CN110747208A - 一种木薯硝酸还原酶基因及其过量表达载体的构建和抗病应用 - Google Patents

一种木薯硝酸还原酶基因及其过量表达载体的构建和抗病应用 Download PDF

Info

Publication number
CN110747208A
CN110747208A CN201911187208.8A CN201911187208A CN110747208A CN 110747208 A CN110747208 A CN 110747208A CN 201911187208 A CN201911187208 A CN 201911187208A CN 110747208 A CN110747208 A CN 110747208A
Authority
CN
China
Prior art keywords
gene
cassava
menr1
vector
pbi121
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911187208.8A
Other languages
English (en)
Other versions
CN110747208B (zh
Inventor
施海涛
王鹏
闫语
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan University
Original Assignee
Hainan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan University filed Critical Hainan University
Priority to CN201911187208.8A priority Critical patent/CN110747208B/zh
Publication of CN110747208A publication Critical patent/CN110747208A/zh
Application granted granted Critical
Publication of CN110747208B publication Critical patent/CN110747208B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0044Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on other nitrogen compounds as donors (1.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8281Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for bacterial resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y107/00Oxidoreductases acting on other nitrogenous compounds as donors (1.7)
    • C12Y107/01Oxidoreductases acting on other nitrogenous compounds as donors (1.7) with NAD+ or NADP+ as acceptor (1.7.1)
    • C12Y107/01001Nitrate reductase (NADH) (1.7.1.1)

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供了一种木薯硝酸还原酶基因及其过量表达载体的构建和抗病应用,属于植物基因工程技术领域。本发明从木薯中分离获得一种基因,其CDS的核苷酸序列如SEQ ID No.1所示。木薯MeNR1基因过量表达载体的构建:从华南124号木薯叶片中提取RNA后反转录为cDNA,以MeNR1基因CDS区全长基因序列作为基因过量表达载体插入片段,选用XbaI和SmaI酶切位点设计pBI121同源引物,以获得cDNA为模板进行扩增得到MeNR1基因编码区全长序列,切胶回收后通过同源连接到植物过量表达载体pBI121中,得到pBI121‑MeNR1基因过量表达载体。通过构建MeNR1基因的过量表达载体,注射木薯叶片,获得有效的瞬时MeNR1基因过量表达植株,为研究木薯基因功能提供了一个快速有效的方法。

