CN110752746A - 开关模式波纹优化 - Google Patents

开关模式波纹优化 Download PDF

Info

Publication number
CN110752746A
CN110752746A CN201811353566.7A CN201811353566A CN110752746A CN 110752746 A CN110752746 A CN 110752746A CN 201811353566 A CN201811353566 A CN 201811353566A CN 110752746 A CN110752746 A CN 110752746A
Authority
CN
China
Prior art keywords
ripple
voltage
phase
regulator
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811353566.7A
Other languages
English (en)
Inventor
克里斯·M·杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universal Semiconductor (cayman) Co Ltd
Alpha and Omega Semiconductor Cayman Ltd
Original Assignee
Universal Semiconductor (cayman) Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Semiconductor (cayman) Co Ltd filed Critical Universal Semiconductor (cayman) Co Ltd
Publication of CN110752746A publication Critical patent/CN110752746A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16528Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values using digital techniques or performing arithmetic operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/16585Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 for individual pulses, ripple or noise and other applications where timing or duration is of importance
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/15Arrangements for reducing ripples from dc input or output using active elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0045Converters combining the concepts of switch-mode regulation and linear regulation, e.g. linear pre-regulator to switching converter, linear and switching converter in parallel, same converter or same transistor operating either in linear or switching mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/342Active non-dissipative snubbers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1566Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with means for compensating against rapid load changes, e.g. with auxiliary current source, with dual mode control or with inductance variation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dc-Dc Converters (AREA)

Abstract

方法和装置关联到在多相电源中极小化波纹,极小化的方法是调制电压预调整器输出设定点以极小化波纹性能。在一图示中,调制可包括调节提供的预调整器输出设定点以适应(例如)多相控制器。在某些示例中,作为对确定先前增量调节产生增大波纹的响应,可反转递增方向。多相电源的每个相可包括接入(例如)公共输出节点的降压衍生开关模式电源。各类实施方式可通过动态寻求具有大体上最小波纹的多相电源工作周期,在最大程度上便利地降低针对有源负载的散装电容要求。

