍然存在噪声;反之太大则会将重要信号特征滤掉,造成重构信号失真。目前普遍使用的是统一阈值
Figure BDA0002178401310000035
其中λ表示阈值,σ为噪声标准差。实际中噪声的标准差是无法预知的,需要事先估计得到。一个普遍采用的噪声标准差估计方法是通过
Figure BDA0002178401310000036
进行估计,其中median(·)表示取中值。但是,当噪声较小时,这种方法估计的噪声就会偏大,影响去噪性能。为避免噪声方差估计误差对去噪性能的影响,本发明将新的阈值函数中的λj和α参数作为待优化阈值参数。
所述步骤S3的具体如下:
S3-1:基于佳点集的种群初始化
基于佳点集的方式设计初始种群,可保持种群的多样性,避免过早的陷入局部最优值;佳点构造方法如下:
Figure BDA0002178401310000037
其中p是满足(p-3)/2≥D的最小素数,D是解的维度,{·}表示取·的小数部分,r是佳点。因此佳点集构造方法为
PSN(i)={{r1*i},{r2*i},...,{rD*i}},i=1,2,...,SN
其中{·}表示取·的小数部分,SN为种群大小。则初始种群为
X=Lbd+(Ubd-Lbd)*PSN
其中Lb为解的下界,Ub为解的上界,d是当前维解空间,d=1,2,...,D
S3-2:以动态精英种群指导的领域搜索策略
以精英种群为指导时,其领域搜所效果受精英种群大小影响。算法前期时,解分布较为分散,需选择较少数量的精英种群作为指导,以提高前期收敛速度;算法后期时,各解趋于最优解,此时需要扩大精英种群数量,以保证种群多样性,提高算法跳出局部最优能力。因此本发明动态调整精英种群数量,使其以线性增长方式进行领域搜索指导,具体过程如下:
首先计算每个Xi(i=1,2,...,SN)的适应度值。然后取较好的Telite=ceil(p*SN)个蜜蜂构成动态精英种群DXEi(i=1,2,...,Telite),其中ceil(·)表示向上取整,p是精英种群在所有种群中占的比例,根据下式确定。
Figure BDA0002178401310000041
其中pmax为比例上限,pmin为比例下限。
确定动态精英种群后,领域搜索以动态精英种群为指导,邻域搜索方程为
vid=DXECdid(Gbestd-xkd),d=1,2,...,D
其中φid是[-1,1]之间的随机实数;Gbest是全局最优解,动态精英种群中心DXEC由下式计算得到。
Figure BDA0002178401310000042
以动态精英种群指导的领域搜索策略为:在雇佣蜂阶段,雇佣蜂以相同的概率随机搜索领域,并通过邻域搜索方程式产生新解,选择过程以随机非定向方式进行,以此确保种群多样性,避免无效搜索。在观察蜂阶段,在精英种群中先随机选择一个解,然后通过邻域搜索方程式寻找新解。若选择过程选择新解,则以该解继续搜索;否则重新在精英种群中随机选择一个解进行下一次领域搜索,以实现算法快速收敛。
S3-3:模拟退火选择机制
贪婪选择策略直接放弃较差解,极大影响了蜂群的开拓能力,容易陷入局部最优值。模拟退火选择机制按照一定的概率接收较差的解,在一定程度上有效避免了算法陷入局部最优,增强了算法搜索全局最优的能力。
假设当前温度为T,退火参数为K,雇佣蜂得到新解为X′i,其适应度值为fit′i。选择过程判断:若fiti≤fit′i,则接受新解;否则计算接受概率
Figure BDA0002178401310000043
以概率P接受新解。T以
Figure BDA0002178401310000051
进行更新,其中β≤1是一个常数,通常取值0.7,σfit为适应度的标准差。
所述步骤S4的具体步骤为:
确定适应度函数,重构信号的质量可用来评估去噪算法的性能。本发明通过改进人工蜂群算法最小化原始信号和重构信号的均方误差,确定阈值参数λj和α参数。适应度函数定义如下:
Figure BDA0002178401310000052
其中s(i)为不含噪声的期望信号,
Figure BDA0002178401310000053
为通过小波阈值去噪后的重构信号,N为信号长度。
新的阈值函数可知,其是λj和α参数的函数。一旦λj和α确定,新的阈值函数也被确定。通过该阈值函数,可获得阈值收缩后的小波系数,从而可重构出去噪后的信号
Figure BDA0002178401310000054