Description

一种木薯硝酸还原酶基因及其过量表达载体的构建和抗病 应用
技术领域
本发明属于植物基因工程技术领域,具体而言,涉及一种增强木薯对病原菌Xam(Xanthomonas axonopodis pv.manihotis)抗性的木薯硝酸还原酶(NR1)基因,同时还涉及一种木薯NR1基因过表达载体构建方法,以及一种木薯NR1基因过表达载体在增强植物对病原菌Xam抗性中的用途。
背景技术
瞬时表达技术是在相对短的时间内将目标基因转入靶细胞,在细胞内建立暂时高效的表达系统,从而获得该目的基因短暂高水平表达的技术。当外源基因导入植物细胞中以后,其表达方式有瞬时表达(transient expression)和稳定表达(stable expression)两种,与稳定表达相比,瞬时表达所用时间较短,不需要经过遗传转化即可在相对短的时间内将目标基因转入靶细胞,在细胞内建立暂时高效的表达系统,从而获得该目的基因短暂的高水平表达。该技术周期短、效率高、成本低等特点为植物基因功能的鉴定提供了高效便捷的途径。
木薯,学名Manihot esculenta Crantz,又称南阳薯、树薯,属于大戟科木薯属,多年生直立灌木。木薯是世界三大薯类作物之一,单位面积产量高,远超小麦、玉米、水稻、高粱等,且富含淀粉,有“淀粉之王”和“地下粮仓”等美誉。木薯有很高的食用价值,全球产量的65%用来食用,是热带低收入农户的主要粮食来源,全球有6亿人口以木薯为主要粮食作物。木薯还有很高的工业价值,木薯干片是生产燃料乙醇的重要原料。随着全球经济的快速发展,环境污染严重,全球能源紧缺,利用生物质能作为燃料已经成为全球热点之一,用木薯生产乙醇是最环保并且充分利用生物质能的方法,这对木薯种植业来说是一个机遇,也是一个巨大的挑战。因此,选育木薯优良抗病品种,提高木薯产量是重中之重。
木薯虽然有着很强的适应能力,但是也有很多病害困扰,例如木薯花叶病、炭疽病、桂皮病、细菌性枯萎病等,特别是细菌性枯萎病,给木薯带来了严重的危害。木薯细菌性枯萎病是一种世界性的细菌性病害,致病菌是地毯草黄单胞菌(Xanthomonas axonopodispv.Manihotis,Xam),最早发生在拉丁美洲,后来通过块根繁殖在世界范围内传播。亚洲首次出现正式报道于1972年,现在该病广泛出现在亚洲、非洲、拉丁美洲的木薯产区,给多个国家特别是非洲和南美洲国家的木薯生产带来毁灭性的打击。在我国,木薯细菌性枯萎病首先在台湾省发生流行,后来在广东深圳、海南儋州、广西北海等地相继发生。目前,根据李超平等人统计,木薯细菌性枯萎病已经在我国云南、海南、广西、广东、江西等木薯产区普遍发生,危害严重。
硝酸还原酶(Nitrate Reductase,NR)是一种氧化还原酶,是氮代谢过程中一个重要的调节酶和限速酶。目前,关于MeNR1基因在木薯中的功能研究尚未见报道。
发明内容
鉴于现有技术的不足,本发明的目的在于提供了一种木薯NR1基因,以及增强植物对Xam等病原菌抗性的木薯MeNR1基因过量表达体系,该基因的过量表达可以增强植物对病害的抗性,从而应用于抗性育种。
为了完成上述技术目的,本发明人通过大量试验并结合多年来对木薯的研究经验,最终获得了如下技术方案:一种木薯硝酸还原酶编码基因,其CDS区的核苷酸序列如SEQID No.1所示。
一种木薯硝酸还原酶编码基因过量表达体系,其包含在基因过量表达载体上插入木薯硝酸还原酶编码基因的CDS区得到的重组载体,所述CDS区的核苷酸序列如SEQ IDNo.1所示。
进一步优选地,如上所述的硝酸还原酶编码基因过量表达体系,其中的基因过量表达载体为pBI121载体。
本发明还提供了一种pBI121介导的基因过量表达体系中的基因载体的构建方法,该方法的步骤如下:
(1)以权利要求1所述木薯硝酸还原酶编码基因的CDS区核苷酸序列作为基因过量表达体系的插入片段,根据pBI121载体序列,选用XbalI和SmaI酶切位点设计同源引物NR1-F和NR1-R;
(2)以华南124号木薯cDNA为模板进行PCR扩增,所得PCR产物进行琼脂糖凝胶电泳,用胶回收试剂盒回收目的片段,将目的片段连接到pEASY-Blunt3载体,得到pEASY-Blunt3-MeNR1,转化到到大肠杆菌DH5α,涂布于含有氨苄抗性的LB固体培养基,培养后挑选单菌落进行PCR检测,将PCR检测后得到的阳性克隆菌液测序;
(3)测序比对正确后,提取所述pEASY-Blunt3-MeNR1后作为模板,使用步骤(1)设计的同源引物NR1-F和NR1-R扩增,得到的片段胶回收后,与经同样双酶切线性化的空载体pBI121混合后加入同源连接酶连接,转化到大肠杆菌DH5α中,涂布于含有卡纳抗性的LB固体培养基,培养后挑选单菌落进行PCR检测,将PCR检测的得到的阳性克隆提取质粒,用XbalI和SmaI酶切验证,得到pBI121-MeNR1基因过量表达载体。