Description

开关模式波纹优化
相关申请的交叉引用
本申请要求2018年3月14日由 Chris M.Young 提交的第62/642,717号美国临时专利申请的权益,后者的标题是“降压衍生开关电源技术”。
本申请于此通过引用,吸纳了前述申请的全部内容。
技术领域
本发明涉及开关模式电源的相应元件和方法技术领域,具体涉及开关模式波纹优化。
背景技术
电子设备用各种各样的方法接收功率。例如,消费类电子设备可以从壁式插座(例如:主电源)或各类便携式电源(例如:电池、可再生发电源、发电机)处接收功率。电池供电的设备的操作时间具体取决于电池容量和平均电流消耗。电池供电设备的制造商可努力降低其产品的平均电池电流,以实现电池更换或者充电操作之间更长的间隔使用时间。在某些示例中,主电源供电设备的制造商可努力提高其产品的功效,以尽量减少热负荷和/或尽量提高消耗每瓦特功率所得到的效能。
在某些电子设备中,可以通过各类电压转换电路,将输入电压供给(例如:电池输入、整流主电源、中间直流电源)转换为另一不同的电压。作为电压转换电路的开关模式电源因其高效受到欢迎,从而频繁应用于各类电子设备。
开关模式电源应用开关设备转换电压,这些设备在接通时电阻非常低,在关闭时电阻非常高。开关模式电源可在一段时间内给输出电感器充电,并在后续期间释放部分或全部电感器能量。输出能量可输送至输出电容器组,后者通过滤波生成直流输出电压。在降压衍生的开关模式电源中,处于稳定状态的输出电压可近似为输入电压乘以工作周期;此处的工作周期为旁路开关的接通持续时间除以其一个开关周期的相应接通持续时间与关断时间的总和。
发明内容
本发明提供一种多相降压衍生电源系统,优化开关模式波纹。
为实现上述目的,本发明涉及一种多相降压衍生电源系统,其特点是,该系统包括:
一个波纹测量电路,配置耦合于具有适应于运行多个交错开关模式电源相的多相控制器的多相降压衍生电源的一个公共节点,其中的每个相调节提供功率给公共节点,且波纹测量电路配置用于监控公共节点的波纹特点;
一个处理器,运行耦合于波纹测量电路,以接收一个表明受监控波纹特点的信号;
一个数据存储器,运行耦合于处理器且包括程序指令;当处理器执行该程序指令时,会导致处理器执行操作,动态搜寻一个波纹优化预调整器设定点电压,该电压在作为输入提供给多个交错开关模式电源相时,极小化受监控波纹特点。
上述操作包括:
(i) 确定受监控波纹特点的初始值和一个方向;
(ii) 按该一方向递增数量调节预调整器的设定点电压;
(iii) 在完成步骤(ii)中调节后,确定受监控波纹特点的调节值;以及
(iv) 如果调节值改进了波纹特点,则重复步骤(ii)。
上述操作进一步包括:
(v)如果调节值恶化波纹特点,则反转步骤(i)确定的方向并重复步骤(ii)。
上述受监控波纹特点包括公共节点上的波纹电压。
上述受监控波纹特点包括经由公共节点提供给负载的波纹电流。
上述多相控制器进一步运行耦合于波纹测量电路。
上述多相控制器运行耦合将预调整器设定点电压指令提供给电压预调整器。
上述系统进一步包括适应于将预调整器设定点电压指令从多相控制器传送至电压预调整器的通信总线。
上述系统进一步包括适应于将预调整器设定点电压指令从多相控制器传送至电压预调整器的至少一条模拟信号线。
多个交错开关模式电源相包括两个或多个相。
上述系统进一步包括每个相中的至少一个开关晶体管,其中的多相控制器配置控制每个相中的所述的至少一个开关晶体管,从而在对应于所述的两个或多个相的相数目的最小输出波纹电压的工作周期中运行。
本发明开关模式波纹优化技术和现有技术相比,本发明的方法和装置关联到在多相电源中使波纹最小化,后者的方法是通过调制电压预调整器输出设定点以使波纹性能最小化。在一图示中,调制可包括(例如)递增调节提供的预调整器输出设定点以适应多相控制器。在某些示例中,作为对确定之前递增调节导致波纹增加的响应,递增方向可能会反转。多相电源的每个相可包括(例如)接入公共输出节点的降压衍生开关模式电源。通过动态寻求具有实质上极小波纹的多相电源的工作周期,各类实施方式可以有利地尽可能降低针对有源负载的散装电容要求。
在某些示例中,减小波纹的自调节电压预调整器可极大降低各类降压衍生开关模式电源上要求的输出电容量。降低输出电容可获得一项或多项优势。例如,电容减小可降低成本、所需电路板空间、重量、组装成本、组装时间、产品可靠性和产品使用寿命。减小波纹可降低传导和/或辐射发射,从而减小电磁干扰(EMI)滤波的所需数量,并可导致研制时间、产品重量、尺寸和成本的降低。
在某些示例中,各类开关模式电源的效率会得到提高。各类实施方式可减小各类开关模式电源上所需的输出电容数量。减少输出电容可获得针对波纹减小自调节预调整器概述的优势。再各类示例中,各类开关模式电源的输出供电电压上瞬态电压抑制的大小、重量和成本会减小。
在随附图纸和下文说明中陈述了各类实施方式的详情。其他特性和优势将在说明、图纸和要求中披露。
附图说明
图1描绘了阐明降压衍生开关模式电源(BPS)典型运行模式中瞬态负载响应的典型直流-直流转换场景;
图2描绘了各类多相降压衍生开关模式电源(MBPS)的归一化波纹电流的典型模拟图表视图;
图3描绘了典型输入供电电压调整器,调整点由测得波纹决定;
图4描绘了典型输入电压调整控制方法的流程视图;
图5A、5B、5C、5D、5E、5F、和5G 描绘了在各类不同输入电压下实施典型输入电压调整控制的MBPS的测得波纹电压和波纹电流;
图6A、6B、6C、6D、6E 和6F描绘了在各类不同输入电压下实施典型输入电压调整控制的MBPS 的测得波纹电压和波纹电流。
具体实施方式
为了帮助理解,本文件组织如下。首先,参考图1,简要介绍作为降压衍生直流-直流转换器动态负载的代表性计算产品。其次,在图2-6F中,讨论转向图示预调整器和降低降压衍生开关模式电源上波纹电流和/或波纹电压的方法的各类典型实施方式。
图1描绘了阐明降压衍生开关模式电源(BPS)典型运行模式中瞬态负载响应的典型直流-直流转换场景。瞬态负载抑制示例 100 包括一个或多个 BPS 电路 105,该电路可以(例如)布置在多相电源系统中。BPS电路105 可在运行时耦合于降压衍生 SMPS 110。BPS电路105可在SMPS控制器(图中没有显示出)控制下,以多个模式运行。例如,当负载需求120快速变化时,如从高负载状态125变化至较低负载状态130,BPS105的恒定接通时间恒定平均频率运行可有利地在实质上尽量减小延迟和/或设置时间。
降压衍生SMPS 110供应输出供电电压135。输出供电电压135供应各类负载 140。负载 140 可在输出供电电压135上产生瞬态电流负载。如典型负载需求120图表中所描绘,在降压衍生 SMPS 110 上未实施恒定接通时间运行的情况下,输出电压响应145可响应输出供电电压135上的瞬态电流负载,包括相当大的扰动。在应用恒定接通时间运行典型实施方式,于降压衍生SMPS 110上实施BPS 电路105时,输出电压响应150得到相当好的调整,极大避免了较大的电压扰动。
在描绘示例中,降压衍生SMPS 110在计算机155中得到实施。计算机155包括供应一个或多个负载140的一个或多个降压衍生SMPS 110。在某些示例中,可对负载140加以指定,使其在受到有限电压扰动的情况下,以输入电压运行。
