CN110747457A - 一种基于陶瓷碳/碳组合激光增强铁路道岔锻压模具的方法 - Google Patents

一种基于陶瓷碳/碳组合激光增强铁路道岔锻压模具的方法 Download PDF

Info

Publication number
CN110747457A
CN110747457A CN201911121446.9A CN201911121446A CN110747457A CN 110747457 A CN110747457 A CN 110747457A CN 201911121446 A CN201911121446 A CN 201911121446A CN 110747457 A CN110747457 A CN 110747457A
Authority
CN
China
Prior art keywords
carbon
laser
strengthening
ceramic
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911121446.9A
Other languages
English (en)
Inventor
鹿广清
汤铁兵
魏振华
蒋宝文
吴天峰
李国辉
徐�明
刘兆环
刘金侠
孟凡江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tangshan City Atlas Metallurgical Equipment Manufacturing Co Ltd
China Railway Hi Tech Industry Corp Ltd
China Railway Shanhaiguan Bridge Group Co Ltd
Original Assignee
Tangshan City Atlas Metallurgical Equipment Manufacturing Co Ltd
China Railway Hi Tech Industry Corp Ltd
China Railway Shanhaiguan Bridge Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tangshan City Atlas Metallurgical Equipment Manufacturing Co Ltd, China Railway Hi Tech Industry Corp Ltd, China Railway Shanhaiguan Bridge Group Co Ltd filed Critical Tangshan City Atlas Metallurgical Equipment Manufacturing Co Ltd
Priority to CN201911121446.9A priority Critical patent/CN110747457A/zh
Publication of CN110747457A publication Critical patent/CN110747457A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • B22D17/2209Selection of die materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Forging (AREA)

Abstract

本发明属于铁路道岔锻压模具的增强方法技术领域,提出了一种基于陶瓷碳/碳组合激光增强铁路道岔锻压模具的方法,采用陶瓷碳/碳组合激光增强材料对道岔锻压模具表面进行激光强化处理,陶瓷碳/碳组合激光增强材料包括主强化相材料和辅助强化相材料,主强化相材料为碳/碳复合材料,辅助强化相材料包括B基碳化物、Ti基碳化物、Si基碳化物和Al基碳化物,碳/碳复合材料由等质量的微米级WC和微米级碳/碳材料复合成,辅助强化相材料为纳米级。通过上述技术方案,解决了现有技术中道岔锻压模具易磨损、使用寿命短的问题。