进一步优选地,如上所述pBI121介导的基因过量表达体系中的基因载体的构建方法,其中步骤(1)中所述的NR1-F引物序列如SEQ ID No.2所示,所述的NR1-F和NR1-R引物序列如SEQ ID No.3所示。
NR1-F:5’-TTGGAGAGAACACGGGGGACTCTAGAATGAACACTTCCTCGAACACC-3’
NR1-R:5’-TAACATAAGGGACTGACCACCCGGGTCAGAAGACTAGCAAGGAA-3’。
由于木薯MeNR1基因的过量表达著增强了植物对病原菌Xam的抗性,因此本发明的另一个目的在于提供上述方法构建的pBI121-MeNR1基因过量表达载体在木薯抗病害中的应用。具体地,将转有pBI121-MeNR1基因过量表达载体的农杆菌菌液注射在木薯叶片背面。所述的病害为木薯细菌性萎蔫病。
与现有技术相比,本发明涉及的MeNR1编码基因及其基因过表达体系其具有以下优点和进步性:
(1)通过克隆该基因,运用分子生物学及基因工程技术证实了过量表达该基因可以有效增强木薯植株对病原菌Xam抗性的功能。另外,通过过量表达该基因,可以获得瞬时抗病性增强的木薯材料,为实现抗性分子育种提供新的参考。
(2)通过构建该基因的过量表达载体(pBI121-MeNR1),能快速高效地增强MeNR1基因的表达水平,即pBI121-MeNR1注射木薯叶片后,可获得有效的瞬时MeNR1基因过量表达木薯,为研究基因功能提供了一个有效的方法。
(3)在本发明基因过量表达体系基础上建立完成的木薯叶片侵染病原菌Xam时,通过比较MeNR1基因过量表达木薯与对照组木薯的抗病性,发现pBI121-MeNR1基因过表达的木薯在病原菌Xam侵染后叶片的细菌数目比华南124号木薯的少5%左右。
附图说明
图1:过量表达植株中MeNR1基因的表达量。
图2:MeNR1基因过表达木薯中细菌性枯萎病的细菌数目统计。
具体实施方式
以下结合具体实施例对本发明做出更详细的描述。根据以下描述和这些实施例,本领域技术人员可以确定本发明的基本特征和技术效果。并且,在不偏离本发明精神和范围的前提下,可以对本发明做出各种改变和修改,以使其适用各种用途和条件。
实施例1:木薯MeNR1基因过量表达载体的构建
(1)木薯MeNR1基因CDS序列的克隆
取适量华南124号木薯叶片置于经液氮冷却后的研钵中,加适量液氮,将木薯叶片研磨成细粉状,参照RNAprep Pure多糖多酚植物总RNA提取试剂盒说明书(购自天根生化科技(北京)有限公司,以下相同),提取木薯总RNA。用蛋白检测仪(DΜ650BECKMAN,ΜSA)分别测定RNA在260nm和280nm处的光吸收值以及RNA浓度,并用1.5%(质量体积比)琼脂糖凝胶电泳检测RNA纯度。根据反转录试剂盒(购自Thermo Fermentas,以下相同)说明书,将RNA反转录为cDNA置于-40℃冰箱保存备用。
通过设计引物,我们首次克隆获得了木薯MeNR1基因的全长序列,MeNR1基因CDS区全长基因序列如SEQ ID NO:1所示。以MeNR1基因CDS区全长基因序列作为基因过量表达体系插入片段,根据pBI121载体序列选用XbaI和SmaI酶切位点设计同源引物NR1-F(TTGGAGAGAACACGGGGGACTCTAGAATGAACACTTCCTCGAACACC)和NR1-R(TAACATAAGGGACTGACCACCCGGGTCAGAAGACTAGCAAGGAA),以木薯叶片的cDNA为模版,进行PCR扩增,用DNA纯化回收试剂盒(购自天根生化有限公司,以下相同)回收并纯化扩增的PCR产物。PCR反应体系为:5×TransStrat FastPfu Buffer、2.5mM dNTPs 4μL、TransStrat FastPfu DNAPolymerase(购自全式金生物技术有限公司)1μL、CAMTA-F 1μL、CAMTA-R 1μL,加无菌水至50μL。反应程序为:95℃变性3min,95℃30s、55℃30s、72℃1min 32循环,72℃延伸10min(以下相同)。
(2)pBI121-MeNR1基因过量表达载体的构建
将回收得到的目的片段按以下体系连接到克隆载体pEASY-Blunt3:目的基因DNA片段3μL和0.6μL的
Figure BDA0002292680110000041