图2描绘了各类多相降压衍生开关模式电源(MBPS)的归一化波纹电流的典型模拟图表视图。各类MBPS的归一化波纹电流图表200图示:在与MBPS相的具体数目相关联的特定工作周期中,输出波纹电流被极小化。例如,在2相BPS中,输出电流波纹可在50%工作周期中被极小化。在某些示例中,4相BPS中的输出电流波纹可在25%、50%和75% 工作周期中被极小化。由于在降压衍生电源中,工作周期可以由 Vout/Vin 近似,调节输入电压可直接影响到它,并相应地对波纹电流予以极小化。
与MBPS中相数目相关联的最小输出电压波纹可作为输出波纹互消图的函数加以确定,例如参考图2说明的归一化波纹电流图表200。
图3描绘了典型的输入供电电压调整器,调整点由测得波纹确定。典型四相降压衍生电源300包括调整反馈环路310。调整反馈环路310包括可调节输入供电电压调整器310。可调节输入供电电压调整器310得到配置,以生成输入电压 VIN,并提供从 VIN 通向多相控制器 315 和开关场效应晶体管 Q1-Q4 的功率。
可调节经配置的输入供电电压调整器310,响应收到的控制电压信号 320,调节输入电压VIN。配置调整控制信号发生器325,以生成作为波纹测量信号330之函数的控制电压信号320。配置波纹测量电路335,基于输出电压VOUT的波纹电压测量,生成波纹测量信号330。在某些实施方式中,可以对波纹测量电路335进行配置,以测量输出电压 VOUT 提供的波纹电流。相应地,通过调制作为当前测得波纹电压和/或输出电压VOUT 之电流的函数的输入电压VIN,可以极小化波纹电压和/或波纹电流。
尽管图3中描绘的实施方式为四相降压衍生电源,也可以应用其他实施方式。例如,按图2中的描绘,降压衍生电源可包括 2、3、4、5、6、7 的相计数,或者达到至少36个相,甚至更多。在各类示例中,多相控制器315可以控制每个相的开关场效应晶体管,运行工作周期以产生对应于符合图2 相数目的最小输出波纹。
图4描绘了典型输入电压调整控制方法的流程视图。输入电压调整控制方法 400从步骤 405 开始。在步骤 405 中,对递增数量加以初始化。接着,在步骤 410 中,按递增数量调节预调整器的输出电压。参照图 3,预调整器可以是(例如)可调节输入供电电压调整器 310。接着,在步骤 415 中,测量输出电压上的波纹幅度。波纹幅度可以是(例如)波纹电压和/或波纹电流。
再接着,在步骤 420 中,输入电压调整控制方法 400 确定得自之前波纹测量的波纹变化。如果之前尚未执行波纹测量,则可以对之前波纹予以预定义,(例如)初始化为零。如果波纹较之于之前波纹测量有所减少,则执行跳回步骤 410。如果波纹较之于之前波纹测量有所增加,则继续执行至步骤 425。在步骤 425 中,递增方向被反转。接下来,执行跳回步骤 410。
参照图 3,输入电压调整控制方法 400 可包括(例如)可调节输入供电电压调整器 310、调整控制信号发生器 325 和波纹测量电路 335。
图5A、5B、5C、5D、5E、5F、和 5G 描绘了在各类不同输入电压下实施典型输入电压调整控制的 MBPS 的测得波纹电压和波纹电流。图5A 描绘了在3.20 V 输入电压下,实施典型输入电压调整控制的 MBPS 的输出电压波纹。图 5B 描绘了在3.20 V 输入电压下,实施典型输入电压调整控制的 MBPS 的输出电流波纹。图 5C 描绘了在3.69 V 输入电压下,实施典型输入电压调整控制的 MBPS 的输出电压波纹。图 5D 描绘了在3.69 V 输入电压下,实施典型输入电压调整控制的 MBPS 的输出电流波纹。图 5E 描绘了在 4.00 V 输入电压下,实施典型输入电压调整控制的 MBPS 的输出电压波纹。图 5F 描绘了在 4.00 V输入电压下,实施典型输入电压调整控制的 MBPS 的输出电流波纹。图 5G 描绘了在一系列输入电压下实施典型输入电压调整控制的峰至峰输出电压波纹的传递函数。输入电压调整电路会摆振,直至找到(例如)提供最低输出电压波纹的输入电压。在描绘的示例中,最低输出波纹在 3.69 V 输入电压下获得。在描绘的示例中,MBPS 为双相,且多相控制器控制每个相的开关场效应晶体管,使其在约 50% 工作周期中运行,以便产生具有最小输出波纹的 1.8 V 输出。
图6A、6B、6C、6D、6E 和 6F 描绘了在各类不同输入电压下实施典型输入电压调整控制的 MBPS 的测得波纹电压和波纹电流。图 6A 描绘了在 12.0 V 输入电压下,实施典型输入电压调整控制的MBPS 的输出电压波纹。图 6B 描绘了在12.6 V 输入电压下,实施典型输入电压调整控制的MBPS 的输出电压波纹。图6C 描绘了在13.5 V 输入电压下,实施典型输入电压调整控制的MBPS 的输出电压波纹。图 6D 描绘了在12.0 V 输入电压下,实施典型输入电压调整控制的MBPS 的输出电流波纹。图 6E 描绘了在12.6 V 输入电压下,实施典型输入电压调整控制的MBPS 的输出电流波纹。图 6F 描绘了在 13.5 V 输入电压下,实施典型输入电压调整控制的MBPS 的输出电流波纹。
如图 6A-6F 中所呈现,当输入供电电压按照(例如)对应于 MBPS 实施若干相的图 2 典型曲线,被调节至提供输出波纹互消的电压时,各类输入电压调整控制实施可以极大降低波纹电压和/或波纹电流。图 2 中所示的相数目仅为典型性质。出于实用性和清晰性考虑,没有描绘具有更多相数目的电源;但是,所述概念仍可适用,不限制电源相的数目。
尽管已参照图表说明了各种不同的实施方式,仍可实行其他实施方式。例如,各类续流整流器可包括同步整流器、肖特基二极管、高速整流器以及各类晶体管(例如:场效应晶体管)内固有的通用整流器和/或本体二极管。
在各类实施中,可按照一个或多个典型状况,对输出波纹减小予以配置。在一个典型状况中,电压预调整器经配置后可提供具有两个或多个相的开关模式电源(MP-SMPS),从而初始化递增量至预定数额,并测量 MP-SMPS 的输出波纹;且反复执行:
a) 按递增量调节电压预调整器的输出电压,
b) 测量对调节的输出波纹响应,
c) 变更响应来自之前 MP-SMPS 输出波纹测量的未改善输出波纹的递增量正负号(不然保持递增量不变),以使 MP-SMPS 的输出波纹最小化。
某些实施方式状况可作为计算机系统予以全部或部分实施。例如,各类实施可包括数字和/或模拟电路系统、计算机硬件、固件、软件或其组合。可以在具体体现于信息载体中的计算机程序产品中加入设备元件,例如在设备可读的存储设备中通过可编程处理器执行;以及可由可编程处理器实施的方法,执行程序指令以通过运行输入数据和生成输出来履行各类实施方式的功能。可以在可编程系统上可执行的一个或多个计算机程序中有利实施某些实施方式;该可编程系统包括至少一个经耦合后可以从数据存储系统接收数据和指令并将数据和指令传送给该系统的可编程处理器,至少一个输入设备和/或至少一个输出设备。计算机程序是可直接或间接用于计算机的一组指令,以执行某一行动或带来某一结果。可以用任何形式的编程语言编写计算机程序,包括编译或解释的语言;且可以任何形式部署,包括作为独立程序或者作为模块、部件、子程序或适合用于计算环境中的其他装置。
举例来说但不作限制,执行程序指令的合适处理器包括通用和专用微处理器,后者可包括任何类型计算机的单个处理器或者多个处理器之一。通常来说,处理器会从只读存储器或随机存取存储器或者全部两种存储器处接收指令和数据。计算机的基本单元是一个执行指令的处理器和一个或多个存储指令和数据的存储器。具体体现计算机程序指令和数据的合适存储设备包括所有形式的非易失性存储器;举例来说,包括半导体存储器设备,如 EPROM、EEPROM 和闪速存储器设备。ASIC (应用特定集成电路) 可补充或并入处理器及存储器。在某些实施方式中,硬件可编程设备可以补充或并入处理器及存储器,如 FPGA。