Description

一种基于陶瓷碳/碳组合激光增强铁路道岔锻压模具的方法
技术领域
本发明属于铁路道岔锻压模具的增强方法技术领域,涉及一种基于陶瓷碳/碳组合激光增强铁路道岔锻压模具的方法。
背景技术
铁路道岔AT钢轨跟端锻压模具是4Cr5MoSiV1钢制造,模具在锻压过程中承受1150℃高温,压制后立即水冷至300℃,在此交变温度下循环式进行锻压作业。锻压模具在热冷交变和高载荷压力的工况条件下,在压制200个左右道岔部件后,模具工作面出现了严重的磨损,受力最大部位发生了压溃,严重者产生裂纹或者断裂报废,使得锻压生产效率降低、生产成本高,同时,影响了道岔产品质量。
发明内容
本发明提出一种基于陶瓷碳/碳组合激光增强铁路道岔锻压模具的方法,解决了现有技术中道岔锻压模具易磨损、使用寿命短的问题。
本发明的技术方案是这样实现的:
一种基于陶瓷碳/碳组合激光增强铁路道岔锻压模具的方法,采用陶瓷碳/碳组合激光增强材料对道岔锻压模具表面进行激光强化处理,所述陶瓷碳/碳组合激光增强材料包括主强化相材料和辅助强化相材料,
所述主强化相材料为碳/碳复合材料,所述辅助强化相材料包括B基碳化物、Ti基碳化物、Si基碳化物和Al基碳化物。
作为进一步的技术方案,所述陶瓷碳/碳组合激光增强材料中,
所述碳/碳复合材料的重量份为50~70份,所述辅助强化相材料中各组分的重量份为:B基碳化物0.5~1.5份,Ti基碳化物10~17份,Si基碳化物15~21份,Al基碳化物4~8份。
作为进一步的技术方案,所述碳/碳复合材料由等质量的微米级WC和微米级碳/碳材料复合成,所述辅助强化相材料为纳米级。
作为进一步的技术方案,所述激光强化处理具体包括以下步骤:
S1.喷送陶瓷碳/碳组合激光增强材料:将陶瓷碳/碳组合激光增强材料喷送至模具待处理表面,形成均匀的组合增强材料层;
S2.模具表面激光增强处理:对带有组合增强材料层的模具工作表面进行激光增强处理。
作为进一步的技术方案,步骤S2之后还包括
步骤S3.稳定化工艺处理:将激光增强处理后的模具在180~195℃保温4~6小时。
作为进一步的技术方案,所述组合增强材料层的厚度为0.5~1.5mm。
作为进一步的技术方案,步骤S1中喷送使用气动送粉器与激光束同步行进方式进行。
作为进一步的技术方案,步骤S2中激光增强处理使用半导体激光器,功率为1200~2500W,激光照射尺寸为2*10~30mm,步进速度为20~80mm/s。
本发明的工作原理及有益效果为:
1、本发明中,采用陶瓷碳/碳组合激光增强材料对道岔锻压模具表面进行激光强化处理,在模具的工作表面0.5-1.5mm深度层内,形成了高度弥散分布的微米——纳米增强微粒材料组成的过饱和微观组织层,处理后的模具具有耐磨损、抗疲劳、抗冷热交变、抗挤压、防氧化等性能,显著改善了模具的使用性能指标,相比较未经处理的模具,使用寿命提高近两倍,有效解决了现有技术中道岔锻压模具易磨损、使用寿命短的问题。
2、本发明中,采用陶瓷碳/碳微米复合材料作为主体强化相材料对道岔热压模具工作表面实施激光强化处理,充分利用碳/碳材料的高强度、高导热性、高比模量、低膨胀系数和抗冲击、耐1650-3000℃高温性能,并在微米级的碳/碳材料内复合微米级WC材料,获得一种陶瓷碳/碳微米复合梯度材料。这样,进一步增强了碳/碳材料在激光强化时的高温硬度和强度及热稳定性。
3、本发明中,在陶瓷碳/碳微米复合材料基础上,加入纳米级别B、Ti、Si、Al等基碳化物作为辅助强化相,形成陶瓷碳/碳微米——纳米组合材料,在激光强化处理过程中,可以充分的呈现出组合材料的高度弥散性能和高温状态下的极易沉积与固溶强化性能,使经过陶瓷碳/碳组合激光增强处理后的模具具备高耐磨、高红硬性、高热稳定性及阻抗强化层和基体材料产生裂纹的能力,可以达到模具激光增强化预定的性能效果。
4、本发明中,激光增强处理后的模具再经过稳定化处理,稳定了增强层的微观组织形态,改善了增强层内材料的脆性,进一步完善了激光增强处理层的强韧化性能。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本发明组合增强材料层在100倍金相显微镜下观察得到的金相显微组织图;