-Blunt3CloningVector,短暂离心混匀,置于37℃水浴锅中反应30min,转化到大肠杆菌DH5α,涂布于含有氨苄抗性的LB固体培养基(配方如下:称取10g胰蛋白胨,5g酵母提取物和10g氯化钠,定容于1000毫升,分装于200mL三角瓶中,固体培养基中加入2%的琼脂,121℃,6.859×104Pa下高压灭菌20分钟。4℃冷藏备用,以下相同),37℃过夜培养,挑选单菌落进行PCR检测,挑选能够扩增出目的大小的条带的对应的阳性单克隆菌落稀释液,加入含有氨苄青霉素抗性的LB液体培养基中,200rpm,37℃摇床培养过夜。取300μL过夜培养的菌液送往华大基因公司测序,将剩余菌液保存备用。测序比对正确得到克隆载体pEASY-Blunt3-MeNR1,根据质粒提取试剂盒(购自天根生化有限公司,以下相同)提取。使用同源引物对正确克隆的pEASY-Blunt3-MeNR1质粒进行PCR扩增,得到1200bp左右大小片段胶回收;用XbaI和SmaI酶切pBI121空载体,37℃条件下反应30min,凝胶电泳检测后,回收线性化的pBI121载体。在1.5ml离心管中按照一定比例加入片段和载体,混匀后加入同源连接酶连接30分钟后,转化到大肠杆菌DH5α中,涂布于含有卡纳抗性的LB固体培养基,培养后挑选单菌落进行PCR检测,将PCR检测的得到的阳性克隆提取质粒,用XbaI和SmaI酶切验证,得到pBI121-MeNR1基因过量表达载体。
(3)pBI21-MeNR1质粒和空载体转化根癌农杆菌菌株GV3101
取构建好的pBI21-MeNR1基因过量表达载体质粒和空载体pBI21质粒各10μL分别加到干净的离心管中,每管加入30μL农杆菌感受态GV3101(Yang LX,Wang RY,Ren F,LiuJ,Cheng J,Lu YT(2005)AtGLB1enhances the tolerance ofArabidopsis to hydrogenperoxide stress.Plant Cell Physiol 46:1309-1316.),轻轻混匀,用冻融法转化到含有三种抗性(利福平、庆大霉素、卡那霉素)的固体LB培养基上,置于28℃培养箱培养2天左右,挑取单菌落PCR鉴定。
实施例2:pBI21-MeNR1基因过量表达载体在木薯抗病中的应用
(1)木薯材料准备:
A.选种:应选择适应性良好、丰产性好的品种,选择华南124进行种植。一般选择木薯茎干充分成熟、木栓化、茎粗节密、表皮及腋芽完整、芽眼粗大明显、无病虫害、无破损、新鲜、坚实的主茎中下段为好。应避免选用老茎和嫩茎。
B.催芽:下种前,将茎用利刀砍断,切口应保持平整,不使表皮脱离并且不损伤腋芽,每段长13~20cm,留有3~5个强壮腋芽。将选用的茎干腋芽朝上,底端浸入水中1~2cm,保证底端湿润,放置3~4天至冒出新芽。
C.育苗:选口径20cm、高10cm,底部漏3个小孔的白色育苗钵进行育苗。营养土与蛭石按1:1比例混匀,每盆直插放入一段茎干,且腋芽朝上,淋透水,保持湿润,育苗房温度保持在27℃左右,阴凉。种植在2~4月进行,以春分-清明前后为宜。
D.苗期管理:育苗初期保持土壤湿润,合理增施肥料。在幼苗时期,及时查苗补缺,对补种后出的幼苗,要及时进行追肥,确保苗齐健壮,保证有效的株数,以免影响产量。苗高20~30cm时,及时除草,确保苗的质量。
(2)木薯中基因过量表达体系的建立
利用顺势表达技术在木薯中对特定基因进行过量表达研究其抗病性,选择长势一致的华南124号木薯进行处理。将转有pBI21-MeNR1表达载体、对照pBI121空载质粒的农杆菌菌液加入到含有三种抗性(利福平、庆大霉素、卡那霉素)的5ml LB液体培养基中,于200rpm、28℃过夜培养。向过夜培养的菌液中加入20ml新的含有三种抗性(利福平、庆大霉素、卡那霉素)的LB培养基中继续培养至OD600为0.6左右。将菌液4000rpm离心10min,去上清,用渗透液(终浓度为10mmol/LMgCl2,10mmol/L的pH为5.6的MES缓冲液和200μmol/L乙酰丁香酮)重新悬浮菌体,将悬浮菌体调至OD600值为0.6左右。用注射器针头轻柔地摩擦木薯叶的背部,用注射器吸取菌液注射,当天注意保湿,置于室温下继续培养。分别设置实验组和对照组各三个重复。
(3)基因过量表达体系的检测
为了鉴定转入目的基因的农杆菌侵染木薯后是否成功提高该目的基因的表达,设计MeNR1基因定量引物QMeNR1-F和QMeNR1-R,在注射木薯叶片第14天取样提取植物的总RNA,然后反转录成cDNA(前面已述)。根据TransStart Tip Green qPCR SuperMix(购自全氏金公司)试剂使用说明操作,以未注射菌液的木薯叶片cDNA为模板进行实时荧光定量PCR反应,反应体系为如下:SuperMix 7.5μL,qPCR Forward Primer 0.4μL,qPCR ReversePrimer 0.4μL,cDNA 1μL,ddH2O 5.7μL。使用罗氏定量PCR仪进行qRT-PCR。所有样品设置3次重复,以MeEF1a内参基因为对照,将实验所得数据以2-ΔΔCT计算分析MeNR1基因的相对表达量。根据定量的数据以2-ΔΔCT计算分析MeNR1基因的相对表达量,确认MeNR1基因是否过量表达。结果显示,在基因过量表达体系中的MeNR1基因表达量被提高,相对表达量为2.86(见图1)。
(4)Xam的侵染
将Xam菌液加到10mL LB液体培养基中,28℃摇床中培养12h。吸取3mL菌液加到新的LB液体培养基中继续培养,培养至OD600为0.6左右。用终浓度10mM的MgCl2溶液稀释至OD600为0.8左右。使用一次性的注射器吸取稀释的Xam菌液注射建立基因过量表达体系木薯的叶片,当天注意保湿,然后将注射的木薯置于温室中继续培养。