在某些实施中,每一系统的编程均应用相同或类似的信息和/或应用存储在易失性和/或非易失性存储器中的基本相同的信息进行初始化。例如,可对一个数据接口进行配置,在耦合于适当主机设备(如桌面计算机或服务器)时执行自动配置、自动下载和/或自动更新功能。
在各类实施中,系统可应用合适的通信方法、设备与技术进行通信。例如,系统可以应用点对点通信,通过兼容设备(例如:能够将数据传入/传出系统的设备)进行通信;在该通信中,消息直接从来源处经过专用物理链路(例如:光纤链路、点对点布线、菊花链)运输至第一接收器。系统部件可以任何模拟或数字数据通信形式或媒介交换信息,包括通信网络上基于包的消息。通信网络的示例包括(例如)一个局域网、一个广域网、城域网、无线和/或光纤网络以及形成互联网的计算机和网络。其他实施可通过向所有或基本上所有由通信网络耦合在一起的设备传播来输送消息;例如:通过应用全向射频(RF)信号。其他实施还可输送具有高指向性特点的消息,如应用定向(即窄波束)天线输送的射频信号和可通过聚焦光学器件选用的红外信号。另外还可以执行应用适当接口及协议的其他实施,举例来说但不作限制:USB 2.0、FireWire、ATA/IDE、RS-232、RS-422、RS-485、802.11 a/b/g/n、Wi-Fi、WiFi-Direct、Li-Fi、BlueTooth、Ethernet、IrDA、FDDI(光纤分布式数据接口)、令牌环网络或者基于频率、时间或码分的多路技术。某些实施可选择并入特性,如用于数据完整性的误差检验及校正(ECC),或者诸如加密(例如:有线等效加密)和密码保护之类的安全措施。
在各类实施方式中,计算机系统可包括非瞬时性存储器。存储器可以接入针对编码数据和计算机可读指令(包括处理器可执行程序指令)配置的一个或多个处理器。数据和计算机可读指令可以被一个或多个处理器存取。当一个或多个处理器执行处理器可执行程序指令时,可导致一个或多个处理器执行各个不同操作。
在各类实施方式中,计算机系统可包括物联网(IoT)设备。IoT 设备可包括嵌有电子设备、软件、传感器、执行器的对象以及促成这些对象收集并交换数据的网络连通性。 通过经由接口发送数据至另一设备,IoT 设备可以与有线或无线设备结合使用。IoT 设备可收集有用数据,然后在其他设备之间实现数据的自主流动。
在某些实施中,可以在壳体或外壳内,单独或者组合处置电感器、主开关、续流整流器、旁路开关。在某些实施中,可以在集成电路中实施电感器。在某些实施方式中,可以在单一物体中,应用一个或多个其他部件封装离散(例如:绕线)电感器,例如通过灌封。例如,环氧树脂、弹性体、塑料或其他合适的舒适材料可以将部件绑定或包入单一包装对象中。在各类实施中,举例来说但不作限制,可以通过浸渍、灌封、喷涂、静电操作或喷射模塑法来形成壳体或外壳。
在各类实施中,当输出电容器从输出端子接入输入电压源的第二个端子时,输出端子可适应于支持输出电压。该装置可进一步包括作为单一物体形成的集成电路封装。
可以在集成电路封装内处置主开关和续流整流器。续流整流器可包括同步整流器,且第二个栅极驱动电路在运行时耦合,以控制同步整流器的导电性状态。
在一典型状况中,多相降压衍生电源系统可包括波纹测量电路,后者经配置后耦合于多相降压衍生电源的公共节点;该电源具有适应于运行多个交错开关模式电源相的多相控制器,其中的每个相都适应于向公共节点提供功率。波纹测量电路经配置后可监控公共节点的波纹特点。处理器在运行时耦合于波纹测量电路,以接收表明受监控波纹特点的信号。数据存储器在运行时耦合于处理器,并含有程序指令;当处理器执行该程序指令时,可导致处理器执行操作,动态搜寻波纹优化预调整器设定点电压,该电压在作为多个交错开关模式电源相的输入提供时,适应于极小化受监控波纹特点。这类操作可包括:(i)确定受监控波纹特点的初始值和一个方向;(ii)按某一方向上的递增数量调节预调整器设定点电压;(iii)在完成步骤(ii)中调节后,确定受监控波纹特点的调节值;以及(iv)如果调节值改进了波纹特点,则重复步骤(ii)。
在各类实施方式中,操作可进一步包括:如果调节值使得波纹特点恶化,则反转方向并重复步骤(ii)。
受监控波纹特点包括公共节点上的波纹电压。受监控波纹特点包括经由公共节点提供给负载的波纹电流。
系统可进一步包括运行时耦合于波纹测量电路的多相控制器。该系统可进一步包括运行时耦合以提供预调整器设定点电压给多相控制器的电压预调整器。
在各类实施方式中,多相控制器在运行时耦合以提供预调整器设定点电压指令给电压预调整器。
系统可进一步包括适应于将预调整器设定点电压指令从多相控制器传送至电压预调整器的通信总线。
系统可进一步包括适应于将预调整器设定点电压指令从多相控制器传送至电压预调整器的至少一条模拟信号线。
在各类实施方式中,多个交错开关模式电源相可包括两个或多个相。
系统可进一步包括每个相中的至少一个开关晶体管,其中的多相控制器经配置后可以控制每个相中的至少一个开关晶体管,从而在大体上对应于关联两个或多个相中相数目的最小输出波纹电压的工作周期中运行。
多个交错开关模式电源相可包括两个或多个相,例如:二至八相、六相和超过八相。
在某些实施方式中,多相控制器可在运行时耦合于波纹测量电路。多相控制器可在运行时耦合,将预调整器设定点电压指令提供给电压预调整器。各类实施还可包括适应于将预调整器设定点电压指令从多相控制器传送至电压预调整器的通信总线。适应于将预调整器设定点电压指令从多相控制器传送至电压预调整器的模拟信号线可以(例如)是双导线信号线。举例来说但不作限制,通信总线或模拟信号线可以(例如)在印刷电路板(PCB)或背板上的导电轨中至少部分形成。
交错开关模式电源相可包括两个或多个相,例如 15、18、24、27 或 36 个。某些实施方式可包括每个相中的至少一个开关晶体管(例如:BJT、FET、IGBT 等),其中的多相控制器经配置后可以控制每个相中的至少一个开关晶体管,从而在大体上对应于关联两个或多个相中相数目的最小输出波纹电压的工作周期中运行。按参照图 2 的说明,关联相数目的最小输出电压可以作为输出波纹互消图的函数加以确定。
在另一典型状况中,多相降压衍生电源系统的运行方法包括监控波纹特点的公共节点。波纹测量电路经配置后耦合于具有适应于运行多个交错开关模式电源相的多相降压衍生电源的公共节点,通过该电路可以完成监控。每个相都适应于提供功率给公共节点。该方法进一步包括通过运行时耦合于波纹测量电路的处理器接收表明受监控波纹特点的信号。该方法还包括提供运行时耦合于处理器且含有程序指令的数据存储器;当处理器执行该程序指令时,会导致处理器执行操作,动态地搜寻波纹优化预调整器设定点电压,该电压在作为输入提供给多个交错开关模式电源相时,适应于极小化受监控波纹特点。这些操作包括:(i)确定受监控波纹特点的初始值和一个方向;(ii)按某一方向上的递增数量调节预调整器设定点电压;(iii)在完成步骤(ii)中调节后,确定受监控波纹特点的调节值;以及(iv)如果调节值改进了波纹特点,则重复步骤(ii)。
已说明了若干实施。然而可以做出各类不同修改。例如,如果公开技术的步骤按不同顺序执行,或者公开系统的部件以不同方式组合,或者部件得到其他部件的补充,则可获得有利的结果。相应地,在以下要求的范围内考虑到了其他实施。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (11)