因此由λj和α参数组成的向量可以看作是改进人工蜂群算法中蜜源的位置,并且可以通过最小化适应度函数来获得最优值。
与现有方法相比,本发明优点和技术效果如下:
本发明利用改进人工蜂群算法收敛速度快、收敛精度高的特点,快速得到新的阈值函数的阈值参数,用于小波阈值信号去噪,本发明能够获得更小的均方误差、更高的输出信噪比和更大的噪声抑制比。
附图说明
图1是本发明的简要流程图;
图2是本发明的信号处理流程图;
图3是不同阈值函数对比图;
图4是不同优化算法分别在f1-66个基准函数上的收敛性能曲线图;
图5是基于不同去噪算法的对Blocks基准信号去噪效果对比图;
图6是基于不同去噪算法的对Bumps基准信号去噪效果对比图;
图7是基于不同去噪算法的对Heavy sine基准信号去噪效果对比图;
图8是基于不同去噪算法的对Doppler基准信号去噪效果对比图;
图9是当基准信号为Bumps,输入SNR=5dB,样本点数为N=1024时,基于不同去噪算法随样本点数变化的去噪效果对比图;
图10是基于不同优化算法阈值去噪效果随迭代次数变化对比图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下将结合附图和实施例,对本发明作进一步详细说明。
实施例1:
参见图1、2所示,本实施例所述的一种基于改进人工蜂群算法的参数小波阈值信号去噪方法,包括以下步骤:
S1:在传统阈值函数的基础上设计了一种新的阈值函数,通过数学推导证明其性质,并确定待优化阈值参数;具体步骤如下:
S1-1、一种新的阈值函数构造:
阈值函数体现了对小波系数的不同处理策略以及不同的估计方法,直接影响最后的去噪效果。合理的阈值函数需要满足输入-输出曲线连续,处理时相对平滑,对信号的小波系数处理要保持其基本不变。因此本发明针对软、硬阈值函数以及半软阈值函数存在自适应差的缺陷,提出一种新的改进阈值函数,分别对每一层小波系数进行收缩处理,表达式如下:
Figure BDA0002178401310000061
其中sgn(·)为符号函数,wj,k为原始小波系数,α为指数因子,取值非负数,λj为第j层阈值,j,k表示第j层第k个系数。图3为不同阈值函数对比图,可以看出,新的阈值函数是软阈值和硬阈值之间得一种折衷的策略。这使得在小波阈值去噪时,使用该函数更加灵活。
S1-2:新的阈值函数性质证明
从连续性的定义来看,很容易证明新的阈值函数在(-∞,-λj),(-λj,+λj)和(+λj,+∞)是连续的。当wj,k≥λj时,新的阈值函数可写成:
Figure BDA0002178401310000062
Figure BDA0002178401310000063
当wj,k=λj时,
Figure BDA0002178401310000064
当|wj,k|<λj时,新的阈值函数可写成
Figure BDA0002178401310000065
Figure BDA0002178401310000066
因此
Figure BDA0002178401310000067
可得新的阈值函数在点wj,k=λj连续。同理可证明新的阈值函数在wj,k=-λj也连续。所以新的阈值函数在(-∞,+∞)是连续的。
当wj,k→+∞时,
Figure BDA0002178401310000071
同理可证当wj,k→-∞时,
Figure BDA0002178401310000072
所以
Figure BDA0002178401310000073
因此
Figure BDA0002178401310000074
是新的阈值函数的一条渐近线,即新的阈值函数是以硬阈值函数为渐近线的阈值函数。
S1-3:确定待优化阈值参数
阈值参数的确定是影响小波阈值函数去噪效果的关键因素之一。阈值设定太小,去噪后的信号仍然存在噪声;反之太大则会将重要信号特征滤掉,造成重构信号失真。目前普遍使用的是统一阈值
Figure BDA0002178401310000075
其中λ表示阈值,σ为噪声标准差。实际中噪声的标准差是无法预知的,需要事先估计得到。一个普遍采用的噪声标准差估计方法是通过
Figure BDA0002178401310000076
进行估计,其中median(·)表示取中值。但是,当噪声较小时,这种方法估计的噪声就会偏大,影响去噪性能。为避免噪声方差估计误差对去噪性能的影响,本发明将新的阈值函数中的λj和α参数作为待优化阈值参数。