(5)Xam细菌数目统计
在0d、6d时,使用打孔器取注射过Xam的木薯叶片,每个处理每次取样取4个叶圆盘,70%酒精消毒3min,采用无菌水漂洗2min,连续漂洗2次,将叶圆盘加水磨碎。在无菌操作台中用无菌水将研磨叶中的菌稀释至103至108倍,吸取不同梯度浓度的菌液点在LB平板上,每个梯度重复3次,每次吸取10μL。将平板密封好,放置28℃恒温培养箱倒置培养16h左右,统计每个样品的细菌数目。结果显示,Xam细菌数目随时间变化不断增加,MeNR1基因过量表达木薯细菌数目显著低于对照组(见图2)。
序列表
<110> 海南大学
<120> 一种木薯硝酸还原酶基因及其过量表达载体的构建和抗病应用
<160> 3
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1173
<212> DNA
<213> 木薯(Manihot esculenta Crantz)
<400> 1
atgaacactt cctcgaacac cttttccatg gctgaggtca agaaacacaa ctccgccgat 60
tcttgctgga ttatcgtcca tggccacgtc tatgactgca cccgcttcct taaagaccac 120
cccggcggca ctgatagcat tctcatcaat gcaggcaccg actgcactga agaattcgac 180
gccatacact ctgataaagc caagaaaatg ctggaggatt atcggattgg agagttagtg 240
gattccacag cttatacttc agattcgaac gcctcatctc ctaacatctc agtgcatggt 300
gcatccaata tgtcacagac acatttagct cctattacgg aaatcgcacc gatcacagaa 360
gttgtgccag cggtgagaaa tgttgctctt gttccacgtg aaaaaattcc atgcaagctc 420
gtaaaaaaag agtctctttc ccacgacgtg cgtctctttc gatttgcatt accatcggag 480
gatcaagtgt tagggttacc tgtagggaag cacattttct tgtgtgccaa cgttgaggaa 540
aagctgtgca tgcgagccta cacaccaaca agcaccattg aagcagtggg gtattttgat 600
cttgtgatca aggtttattt caagggtgtg cacccaaagt ttcctaatgg agggctaatg 660
tctcagtacc ttgactcact gtcactgggg tctaccatag acgtcaaagg tccactgggt 720
cacatagaat atatcgggac aggcaatttc atggttcatg ggaaacctaa gttcgccaaa 780
aagctaacca tgctggctgg tgggacaggc atcactccta tttatcaagt tattcaagcc 840
gttctgaagg acccagagga cgacacagag atgtatgtgg tgtacgccaa ccgcacagag 900
gatgatattt tgttaagaga cgagcttgat gcttgggcca agcaacatag cgagaggtta 960
aaagtgtggt atgtggttca agaaactatc aaggaagggt ggcaatatag tgtggggttc 1020
atcacagaga gtatcctcag ggagcatgta cccgaaggat cagatgatac cttggcgttg 1080
gcgtgcggac ctccacctat gatccagttt gcagtgcaac caaatttgga gaagatgaac 1140
tatgatataa agaattcctt gctagtcttc taa 1173
<210> 2
<211> 47
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
ttggagagaa cacgggggac tctagaatga acacttcctc gaacacc 47
<210> 3
<211> 44
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
taacataagg gactgaccac ccgggtcaga agactagcaa ggaa 44