1.一种多相降压衍生电源系统,其特征在于,该系统包括:
一个波纹测量电路,配置耦合于具有适应于运行多个交错开关模式电源相的多相控制器的多相降压衍生电源的一个公共节点,其中的每个相调节提供功率给公共节点,且波纹测量电路配置用于监控公共节点的波纹特点;
一个处理器,运行耦合于波纹测量电路,以接收一个表明受监控波纹特点的信号;
一个数据存储器,运行耦合于处理器且包括程序指令;当处理器执行该程序指令时,会导致处理器执行操作,动态搜寻一个波纹优化预调整器设定点电压,该电压在作为输入提供给多个交错开关模式电源相时,极小化受监控波纹特点。
2.如权利要求1所述的系统,其特征在于,操作包括:
(i) 确定受监控波纹特点的初始值和一个方向;
(ii) 按该一方向递增数量调节预调整器的设定点电压;
(iii) 在完成步骤(ii)中调节后,确定受监控波纹特点的调节值;以及
(iv) 如果调节值改进了波纹特点,则重复步骤(ii)。
3.如权利要求2所述的系统,其特征在于,操作进一步包括:
(v)如果调节值恶化波纹特点,则反转步骤(i)确定的方向并重复步骤(ii)。
4.如权利要求1所述的的系统,其特征在于,受监控波纹特点包括公共节点上的波纹电压。
5.如权利要求1所述的的系统,其特征在于,受监控波纹特点包括经由公共节点提供给负载的波纹电流。
6.如权利要求1所述的的系统,其特征在于,该多相控制器进一步运行耦合于波纹测量电路。
7.如权利要求5所述的的系统,其特征在于,多相控制器运行耦合将预调整器设定点电压指令提供给电压预调整器。
8.如权利要求6所述的的系统,其特征在于,该系统进一步包括适应于将预调整器设定点电压指令从多相控制器传送至电压预调整器的通信总线。
9.如权利要求6所述的的系统,其特征在于,该系统进一步包括适应于将预调整器设定点电压指令从多相控制器传送至电压预调整器的至少一条模拟信号线。
10.如权利要求1所述的的系统,其特征在于,多个交错开关模式电源相包括两个或多个相。
11.如权利要求10所述的的系统,其特征在于,该系统进一步包括每个相中的至少一个开关晶体管,其中的多相控制器配置控制每个相中的所述的至少一个开关晶体管,从而在对应于所述的两个或多个相的相数目的最小输出波纹电压的工作周期中运行。
CN201811353566.7A 2018-03-14 2018-11-14 开关模式波纹优化 Pending CN110752746A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862642717P 2018-03-14 2018-03-14
US16/042,878 2018-07-23
US16/042,878 US10224805B1 (en) 2018-03-14 2018-07-23 Switched-mode ripple optimization