图2为本发明组合增强材料层在500倍金相显微镜下观察得到的金相显微组织图。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种基于陶瓷碳/碳组合激光增强铁路道岔锻压模具的方法,包括以下步骤:
S1.喷送陶瓷碳/碳组合激光增强材料:将微米级WC和微米级碳/碳材料按相同质量比例复合成50份碳/碳复合材料,在此基础上,添加纳米级B基碳化物0.5份、纳米级Ti基碳化物10份、纳米级Si基碳化物15份、纳米级Al基碳化物4份混合,得到陶瓷碳/碳组合激光增强材料;
将模具待处理表面清理干净,使用气动送粉器与激光束同步行进方式,将陶瓷碳/碳组合激光增强材料喷送至模具待处理表面,形成均匀厚度的组合增强材料层,厚度为0.5~1.5mm;
S2.模具表面激光增强处理:使用半导体激光器,功率2300W,采用示教式机器人控制,激光照射尺寸2*25mm,步进速度70mm/s,对带有组合增强材料层的模具工作表面进行激光增强处理。
S3.稳定化工艺处理:采用电炉加热,将激光增强处理后的模具在185℃保温4小时。
实施例2
一种基于陶瓷碳/碳组合激光增强铁路道岔锻压模具的方法,包括以下步骤:
S1.喷送陶瓷碳/碳组合激光增强材料:将微米级WC和微米级碳/碳材料按相同质量比例复合成70份碳/碳复合材料,在此基础上,添加纳米级B基碳化物1.5份、纳米级Ti基碳化物17份、纳米级Si基碳化物21份、纳米级Al基碳化物8份混合,得到陶瓷碳/碳组合激光增强材料;
将模具待处理表面清理干净,使用气动送粉器与激光束同步行进方式,将陶瓷碳/碳组合激光增强材料喷送至模具待处理表面,形成均匀厚度的组合增强材料层,厚度为0.5~1.5mm;
S2.模具表面激光增强处理:使用半导体激光器,功率2300W,采用示教式机器人控制,激光照射尺寸2*25mm,步进速度70mm/s,对带有组合增强材料层的模具工作表面进行激光增强处理。
S3.稳定化工艺处理:采用电炉加热,将激光增强处理后的模具在185℃保温4小时。
实施例3
一种基于陶瓷碳/碳组合激光增强铁路道岔锻压模具的方法,包括以下步骤:
S1.喷送陶瓷碳/碳组合激光增强材料:将微米级WC和微米级碳/碳材料按相同质量比例复合成60份碳/碳复合材料,在此基础上,添加纳米级B基碳化物1份、纳米级Ti基碳化物13份、纳米级Si基碳化物18份、纳米级Al基碳化物6份混合,得到陶瓷碳/碳组合激光增强材料;
将模具待处理表面清理干净,使用气动送粉器与激光束同步行进方式,将陶瓷碳/碳组合激光增强材料喷送至模具待处理表面,形成均匀厚度的组合增强材料层,厚度为0.5~1.5mm;
模具表面激光增强处理:使用半导体激光器,功率2300W,采用示教式机器人控制,激光照射尺寸2*25mm,步进速度70mm/s,对带有组合增强材料层的模具工作表面进行激光增强处理。
S3.稳定化工艺处理:采用电炉加热,将激光增强处理后的模具在185℃保温4小时。
实施例4
一种基于陶瓷碳/碳组合激光增强铁路道岔锻压模具的方法,包括以下步骤:
S1.喷送陶瓷碳/碳组合激光增强材料:将微米级WC和微米级碳/碳材料按相同质量比例复合成60份碳/碳复合材料,在此基础上,添加纳米级B基碳化物1份、纳米级Ti基碳化物13份、纳米级Si基碳化物18份、纳米级Al基碳化物6份混合,得到陶瓷碳/碳组合激光增强材料;
将模具待处理表面清理干净,使用气动送粉器与激光束同步行进方式,将陶瓷碳/碳组合激光增强材料喷送至模具待处理表面,形成均匀厚度的组合增强材料层,厚度为0.5~1.5mm;
S2.模具表面激光增强处理:使用半导体激光器,功率1200W,采用示教式机器人控制,激光照射尺寸2*30mm,步进速度80mm/s,对带有组合增强材料层的模具工作表面进行激光增强处理。
S3.稳定化工艺处理:采用电炉加热,将激光增强处理后的模具在180℃保温6小时。
实施例5
一种基于陶瓷碳/碳组合激光增强铁路道岔锻压模具的方法,包括以下步骤:
S1.喷送陶瓷碳/碳组合激光增强材料:将微米级WC和微米级碳/碳材料按相同质量比例复合成60份碳/碳复合材料,在此基础上,添加纳米级B基碳化物1份、纳米级Ti基碳化物13份、纳米级Si基碳化物18份、纳米级Al基碳化物6份混合,得到陶瓷碳/碳组合激光增强材料;