S2:以三种改进策略对原始人工蜂群算法进行改进;具体步骤包括:
S2-1:基于佳点集的种群初始化
基于佳点集的方式设计初始种群,可保持种群的多样性,避免过早的陷入局部最优值。
佳点构造方法如下:
Figure BDA0002178401310000077
其中p是满足(p-3)/2≥D的最小素数,D是解的维度,{·}表示取·的小数部分,r是佳点。因此佳点集构造方法为
PSN(i)={{r1*i},{r2*i},...,{rD*i}},i=1,2,...,SN
其中{·}表示取·的小数部分,SN为种群大小。则初始种群为
X=Lbd+(Ubd-Lbd)*PSN
其中Lb为解的下界,Ub为解的上界,d是当前维解空间,d=1,2,...,D。
S2-2:以动态精英种群指导的领域搜索策略
以精英种群为指导时,其领域搜素效果受精英种群大小影响。算法前期时,解分布较为分散,需选择较少数量的精英种群作为指导,以提高前期收敛速度;算法后期时,各解趋于最优解,此时需要扩大精英种群数量,以保证种群多样性,提高算法跳出局部最优能力。因此本发明动态调整精英种群数量,使其以线性增长方式进行领域搜索指导,具体过程如下:
首先计算每个Xi(i=1,2,...,SN)的适应度值。然后取较好的Telite=ceil(p*SN)个蜜蜂构成动态精英种群DXEi(i=1,2,...,Telite),其中ceil(·)表示向上取整,p是精英种群在所有种群中占的比例,根据下确定。
Figure BDA0002178401310000081
其中pmax为比例上限,pmin为比例下限。
确定动态精英种群后,领域搜索以动态精英种群为指导,邻域搜索方程为
vid=DXECdid(Gbestd-xkd),d=1,2,...,D
其中φid是[-1,1]之间的随机实数;Gbest是全局最优解,动态精英种群中心DXEC由下式计算得到。
Figure BDA0002178401310000082
以动态精英种群指导的领域搜索策略为:在雇佣蜂阶段,雇佣蜂以相同的概率随机搜索领域,并通过邻域搜索方程式产生新解,选择过程以随机非定向方式进行,以此确保种群多样性,避免无效搜索。在观察蜂阶段,在精英种群中先随机选择一个解,然后通过邻域搜索方程式寻找新解。若选择过程选择新解,则以该解继续搜索;否则重新在精英种群中随机选择一个解进行下一次领域搜索,以实现算法快速收敛。
S2-3:模拟退火选择机制
贪婪迭代选择策略直接放弃较差解,极大影响了蜂群的开拓能力,容易陷入局部最优值。模拟退火选择机制按照一定的概率接收较差的解,在一定程度上有效避免了算法陷入局部最优,增强了算法搜索全局最优的能力。
假设当前温度为T,退火参数为K,雇佣蜂得到新解为X′i,其适应度值为fit′i。选择过程判断:若fiti≤fit′i,则接受新解;否则计算接受概率
Figure BDA0002178401310000083
以概率P接受新解。T以
Figure BDA0002178401310000084
进行更新,其中β≤1是一个常数,通常取值0.7,σfit为适应度的标准差。
改进人工蜂群算法伪代码如下:
Figure BDA0002178401310000091
S3:利用改进的人工蜂群算法优化阈值参数,进行小波阈值信号去噪。具体步骤为:
确定适应度函数,重构信号的质量可用来评估去噪算法的性能。本发明通过改进人工蜂群算法最小化原始信号和重构信号的均方误差,确定阈值参数λj和α参数。适应度函数定义如下:
Figure BDA0002178401310000092
其中s(i)为不含噪声的期望信号,
Figure BDA0002178401310000093
为通过小波阈值去噪后的重构信号,N为信号长度。由新的阈值函数可知,其是λj和α参数的函数。一旦λj和α确定,新的阈值函数也被确定。通过该阈值函数,可获得阈值收缩后的小波系数,从而可重构出去噪后的信号
Figure BDA0002178401310000094
因此,由λj和α参数组成的向量可以看作是改进人工蜂群算法中蜜源的位置,并且可以通过最小化适应度函数来获得最优值。
实施例2:
为验证改进人工蜂群算法的有效性,分析了改进人工蜂群与原始ABC、ECABC、原始PSO、MPSO算法的性能。使用的计算机配置是:英特尔i5-4570处理器,Windows 7操作系统,4G内存,MATLAB R2015b。选取表1所示六种基准函数测试算法性能。其中Sphere(f1)函数为连续单峰函数,Step(f2)函数为不连续的阶跃单峰函数,Rastrigin(f3)、Ackley(f4)、Schwefel 2.26(f5)函数为连续多峰函数,RosenBrock(f6)函数当D≤3时为单峰函数,D>3时为多峰函数。五种函数最优值为0,可接受值为1×10-8,可接受值表示函数的满意解。
表1基准函数
Figure BDA0002178401310000101
测试过程中种群大小SN=50;解的维度D=20;最大重复次数limit=100;精英种群所占比例p=0.3;初始温度T=3000℃;退火参数K=0.98;最大迭代次数maxCycle=1000。原始POS、MPOS算法其他参数一般常规设置。为了直观地反映各种算法的迭代比较,图4显示了六种基准函数不同优化算法随迭代次数增加的收敛曲线。
由图4可以看出,改进人工蜂群算法具有比其他算法更好的性能。对于单峰函数f1-2,ABC、ECABC、改进人工蜂群、MPSO算法都能得到满意的解,改进人工蜂群算法收敛最快,其中PSO算法陷入局部极小值。对于多峰函数f3-6,ABC、ECABC、改进人工蜂群可得到满意的解,改进人工蜂群算法收敛最快,而MPSO和PSO算法陷入局部极小值。对于函数f1、f4和f6,改进人工蜂群比其他四种算法收敛精度更高。总体而言,本发明改进人工蜂群在收敛速度和收敛精度方面获得了比其他算法更好的性能。
表2给出了原始ABC、ECABC和改进人工蜂群算法测试f1-6基准函数时的运行时间,每个算法独立运行50次取平均。参数设置同上。从表2中的时间数据来看,改进人工蜂群算法计算时间略长于原始ABC算法,与ECABC算法相比差异不显著。结果表明,时间复杂度是可以接受的。
表2不同ABC算法运行时间的比较
Figure BDA0002178401310000111
为验证基于本发明的去噪性能,用均方误差MSE、输出信噪比SNR和噪声抑制比NSR来评价。定义分别如下:
Figure BDA0002178401310000112
Figure BDA0002178401310000114
其中,s(i)为期望信号,
Figure BDA0002178401310000115
为去噪后的估计信号,
Figure BDA0002178401310000116
为不含噪声的期望信号均值,
Figure BDA0002178401310000117
为去噪后的估计信号均值,N为信号长度。MSE越接近0,SNR越大,NSR越接近1,估计信号越接近期望信号,去噪性能越好。
图5-8给出了本发明方法、半软阈值去噪算法、基于MPSO的阈值去噪方法和基于ECABC的阈值去噪方法分别对四种基准函数去噪效果的比较。其中输入信噪比从-10到30dB,信号长度N=1024,最大算法迭代次数为300,每个算法独立运行50次取平均,其他参数设置同上。去噪性能用输出SNR、MSE、NSR评估。从图中可以明显看出,对于Blocks和Bumps信号,当SNR≤15dB时,基于GECS-ABC的阈值去噪方法获得的输出SNR略高于其他算法;当SNR>15dB时,本发明方法可获得更大的输出SNR。对于Heavy sine和Doppler信号,本发明方法在[-10dB,30dB]范围内都能获得高于其他算法的输出SNR。对于四种不同的基准信号,本发明方法的MSE更小,NSR更接近1。总之,相比于半软阈值去噪算法、基于MPSO的阈值去噪方法和基于ECABC的阈值去噪方法,本发明方法在输出SNR、MSE、NSR上都能获得更好的性能。
图9给出了上述四种不同去噪方法随样本点数变化的去噪效果比较。其中基准信号为Bumps,输入SNR=5dB,样本点数N从29~215变化,最大算法迭代次数为300,每个算法独立运行50次取平均,其他参数设置同上。从图中可以明显看出,随着样本点数的增加,四种算法去噪性能都有提升,其中本发明去噪方法在输出SNR、MSE、NSR上都能获得更好的性能。当N≥213时,各个算法去噪性能趋于稳定,其中稳定后的本发明去噪方法输出SNR更大,MSE更小,去噪性能更强。
图10给出了三种基于优化算法的去噪方法随算法迭代次数变化的去噪效果比较。其中基准信号为Bumps,输入SNR=5dB,样本点数N=1024,最大算法迭代次数为从10到100,每个算法独立运行50次取平均,其他参数设置同上。从图中可以明显看出,随着最大迭代次数的增加,三种算法的去噪性能有大幅度提升,其中本发明方法在输出SNR、MSE、NSR上都能获得更好的性能。