Claims (8)

1.一种木薯硝酸还原酶编码基因,其CDS区的核苷酸序列如SEQ ID No.1所示。
2.一种木薯硝酸还原酶编码基因过量表达体系,其特征在于,包含在基因过量表达载体上插入木薯硝酸还原酶编码基因的CDS区得到的重组载体,所述CDS区的核苷酸序列如SEQ ID No.1所示。
3.根据权利要求2所述的木薯硝酸还原酶编码基因过量表达体系,其特征在于,所述的基因过量表达载体为pBI121载体。
4.一种pBI121介导的基因过量表达体系中的基因载体的构建方法,其特征在于,该方法的步骤如下:
(1)以权利要求1所述木薯硝酸还原酶编码基因的CDS区核苷酸序列作为基因过量表达体系的插入片段,根据pBI121载体序列,选用XbalI和SmaI酶切位点设计同源引物NR1-F和NR1-R;
(2)以华南124号木薯cDNA为模板进行PCR扩增,所得PCR产物进行琼脂糖凝胶电泳,用胶回收试剂盒回收目的片段,将目的片段连接到pEASY-Blunt3载体,得到pEASY-Blunt3-MeNR1,转化到到大肠杆菌DH5α,涂布于含有氨苄抗性的LB固体培养基,培养后挑选单菌落进行PCR检测,将PCR检测后得到的阳性克隆菌液测序;
(3)测序比对正确后,提取所述pEASY-Blunt3-MeNR1后作为模板,使用步骤(1)设计的同源引物NR1-F和NR1-R扩增,得到的片段胶回收后,与经同样双酶切线性化的空载体pBI121混合后加入同源连接酶连接,转化到大肠杆菌DH5α中,涂布于含有卡纳抗性的LB固体培养基,培养后挑选单菌落进行PCR检测,将PCR检测的得到的阳性克隆提取质粒,用XbalI和SmaI酶切验证,得到pBI121-MeNR1基因过量表达载体。
5.根据权利要求4所述pBI121介导的基因过量表达体系中的基因载体的构建方法,其特征在于,步骤(1)中所述的NR1-F引物序列如SEQ ID No.2所示,所述的NR1-F和NR1-R引物序列如SEQ ID No.3所示。
6.权利要求4所述方法构建的pBI121-MeNR1基因过表达载体在木薯抗病害中的应用。
7.根据权利要求6所述的应用,其特征在于,将转有pBI121-MeNR1基因过量表达载体的农杆菌菌液注射在木薯叶片背面。
8.根据权利要求6所述的应用,其特征在于,所述的病害为木薯细菌性萎蔫病。
CN201911187208.8A 2019-11-28 2019-11-28 一种木薯硝酸还原酶基因及其过量表达载体的构建和抗病应用 Expired - Fee Related CN110747208B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911187208.8A CN110747208B (zh) 2019-11-28 2019-11-28 一种木薯硝酸还原酶基因及其过量表达载体的构建和抗病应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911187208.8A CN110747208B (zh) 2019-11-28 2019-11-28 一种木薯硝酸还原酶基因及其过量表达载体的构建和抗病应用