将模具待处理表面清理干净,使用气动送粉器与激光束同步行进方式,将陶瓷碳/碳组合激光增强材料喷送至模具待处理表面,形成均匀厚度的组合增强材料层,厚度为0.5~1.5mm;
S2.模具表面激光增强处理:使用半导体激光器,功率1200W,采用示教式机器人控制,激光照射尺寸2*10mm,步进速度20mm/s,对带有组合增强材料层的模具工作表面进行激光增强处理。
S3.稳定化工艺处理:采用电炉加热,将激光增强处理后的模具在195℃保温4小时。
将经过激光增强处理后的模具投产使用,发现相比较未经处理的模具,经过激光增强处理后的模具使用寿命提高了近2倍。
图1~2分别为实施例1的组合增强材料层在金相显微镜下放大100倍、放大500倍得到的金相显微组织图,图1中白亮区和灰色区为组合增强材料层,图2为组合增强材料层与基体层之间的过滤层,经过激光增强处理后的模具,在其工作表面1.2mm深度内形成高度弥散分布的微米——纳米增强颗粒组成的过饱和微观组织层。实施例2~5的组合增强材料层的金相显微组织图与实施例1几乎无差别,故省略实施例2~5的金相显微组织。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种基于陶瓷碳/碳组合激光增强铁路道岔锻压模具的方法,其特征在于,采用陶瓷碳/碳组合激光增强材料对道岔锻压模具表面进行激光强化处理,所述陶瓷碳/碳组合激光增强材料包括主强化相材料和辅助强化相材料,
所述主强化相材料为碳/碳复合材料,所述辅助强化相材料包括纳米级B基碳化物、Ti基碳化物、Si基碳化物和Al基碳化物。
2.根据权利要求1所述的一种基于陶瓷碳/碳组合激光增强铁路道岔锻压模具的方法,其特征在于,所述陶瓷碳/碳组合激光增强材料中,
所述碳/碳复合材料的重量份为50~70份,
所述辅助强化相材料中各组分的重量份为:纳米级B基碳化物0.5~1.5份,Ti基碳化物10~17份,Si基碳化物15~21份,Al基碳化物4~8份。
3.根据权利要求1所述的一种基于陶瓷碳/碳组合激光增强铁路道岔锻压模具的方法,其特征在于,所述碳/碳复合材料由等质量的微米级WC和微米级碳/碳材料复合而成,所述辅助强化相材料为纳米级。
4.根据权利要求1所述的一种基于陶瓷碳/碳组合激光增强铁路道岔锻压模具的方法,其特征在于,所述激光强化处理具体包括以下步骤:
S1.喷送陶瓷碳/碳组合激光增强材料:将陶瓷碳/碳组合激光增强材料喷送至模具待处理表面,形成均匀的组合增强材料层;
S2.模具表面激光增强处理:对带有组合增强材料层的模具工作表面进行激光增强处理。
5.根据权利要求4所述的一种基于陶瓷碳/碳组合激光增强铁路道岔锻压模具的方法,其特征在于,步骤S2之后还包括
步骤S3.稳定化工艺处理:将激光增强处理后的模具在180~195℃保温4~6小时。
6.根据权利要求4所述的一种基于陶瓷碳/碳组合激光增强铁路道岔锻压模具的方法,其特征在于,所述组合增强材料层的厚度为0.5~1.5mm。
7.根据权利要求4所述的一种基于陶瓷碳/碳组合激光增强铁路道岔锻压模具的方法,其特征在于,步骤S1中喷送使用气动送粉器与激光束同步行进方式进行。
8.根据权利要求4所述的一种基于陶瓷碳/碳组合激光增强铁路道岔锻压模具的方法,其特征在于,步骤S2中激光增强处理使用半导体激光器,功率为1200~2500W,激光照射尺寸为2*10~30mm,步进速度为20~80mm/s。
CN201911121446.9A 2019-11-15 2019-11-15 一种基于陶瓷碳/碳组合激光增强铁路道岔锻压模具的方法 Pending CN110747457A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911121446.9A CN110747457A (zh) 2019-11-15 2019-11-15 一种基于陶瓷碳/碳组合激光增强铁路道岔锻压模具的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911121446.9A CN110747457A (zh) 2019-11-15 2019-11-15 一种基于陶瓷碳/碳组合激光增强铁路道岔锻压模具的方法