Publications (1)

Publication Number Publication Date
CN110752746A true CN110752746A (zh) 2020-02-04

Family

ID=65495972

Family Applications (4)

Application Number Title Priority Date Filing Date
CN201811353566.7A Pending CN110752746A (zh) 2018-03-14 2018-11-14 开关模式波纹优化
CN201910210843.7A Active CN110690811B (zh) 2018-03-14 2019-03-11 带有旁路开关的电感器
CN201910210859.8A Pending CN110277913A (zh) 2018-03-14 2019-03-11 多功能三象限电桥
CN201910181201.9A Active CN110729890B (zh) 2018-03-14 2019-03-11 自稳定固定导通时间控制设备

Family Applications After (3)

Application Number Title Priority Date Filing Date
CN201910210843.7A Active CN110690811B (zh) 2018-03-14 2019-03-11 带有旁路开关的电感器
CN201910210859.8A Pending CN110277913A (zh) 2018-03-14 2019-03-11 多功能三象限电桥
CN201910181201.9A Active CN110729890B (zh) 2018-03-14 2019-03-11 自稳定固定导通时间控制设备

Country Status (6)

Country Link
US (4) US10243449B1 (zh)
EP (1) EP3540926A1 (zh)
JP (1) JP2019162025A (zh)
KR (1) KR20190108475A (zh)
CN (4) CN110752746A (zh)
TW (4) TWI676340B (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108173414B (zh) * 2017-12-29 2020-04-21 成都芯源系统有限公司 多相变换器及其负载电流瞬态上升检测方法
US10243449B1 (en) * 2018-03-14 2019-03-26 Alpha And Omega Semiconductor (Cayman) Limited Multifunction three quarter bridge
TWI678060B (zh) * 2018-06-13 2019-11-21 朋程科技股份有限公司 電壓轉換器及包括該電壓轉換器的交流發電裝置
US11188105B2 (en) * 2018-10-10 2021-11-30 Smart Prong Technologies, Inc. Electrical circuit for pre-regulation power management
US11431247B1 (en) * 2018-12-13 2022-08-30 Empower Semiconductor, Inc. Power delivery control circuit
US10855166B2 (en) * 2019-03-11 2020-12-01 Infineon Technologies Ag Ripple shaping for switch-mode power supply using number of active phases
KR102674664B1 (ko) * 2019-04-22 2024-06-11 현대자동차주식회사 저전압 직류 변환장치의 전압지령의 분해능을 상향시키는 시스템 및 방법
CN110401329B (zh) * 2019-07-26 2021-07-20 成都芯源系统有限公司 含菊花链架构的多相开关变换器及其故障保护方法
EP3772152B1 (en) * 2019-08-02 2023-10-04 ABB E-mobility B.V. Battery-charger device and related load dump protection method
US11502607B2 (en) * 2019-10-24 2022-11-15 Alpha And Omega Semiconductor (Cayman) Limited Methods and apparatuses for auxiliary transient control system
US11264917B2 (en) 2019-12-12 2022-03-01 Kohler Co. Interleaved inverter
US11303207B2 (en) * 2020-01-13 2022-04-12 Infineon Technologies Austria Ag Method and apparatus for adjusting a voltage regulation setpoint of a power converter
US11502594B2 (en) * 2020-05-19 2022-11-15 Analog Devices International Unlimited Company Switched-mode power converter with ripple attenuation
CN112910252A (zh) * 2021-01-27 2021-06-04 维沃移动通信有限公司 一种电子设备及其控制方法
CN112910250B (zh) * 2021-01-27 2023-11-10 维沃移动通信有限公司 一种电子设备及其控制方法
CN112910251A (zh) * 2021-01-27 2021-06-04 维沃移动通信有限公司 一种电子设备及其控制方法
CN112803761B (zh) * 2021-01-29 2023-07-04 维沃移动通信有限公司 电源管理电路及电子设备
CN113315376A (zh) * 2021-06-21 2021-08-27 哈尔滨工业大学 基于电流纹波优化的可变重数dcdc变换器
US11757351B2 (en) * 2021-07-30 2023-09-12 Texas Instruments Incorporated Dynamic overcurrent limit threshold for a voltage regulator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1536549A2 (en) * 2003-11-28 2005-06-01 Kabushiki Kaisha Toshiba Power supply device
CN102684549A (zh) * 2011-11-22 2012-09-19 河南科技大学 一种自适应主动压电能量采集装置
US20180041060A1 (en) * 2016-08-05 2018-02-08 Avago Technologies General Ip (Singapore) Pte. Ltd. Battery charging architectures