Publications (2)

Publication Number Publication Date
CN110747208A true CN110747208A (zh) 2020-02-04
CN110747208B CN110747208B (zh) 2022-04-22

Family

ID=69284866

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911187208.8A Expired - Fee Related CN110747208B (zh) 2019-11-28 2019-11-28 一种木薯硝酸还原酶基因及其过量表达载体的构建和抗病应用

Country Status (1)

Country Link
CN (1) CN110747208B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113403324A (zh) * 2021-05-27 2021-09-17 中国热带农业科学院热带生物技术研究所 木薯抗病相关基因MeAHL17及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009009142A2 (en) * 2007-07-10 2009-01-15 Monsanto Technology, Llc Transgenic plants with enhanced agronomic traits
CN102361976A (zh) * 2009-03-05 2012-02-22 罗门哈斯公司 在植物中控制关键乙烯激素信号传导途径蛋白的目标周转率以调节乙烯敏感性
WO2012071547A2 (en) * 2010-11-24 2012-05-31 Joule Unlimited Street Metabolic switch
CN105934524A (zh) * 2013-11-11 2016-09-07 桑格摩生物科学股份有限公司 用于治疗亨廷顿氏病的方法和组合物
CN106998787A (zh) * 2014-09-26 2017-08-01 菲利普莫里斯生产公司 通过改变硝酸同化路径减少烟草特异性亚硝胺
CN108178680A (zh) * 2017-12-01 2018-06-19 吴义峰 一种防治水稻白叶枯病药肥及其使用方法
CN108739996A (zh) * 2018-06-12 2018-11-06 海南大学 一种赤霉素处理延缓木薯采后生理恶化的方法
CN110257286A (zh) * 2019-06-19 2019-09-20 贵州省烟草公司遵义市公司 一株能抑制病原真菌的解淀粉芽孢杆菌

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009009142A2 (en) * 2007-07-10 2009-01-15 Monsanto Technology, Llc Transgenic plants with enhanced agronomic traits
CN102361976A (zh) * 2009-03-05 2012-02-22 罗门哈斯公司 在植物中控制关键乙烯激素信号传导途径蛋白的目标周转率以调节乙烯敏感性
WO2012071547A2 (en) * 2010-11-24 2012-05-31 Joule Unlimited Street Metabolic switch
CN105934524A (zh) * 2013-11-11 2016-09-07 桑格摩生物科学股份有限公司 用于治疗亨廷顿氏病的方法和组合物
CN106998787A (zh) * 2014-09-26 2017-08-01 菲利普莫里斯生产公司 通过改变硝酸同化路径减少烟草特异性亚硝胺
CN108178680A (zh) * 2017-12-01 2018-06-19 吴义峰 一种防治水稻白叶枯病药肥及其使用方法
CN108739996A (zh) * 2018-06-12 2018-11-06 海南大学 一种赤霉素处理延缓木薯采后生理恶化的方法
CN110257286A (zh) * 2019-06-19 2019-09-20 贵州省烟草公司遵义市公司 一株能抑制病原真菌的解淀粉芽孢杆菌