以上所述之实施例子只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、原理所作的变化,均应涵盖在本发明的保护范围内。

Claims (4)

1.一种基于改进人工蜂群算法的参数小波阈值信号去噪方法,其特征在于,该方法包括以下步骤:
S1:首先获取待去噪信号,进行小波变换,得到小波系数;
S2:在传统阈值函数的基础上设计一种新的阈值函数,通过数学推导证明其性质,并确定待优化阈值参数;
S3:对原始人工蜂群算法进行改进;
S4:将待去噪信号和去噪信号之间的均方误差作为S3中改进的人工蜂群算法的适应度函数,在获取最小均方误差情况下得到最优阈值参数;
S5:使用S4得到的最优阈值参数应用到S2中新的阈值函数,对小波系数进行收缩处理得到新的小波系数,再进行逆小波变换,得到去噪信号。
2.如权利要求1所述的信号去噪方法,其特征在于,上述S2具体为:
S2-1、一种新的阈值函数构造:
对半软阈值函数进行改进,得到如下表达式:
Figure FDA0002178401300000011
其中sgn(·)为符号函数,wj,k为原始小波系数,α为指数因子,取值非负数,λj为第j层阈值,j,k表示第j层第k个系数;
S2-2:新的阈值函数性质证明
从连续性的定义来看,新的阈值函数在(-∞,-λj),(-λj,+λj)和(+λj,+∞)是连续的;当wj,k≥λj时,新的阈值函数可写成:
Figure FDA0002178401300000012
Figure FDA0002178401300000013
当wj,k=λj时,
Figure FDA0002178401300000014
当|wj,k|<λj时,新的阈值函数可写成
Figure FDA0002178401300000015
Figure FDA0002178401300000016
因此
Figure FDA0002178401300000017
可得新的阈值函数在点wj,k=λj连续,同理可证明新的阈值函数在wj,k=-λj也连续,所以新的阈值函数在(-∞,+∞)是连续的;
当wj,k→+∞时,
Figure FDA0002178401300000021
同理可证当wj,k→-∞时,
Figure FDA0002178401300000022
所以
Figure FDA0002178401300000023
因此
Figure FDA0002178401300000024
是新的阈值函数的一条渐近线,即新的阈值函数是以硬阈值函数为渐进线的一种半软阈值函数;
S2-3:确定待优化阈值参数
将新的阈值函数中的λj和α参数作为待优化阈值参数。
3.如权利要求1所述的信号去噪方法,其特征在于,所述步骤S3的具体如下:
S3-1:基于佳点集的种群初始化
佳点构造方法如下:
Figure FDA0002178401300000025
其中p是满足(p-3)/2≥D的最小素数,D是解的维度,{·}表示取·的小数部分,r是佳点;因此佳点集构造方法为
PSN(i)={{r1*i},{r2*i},...,{rD*i}},i=1,2,...,SN
其中{·}表示取·的小数部分,SN为种群大小,则初始种群为
X=Lbd+(Ubd-Lbd)*PSN
其中Lb为解的下界,Ub为解的上界,d是当前维解空间,d=1,2,...,D
S3-2:以动态精英种群指导的领域搜索策略
以动态调整精英种群数量,使其以线性增长方式进行领域搜索指导,具体过程如下:
首先计算每个Xi(i=1,2,...,SN)的适应度值,然后取较好的Telite=ceil(p*SN)个蜜蜂构成动态精英种群DXEi(i=1,2,...,Telite),其中ceil(·)表示向上取整,p是精英种群在所有种群中占的比例,根据下式确定:
Figure FDA0002178401300000026
其中pmax为比例上限,pmin为比例下限;
确定动态精英种群后,领域搜索以动态精英种群为指导,邻域搜索方程为
vid=DXECdid(Gbestd-xkd),d=1,2,...,D
其中φid是[-1,1]之间的随机实数;Gbest是全局最优解,动态精英种群中心DXEC由下式计算得到:
Figure FDA0002178401300000031
以动态精英种群指导的领域搜索策略为:在雇佣蜂阶段,雇佣蜂以相同的概率随机搜索领域,并通过邻域搜索方程式产生新解,选择过程以随机非定向方式进行,以此确保种群多样性,避免无效搜索;在观察蜂阶段,在精英种群中先随机选择一个解,然后通过邻域搜索方程式寻找新解;若选择过程选择新解,则以该解继续搜索;否则重新在精英种群中随机选择一个解进行下一次领域搜索,以实现算法快速收敛;
S3-3:模拟退火选择机制
假设当前温度为T,退火参数为K,雇佣蜂得到新解为Xi′,其适应度值为fiti′。选择过程判断:若fiti≤fiti′,则接受新解;否则计算接受概率
Figure FDA0002178401300000032
以概率P接受新解;T以
Figure FDA0002178401300000033
进行更新,其中β≤1是一个常数,通常取值0.7,σfit为适应度的标准差。
4.如权利要求1所述的信号去噪方法,其特征在于,所述步骤S4的具体步骤为:
所述适应度函数定义如下:
Figure FDA0002178401300000034
其中s(i)为不含噪声的期望信号,
Figure FDA0002178401300000035
为通过小波阈值去噪后的重构信号,N为信号长度。
CN201910787057.3A 2019-08-25 2019-08-25 一种基于改进人工蜂群算法的参数小波阈值信号去噪方法 Active CN110765834B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910787057.3A CN110765834B (zh) 2019-08-25 2019-08-25 一种基于改进人工蜂群算法的参数小波阈值信号去噪方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910787057.3A CN110765834B (zh) 2019-08-25 2019-08-25 一种基于改进人工蜂群算法的参数小波阈值信号去噪方法

Publications (2)

Publication Number Publication Date
CN110765834A true CN110765834A (zh) 2020-02-07
CN110765834B CN110765834B (zh) 2020-07-17

Family

ID=69329279

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910787057.3A Active CN110765834B (zh) 2019-08-25 2019-08-25 一种基于改进人工蜂群算法的参数小波阈值信号去噪方法

Country Status (1)

Country Link
CN (1) CN110765834B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111681667A (zh) * 2020-06-23 2020-09-18 青岛科技大学 基于自适应窗口滤波和小波阈值优化的水声信号去噪方法
CN112163536A (zh) * 2020-09-30 2021-01-01 沈阳工业大学 基于粒子群算法改进的小波阈值函数去噪方法
CN112530449A (zh) * 2020-10-20 2021-03-19 国网黑龙江省电力有限公司伊春供电公司 基于仿生小波变换的语音增强方法
CN113221615A (zh) * 2020-12-31 2021-08-06 中国石油化工股份有限公司 一种基于降噪聚类的局部放电脉冲提取方法
CN113222854A (zh) * 2021-05-24 2021-08-06 北京理工大学 一种小波变换的ct图像去噪方法
CN113505705A (zh) * 2021-07-13 2021-10-15 浙江树人学院(浙江树人大学) 一种双层管柱电涡流信号去噪方法、系统及处理终端
CN113971641A (zh) * 2021-09-27 2022-01-25 中国科学院微电子研究所 小波阈值去噪方法、装置、设备及介质