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5668708A (en) * 1996-03-13 1997-09-16 Spellman High Voltage Electronics Corp. DC power supply with reduced ripple
US5929692A (en) 1997-07-11 1999-07-27 Computer Products Inc. Ripple cancellation circuit with fast load response for switch mode voltage regulators with synchronous rectification
US6271651B1 (en) * 2000-04-20 2001-08-07 Volterra Semiconductor Corporation Inductor shorting switch for a switching voltage regulator
WO2002058221A1 (en) * 2001-01-18 2002-07-25 Koninklijke Philips Electronics N.V. A dc/dc up/down converter
US6495995B2 (en) * 2001-03-09 2002-12-17 Semtech Corporation Self-clocking multiphase power supply controller
US6522108B2 (en) 2001-04-13 2003-02-18 Vlt Corporation Loss and noise reduction in power converters
US6509721B1 (en) * 2001-08-27 2003-01-21 Koninklijke Philips Electronics N.V. Buck regulator with ability to handle rapid reduction of load current
TW538586B (en) * 2002-05-27 2003-06-21 Richtek Technology Corp Two-step ripple-free multi-phase converter and the converting method thereof
TWI249287B (en) * 2003-06-25 2006-02-11 Matsushita Electric Works Ltd Electronic switch
US7019507B1 (en) * 2003-11-26 2006-03-28 Linear Technology Corporation Methods and circuits for programmable current limit protection
US7161333B2 (en) * 2004-12-08 2007-01-09 Linear Technology Corporation System and method for determining load current in switching regulators operable in pulse skipping mode
US7652457B2 (en) 2005-09-30 2010-01-26 St-Ericsson Sa Switching regulator circuit including an inductor shunt switch
JP4315208B2 (ja) * 2007-03-20 2009-08-19 富士電機デバイステクノロジー株式会社 スイッチング電源装置の制御回路及び制御方法
KR101252532B1 (ko) * 2007-07-06 2013-04-09 어드밴스드 아날로직 테크놀로지스 인코퍼레이티드 동기식 프리휠링 mosfet를 구비한 부스트 및 업다운 스위칭 레귤레이터
CN101471603B (zh) * 2007-12-27 2010-10-20 英业达股份有限公司 直流到直流降压转换器及纹波改善电路
EP3346611B1 (en) * 2008-02-28 2021-09-22 pSemi Corporation Method and apparatus for use in digitally tuning a capacitor in an integrated circuit device
US7923973B2 (en) * 2008-09-15 2011-04-12 Power Integrations, Inc. Method and apparatus to reduce line current harmonics from a power supply
US8040114B2 (en) * 2008-11-07 2011-10-18 Power Integrations, Inc. Method and apparatus to increase efficiency in a power factor correction circuit
US20110089853A1 (en) * 2009-10-17 2011-04-21 General Electric Company Electronic driver apparatus for large area solid-state leds
US8575910B2 (en) 2010-01-20 2013-11-05 Intersil Americas Inc. Single-cycle charge regulator for digital control
US8405368B2 (en) * 2010-03-26 2013-03-26 Intersil Americas Inc. Multiple phase switching regulator with phase current sharing
US8450988B2 (en) * 2010-10-05 2013-05-28 Maxim Integrated Products, Inc. Systems and methods for controlling inductive energy in DC-DC converters
TW201236340A (en) * 2010-11-08 2012-09-01 Intersil Inc Synthetic ripple regulator with frequency control
DE102011000980B9 (de) * 2011-02-28 2014-12-31 Sma Solar Technology Ag Drossel mit dynamischer Vormagnetisierung
US8878501B2 (en) * 2011-09-01 2014-11-04 Micrel, Inc. Multi-phase power block for a switching regulator for use with a single-phase PWM controller
CN102354972B (zh) * 2011-09-13 2013-08-07 上海交通大学 输出侧开关可控变压器的动态潮流控制装置及其控制方法
CN102332719B (zh) * 2011-09-13 2013-05-08 上海交通大学 多倍频调制可控变压器的动态潮流控制装置及其控制方法
US8982587B2 (en) * 2012-04-23 2015-03-17 Hamilton Sundstrand Corporation Compensating ripple on pulse with modulator outputs
US9178420B1 (en) 2012-08-06 2015-11-03 Maxim Integrated Products, Inc. Inductive bypass, storage and release improves buck response
US20140125306A1 (en) 2012-11-07 2014-05-08 Infineon Technologies North America Corp. Switching Regulator Control with Nonlinear Feed-Forward Correction
CN104009625A (zh) * 2013-02-26 2014-08-27 英特希尔美国公司 响应于电容器上电荷来确定信号的特征
US9787179B1 (en) * 2013-03-11 2017-10-10 Picor Corporation Apparatus and methods for control of discontinuous-mode power converters
US9882474B2 (en) * 2013-05-24 2018-01-30 Idt Europe Gmbh Multi-mode controlled power converter
US9859793B2 (en) * 2014-01-07 2018-01-02 Endura Technologies LLC Switched power stage with inductor bypass and a method for controlling same
TW201701578A (zh) * 2014-03-06 2017-01-01 先進充電技術公司 用於提供電力給電子裝置之電路與電力模組,以及組裝降壓設備之方法
US20170229703A1 (en) * 2014-08-07 2017-08-10 Academia Sinica Method of preparation a battery electrode by spray coating, an electrode and a battery made by method thereof
US10862398B2 (en) * 2015-02-03 2020-12-08 Astec International Limited DC-DC power converter for use in data communications distributed power architecture
US10069421B2 (en) * 2015-02-05 2018-09-04 Infineon Technologies Austria Ag Multi-phase switching voltage regulator having asymmetric phase inductance
US9673710B2 (en) * 2015-06-05 2017-06-06 Endura IP Holdings Ltd. Voltage regulator current load sensing
US9712055B1 (en) * 2015-10-21 2017-07-18 Picor Corporation Zero voltage switching energy recovery control of discontinuous PWM switching power converters
TWM520767U (zh) * 2016-01-29 2016-04-21 Chyng Hong Electronic Co Ltd 可達1 MHz開關頻率之多相式直流電源供應器
US10193442B2 (en) * 2016-02-09 2019-01-29 Faraday Semi, LLC Chip embedded power converters
US20170237349A1 (en) * 2016-02-12 2017-08-17 Alcatel-Lucent Canada Inc. Multi-master power controller with multiple feedback loops
CN107124103B (zh) * 2016-02-25 2020-04-14 株式会社村田制作所 Dc/dc转换装置
US9931944B2 (en) * 2016-03-22 2018-04-03 Ford Global Technologies, Llc Variable voltage convert system with reduced bypass diode conduction
US10492848B2 (en) * 2016-05-10 2019-12-03 Covidien Lp Ancillary circuit to induce zero voltage switching in a power converter
CN108604230A (zh) * 2016-07-14 2018-09-28 微软技术许可有限责任公司 具有职业和非职业内容的用户馈送
US10243449B1 (en) * 2018-03-14 2019-03-26 Alpha And Omega Semiconductor (Cayman) Limited Multifunction three quarter bridge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1536549A2 (en) * 2003-11-28 2005-06-01 Kabushiki Kaisha Toshiba Power supply device
CN102684549A (zh) * 2011-11-22 2012-09-19 河南科技大学 一种自适应主动压电能量采集装置
US20180041060A1 (en) * 2016-08-05 2018-02-08 Avago Technologies General Ip (Singapore) Pte. Ltd. Battery charging architectures