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
KANGFU YU等: "An SSR marker in the nitrate reductase gene of common bean is tightly linked to a major gene conferring resistance to common bacterial blight", 《EUPHYTICA》 *
MAITY ASHIS等: "Salicylic acid mediated multi-pronged strategy to combat bacterial blight disease (Xanthomonas axonopodis pv. punicae) in pomegranate", 《EUROPEAN JOURNAL OF PLANT PATHOLOGY》 *
NCBI: "nitrate reductase [NADH] 2-like isoform X1 [Hevea brasiliensis]", 《GENBANK DATABASE》 *
SARDHAMBAL, K V等: "Effect of bacterial blight on the activities of nitrate reductase & peroxidase in rice plants", 《INDIAN JOURNAL OF BIOCHEMISTRY & BIOPHYSICS》 *
WANG, YQ等: "Isolation and characterization of a nitrate reductase deficient mutant of Chlorella ellipsoidea (Chlorophyta)", 《JOURNAL OF APPLIED PHYCOLOGY》 *
YU YAN等: "The dual interplay of RAV5 in activating nitrate reductases and repressing catalase activity to improve disease resistance in cassava", 《PLANT BIOTECHNOLOGY JOUANAL》 *
孟威: "水稻非亲和互作中NO产生及其对过敏反应调控", 《中国硕士学位论文全文数据库》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113403324A (zh) * 2021-05-27 2021-09-17 中国热带农业科学院热带生物技术研究所 木薯抗病相关基因MeAHL17及其应用

Also Published As

Publication number Publication date
CN110747208B (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
CN105255915A (zh) 拟南芥AtGDSL基因在油菜抗菌核病及促进种子萌发中的应用
CN110004156A (zh) 与黄萎病抗性相关的GhCML20基因及其应用
CN110747208B (zh) 一种木薯硝酸还原酶基因及其过量表达载体的构建和抗病应用
CN110592100B (zh) 一种木薯camta基因及其抑制表达载体的构建和抗病应用
CN116425847B (zh) 抑制核盘菌的水稻OsGLP8-10及其应用
CN116355067B (zh) 抑制核盘菌的水稻OsGLP8-12及其应用
CN116444636B (zh) 抑制核盘菌的水稻OsGLP3-6及其应用
CN102286527A (zh) Dreb基因转化红掌的遗传转化方法
CN114292856B (zh) 一种调控胡杨耐盐性的基因PeCLH2及其应用
CN115340995A (zh) 一种薄荷耐旱基因McWRKY57-like及其表达蛋白和应用
CN102140446A (zh) 油菜iMyAP基因过表达在油菜抗菌核病中的应用
CN102816784A (zh) 洋甘菊法尼基焦磷酸合酶(fps)基因真核表达载体的构建及转化
CN103243108A (zh) 一种茎瘤芥来源的钙离子结合蛋白及其编码基因与应用
CN102586269A (zh) 沙冬青抗寒基因AmGS
CN101892242A (zh) 沙冬青抗寒基因AmEBP1
CN108660143A (zh) 一种甘蓝型油菜BnKCS1-2基因及其构建的载体和应用
CN116655762B (zh) 白魔芋AaCaM3基因及其编码的蛋白与应用
CN114561410B (zh) 极端嗜盐曲霉Hog1基因及其在提高植物耐盐性中的应用
CN116496372B (zh) 抑制核盘菌的水稻OsGLP8-11及其应用
CN112280788B (zh) 盐生草HgS5基因及其应用
CN114381462B (zh) 草果AtDRM1基因在提高植物耐热性中的应用
CN116622655A (zh) 枳抗寒基因PtrP5CS1及其在植物抗寒遗传改良中的应用
CN110205328B (zh) 一种与植物抗逆相关的基因TcAE及其应用
CN118562856A (zh) GhJUB1_3-At基因在棉花抗干旱胁迫中的应用和获取方法
CN118440957A (zh) 薄荷中调控表皮毛与根毛发育和耐盐胁迫的转录因子McZFP4及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220422