CN114581674A (zh) * 2022-03-21 2022-06-03 南京信息工程大学 一种基于改进阈值函数的小波去噪方法
CN116070094A (zh) * 2023-03-14 2023-05-05 青岛科技大学 一种基于自适应小波阈值函数的水声信号处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102609612A (zh) * 2011-12-31 2012-07-25 电子科技大学 一种用于多参数仪表检定的数据融合方法
US20150312495A1 (en) * 2014-04-29 2015-10-29 Canon Kabushiki Kaisha Wavelet denoising of fringe image
CN108596848A (zh) * 2018-04-20 2018-09-28 西南交通大学 一种基于改进小波阈值函数的图像去噪方法
CN108875896A (zh) * 2018-06-08 2018-11-23 福州大学 一种全局最优引导的自扰动混沌人工蜂群算法
CN109782347A (zh) * 2019-01-18 2019-05-21 南京邮电大学 一种基于小波分析的地震走时反演成像方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102609612A (zh) * 2011-12-31 2012-07-25 电子科技大学 一种用于多参数仪表检定的数据融合方法
US20150312495A1 (en) * 2014-04-29 2015-10-29 Canon Kabushiki Kaisha Wavelet denoising of fringe image
CN108596848A (zh) * 2018-04-20 2018-09-28 西南交通大学 一种基于改进小波阈值函数的图像去噪方法
CN108875896A (zh) * 2018-06-08 2018-11-23 福州大学 一种全局最优引导的自扰动混沌人工蜂群算法
CN109782347A (zh) * 2019-01-18 2019-05-21 南京邮电大学 一种基于小波分析的地震走时反演成像方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DEPENG KONG ET AL.: "An improved artificial bee colony algorithm based on elite group guidance and combined breadth-depth search strategy", 《INFORMATION SCIENCES》 *
刘香品 等: "引入佳点集和猴群翻过程的人工蜂群算法", 《模式识别与人工智能》 *
殷青松 等: "基于改进的小波阈值图像去噪算法研究", 《软件导刊》 *
申科 等: "改进阈值函数的小波去噪研究", 《中国科技论文》 *
魏立新 等: "基于改进小波去噪和 EEMD 的轧辊偏心提取与补偿", 《塑性工程学报》 *
黄亚飞 等: "基于蜂群算法和带参阈值函数的图像去噪方法", 《计算机工程与应用》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021258832A1 (zh) * 2020-06-23 2021-12-30 青岛科技大学 基于自适应窗口滤波和小波阈值优化的水声信号去噪方法
CN111681667A (zh) * 2020-06-23 2020-09-18 青岛科技大学 基于自适应窗口滤波和小波阈值优化的水声信号去噪方法
CN112163536A (zh) * 2020-09-30 2021-01-01 沈阳工业大学 基于粒子群算法改进的小波阈值函数去噪方法
CN112163536B (zh) * 2020-09-30 2024-04-23 沈阳工业大学 基于粒子群算法改进的小波阈值函数去噪方法
CN112530449B (zh) * 2020-10-20 2022-09-23 国网黑龙江省电力有限公司伊春供电公司 基于仿生小波变换的语音增强方法
CN112530449A (zh) * 2020-10-20 2021-03-19 国网黑龙江省电力有限公司伊春供电公司 基于仿生小波变换的语音增强方法