Publications (1)

Publication Number Publication Date
CN110747457A true CN110747457A (zh) 2020-02-04

Family

ID=69283442

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911121446.9A Pending CN110747457A (zh) 2019-11-15 2019-11-15 一种基于陶瓷碳/碳组合激光增强铁路道岔锻压模具的方法

Country Status (1)

Country Link
CN (1) CN110747457A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101748403A (zh) * 2009-12-28 2010-06-23 天津大族烨峤激光技术有限公司 耐磨板的复合强化方法
US20130068735A1 (en) * 2010-03-25 2013-03-21 Osaka University Method for forming metal membrane
CN104671814A (zh) * 2015-01-19 2015-06-03 中南大学 一种C/C-SiC-ZrC-TiC复合材料及其制备方法
CN105174991A (zh) * 2015-09-25 2015-12-23 浙江工业大学 一种激光熔敷技术用于连接陶瓷与金属的新方法
KR101702970B1 (ko) * 2015-12-08 2017-02-09 한국원자력연구원 물리적 기상증착법 및 화학적 기상증착법의 융합에 의한 흑연 또는 탄소/탄소 복합재 표면에 세라믹 소재의 코팅재를 코팅하는 방법
CN106835124A (zh) * 2017-03-06 2017-06-13 唐山市兆寰冶金装备制造有限公司 一种轧辊表面金属间化合物复合激光增韧强化工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101748403A (zh) * 2009-12-28 2010-06-23 天津大族烨峤激光技术有限公司 耐磨板的复合强化方法
US20130068735A1 (en) * 2010-03-25 2013-03-21 Osaka University Method for forming metal membrane
CN104671814A (zh) * 2015-01-19 2015-06-03 中南大学 一种C/C-SiC-ZrC-TiC复合材料及其制备方法
CN105174991A (zh) * 2015-09-25 2015-12-23 浙江工业大学 一种激光熔敷技术用于连接陶瓷与金属的新方法
KR101702970B1 (ko) * 2015-12-08 2017-02-09 한국원자력연구원 물리적 기상증착법 및 화학적 기상증착법의 융합에 의한 흑연 또는 탄소/탄소 복합재 표면에 세라믹 소재의 코팅재를 코팅하는 방법
CN106835124A (zh) * 2017-03-06 2017-06-13 唐山市兆寰冶金装备制造有限公司 一种轧辊表面金属间化合物复合激光增韧强化工艺

Similar Documents

Publication Publication Date Title
Zhou et al. Progress in research on hybrid metal matrix composites
Hu et al. Layered ternary MAX phases and their MX particulate derivative reinforced metal matrix composite: A review
CN110129674B (zh) 一种激光熔覆制备的梯度材料钢轨辙叉
CN100554510C (zh) 激光快速成形专用铁基粉料
Wang et al. SiC nanoparticles reinforced magnesium matrix composites fabricated by ultrasonic method
Ding et al. Fabrication of (TiB/Ti)-TiAl composites with a controlled laminated architecture and enhanced mechanical properties
TW457154B (en) Electrode for surface treatment by electric discharge, process for making the same, method and apparatus for surface treatment by electric discharge
Sharma et al. Fundamentals of spark plasma sintering (SPS): an ideal processing technique for fabrication of metal matrix nanocomposites
CN107460391B (zh) 一种添加石墨烯的梯度硬质合金刀具材料及其快速制备方法
CN111014669A (zh) 一种原位纳米TiB晶须增强钛基复合材料的制备方法
CN101210325B (zh) 一种用于热锻模具的纳米复合耐磨涂层组合物及其应用
Majzoobi et al. Mechanical characterization of Mg-B 4 C nanocomposite fabricated at different strain rates
Qiu et al. Fabrication and wear behavior of ZTA particles reinforced iron matrix composite produced by flow mixing and pressure compositing
CN108286010A (zh) 一种原位形成TiC增强高铬铸铁耐磨材料及其制备方法
CN102676956B (zh) 一种原位合成铁基表面复合材料的制备方法
Wang et al. Recent advances in wear-resistant steel matrix composites: A review of reinforcement particle selection and preparation processes
CN109852924A (zh) 一种纳米、纳微米碳材料增强超细晶粒表层组织的配方、制备方法和具有该表层组织的钢材
CN109663900A (zh) 一种钢铁基复合板锤及其制备方法
CN110747457A (zh) 一种基于陶瓷碳/碳组合激光增强铁路道岔锻压模具的方法
CN102352507B (zh) 一种铸铁板的合金碳化物表面强化工艺
Shao et al. Microstructures and interfacial interactions of Al2O3 whiskers and graphene nano-platelets co-reinforced copper matrix composites
CN102864453B (zh) 激光熔覆原位合成硼化物陶瓷涂层及其制备方法
CN108642315B (zh) 利用回收的SiCp/Al复合材料制备团簇型铝基复合材料的方法
Song et al. Effect of hot pressing temperature on microstructure, mechanical properties and grinding performance of vitrified-metal bond diamond wheels
CN109402443A (zh) 一种钢铁基复合耐磨件及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200204

RJ01 Rejection of invention patent application after publication