Also Published As

Publication number Publication date
US10224805B1 (en) 2019-03-05
TWI711245B (zh) 2020-11-21
CN110690811B (zh) 2021-07-30
US10574132B2 (en) 2020-02-25
TW202007060A (zh) 2020-02-01
US20190288591A1 (en) 2019-09-19
CN110729890B (zh) 2021-02-05
US10243465B1 (en) 2019-03-26
EP3540926A1 (en) 2019-09-18
JP2019162025A (ja) 2019-09-19
CN110690811A (zh) 2020-01-14
US10243449B1 (en) 2019-03-26
TWI713293B (zh) 2020-12-11
TWI676340B (zh) 2019-11-01
TW202007045A (zh) 2020-02-01
KR20190108475A (ko) 2019-09-24
TW202008697A (zh) 2020-02-16
CN110729890A (zh) 2020-01-24
TWI732188B (zh) 2021-07-01
TW201943196A (zh) 2019-11-01
CN110277913A (zh) 2019-09-24

Similar Documents

Publication Publication Date Title
US10224805B1 (en) Switched-mode ripple optimization
EP3413448B1 (en) Power supply control and use of generated ramp signal
EP2230755B1 (en) Charge current reduction for current limited switched power supply
US8044642B2 (en) Power supply device capable of stably supplying output voltage with increased responsiveness
US9577529B2 (en) Energy harvesting circuit and method
US9287776B2 (en) Low power switching mode regulator having automatic PFM and PWM operation
WO2014152967A2 (en) Methods and apparatus for a single inductor multiple output (simo) dc-dc converter circuit
US10404165B2 (en) Adaptive switching frequency adjustment for a power supply
Nakase et al. 0.5 V start-up 87% efficiency 0.75 mm² on-chip feed-forward single-inductor dual-output (SIDO) boost DC-DC converter for battery and solar cell operation sensor network micro-computer integration
TWI741625B (zh) 用於功率級的自動電流共享的功率轉換系統
CN115882739A (zh) 电源电压调节方法、整流电源、控制电路
CN111740596A (zh) 电源系统以及使用复合效率控制多个功率转换器的方法
CN112019047B (zh) 用于功率级的自动电流共享
Ghosh et al. Analysis of a Hysteresis Current Control DC–DC Buck Converter Suitable for Wide Range of Operating Conditions
US20230231479A1 (en) Charging integrated circuit including bidirectional switching converter, and electronic device including the same
Babenko et al. Multichannel Battery Power Supply System Having Time-Divided Conversion Channels
KR20230071036A (ko) 양방향 스위칭 컨버터를 포함하는 충전 집적 회로, 및 이를 포함하는 전자 장치
CN112787506A (zh) 带有分段线性负载线的电压调制器
Mishra et al. Dynamic response optimization of the synthetic ripple modulator for a point-of-load converter with adaptive voltage positioning

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200204