CN113221615A (zh) * 2020-12-31 2021-08-06 中国石油化工股份有限公司 一种基于降噪聚类的局部放电脉冲提取方法
CN113222854A (zh) * 2021-05-24 2021-08-06 北京理工大学 一种小波变换的ct图像去噪方法
CN113505705A (zh) * 2021-07-13 2021-10-15 浙江树人学院(浙江树人大学) 一种双层管柱电涡流信号去噪方法、系统及处理终端
CN113505705B (zh) * 2021-07-13 2023-09-26 浙江树人学院(浙江树人大学) 一种双层管柱电涡流信号去噪方法、系统及处理终端
CN113971641A (zh) * 2021-09-27 2022-01-25 中国科学院微电子研究所 小波阈值去噪方法、装置、设备及介质
CN114581674A (zh) * 2022-03-21 2022-06-03 南京信息工程大学 一种基于改进阈值函数的小波去噪方法
CN116070094A (zh) * 2023-03-14 2023-05-05 青岛科技大学 一种基于自适应小波阈值函数的水声信号处理方法

Also Published As

Publication number Publication date
CN110765834B (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
CN110765834B (zh) 一种基于改进人工蜂群算法的参数小波阈值信号去噪方法
CN111681667B (zh) 基于自适应窗口滤波和小波阈值优化的水声信号去噪方法
CN108171762B (zh) 一种深度学习的压缩感知同类图像快速重构系统与方法
CN112597930B (zh) 一种基于woa-vmd算法的信号去噪方法
CN109151332B (zh) 基于适应度函数的相机编码曝光最优码字序列搜索方法
CN111125885A (zh) 一种基于改进克里金插值算法的asf修正表构建方法
CN113222854B (zh) 一种小波变换的ct图像去噪方法
CN112232011B (zh) 一种集成电路的宽频段电磁响应自适应确定方法及系统
CN109740106A (zh) 基于图卷积神经网络的大规模网络介数逼近方法、存储装置及存储介质
CN115563444B (zh) 一种信号重构方法、装置、计算机设备及存储介质
CN116017476A (zh) 无线传感器网络覆盖设计方法、装置
CN116756491A (zh) 一种基于蜣螂优化算法优化小波阈值的阀门信号降噪方法
CN106022475B (zh) 基于动态自适应混沌蚁群算法的Web服务组合方法
CN111738396A (zh) 一种应用于潜艇路径规划的自适应栅格颗粒度蚁群算法
CN114417920A (zh) 一种基于de优化小波参数的信号去噪方法及装置
CN107688862B (zh) 基于ba-grnn的绝缘子等值盐密积累速率预测方法
CN111461303B (zh) 基于生成对抗神经网络的数字岩心重构方法及系统
CN108288093A (zh) Bp神经网络权值确定方法、系统以及预测方法、系统
CN117574421A (zh) 基于梯度动态裁剪的联邦数据分析系统及方法
CN117056674A (zh) 基于iwoa优化小波参数的刀具信号降噪方法
SE516346C2 (sv) Metod för reducering av högfrekvent brus i bilder med hjälp av medelvärdesbildning av pixlar och parvis addering av pixelpar som uppfyller ett villkor
CN109347680B (zh) 一种网络拓扑重构方法、装置及终端设备
CN115170902B (zh) 图像处理模型的训练方法
CN113947547B (zh) 基于多尺度核预测卷积神经网络的蒙特卡洛渲染图降噪方法
CN115423149A (zh) 一种能源互联网负荷预测和噪声等级估计的增量迭代聚类方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant