CN110744211A - 一种兼备加工和实时检测能力的激光孔洞加工系统及方法 - Google Patents

一种兼备加工和实时检测能力的激光孔洞加工系统及方法 Download PDF

Info

Publication number
CN110744211A
CN110744211A CN201910864354.3A CN201910864354A CN110744211A CN 110744211 A CN110744211 A CN 110744211A CN 201910864354 A CN201910864354 A CN 201910864354A CN 110744211 A CN110744211 A CN 110744211A
Authority
CN
China
Prior art keywords
laser
processing
hole
real
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910864354.3A
Other languages
English (en)
Other versions
CN110744211B (zh
Inventor
王向林
刘晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XiAn Institute of Optics and Precision Mechanics of CAS
Original Assignee
XiAn Institute of Optics and Precision Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XiAn Institute of Optics and Precision Mechanics of CAS filed Critical XiAn Institute of Optics and Precision Mechanics of CAS
Priority to CN201910864354.3A priority Critical patent/CN110744211B/zh
Publication of CN110744211A publication Critical patent/CN110744211A/zh
Application granted granted Critical
Publication of CN110744211B publication Critical patent/CN110744211B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/22Measuring arrangements characterised by the use of optical techniques for measuring depth

Abstract

本发明提供一种兼备加工和实时检测能力的激光孔洞加工系统及方法,解决了现有超快激光微纳加工孔洞深度非接触式实时检测方式存在的探测设备结构复杂,探测成本高的问题。该系统包括半导体激光器、光束准直单元、偏振器、四分之一波片、二向色分光镜、数据采集单元、数据处理单元以及激光加工设备;半导体激光器出射激光,经过光束准直单元、偏振器,在二向色分光镜处和激光加工设备出射的加工光束共同入射至被加工件;半导体激光反射光沿原光路返回入射至半导体激光器腔内,半导体激光器相对强度变化信号与加工时间的变化曲线,通过数据处理单元可实时计算出激光加工孔洞的深度。

Description

一种兼备加工和实时检测能力的激光孔洞加工系统及方法
技术领域
本发明属于微纳探测技术领域,涉及一种兼备加工和实时检测能力的激光孔洞加工系统。
背景技术
超短激光脉冲微孔加工技术是一种新型特种加工技术,相比传统的电加工打孔和机械打孔方法,具有打孔速度快,效率高;可获得较小的孔径和较高的深径比;不受材料及其形状的影响,可以在各类材料和复杂形状的零件上进行激光打孔;可实现高密度及高定位精度的群孔加工等优势。
现阶段我国在飞秒激光对航空发动机涡轮叶片气膜孔加工的过程中存在壁厚超过公差与质量不稳定问题,同时,由于叶片装夹定位中产生的误差传递也缺少数学定量描述,致使基于气膜孔设计模型直接加工易出现盲孔或背壁损伤缺陷,形位精度及保持性差,难以保证叶片的气冷要求;
在发动机喷油嘴微孔的飞秒激光加工过程中,为了缩短加工时间,通常会设定高于材料烧蚀阈值的激光功率。由于中孔顶部空间较小,在打通喷孔时,激光可以照射到内腔背壁,同样会对背壁造成一定程度的烧蚀和损伤。
现有方式是采用预填充物的方式阻止激光打孔中的背部损伤,但是打孔工艺繁杂且效率低下,不适合大规模工业化生产。因此,激光打孔深度的精确控制是实现超短脉冲激光打孔广泛应用的关键技术,针对复杂异型气膜孔和喷油嘴微孔的背壁烧蚀和损伤问题以及高效高精成形,其加工过程的孔深加工的实时性监测及群孔孔深一致性的控制等方面仍面临诸多挑战。
目前飞秒激光加工微孔具有接触式和非接触式两种检测技术。接触式测量在深孔径比的微小孔测量中有重要应用,具有极高的可靠性且不受工件特性影响。但由于接触式测量通常需要进行多点接触测量,具有测量速度较慢、效率不高的缺点,并且不具备实时检测功能。因此,现在的工业上一般主要采用非接触式测量,其中涵盖了实时性和非实时性非接触测量。非实时性非接触测量包括基于机器视觉和图像采集与分析、SEM、3D显微成像、激光或者X射线照射成像等,该类方法对于加工精度在微米甚至亚微米量级的高精度加工中不具备激光加工的实时监控性。在非接触式实时检测方面,主要采用OCT等探测手段来对孔深进行表征。这些激光加工深度的测量技术具有很高的空间分辨率,但是仍然存在实际应用中的局限性,尤其在高密度及高定位精度的群孔加工中对每个孔深度的实时监控,探测成本高,复杂性大。
发明内容
为了克服现有超快激光微纳加工孔洞深度非接触式实时检测方式存在的探测设备结构复杂,探测成本高的问题,本发明提供了一种兼备加工和实时检测能力的激光孔洞加工系统及方法。
本发明的具体技术是:
本发明提供了一种兼备加工和实时检测能力的激光孔洞加工系统,包括半导体激光器、光束准直单元、偏振器、四分之一波片、二向色分光镜、数据采集单元、数据处理单元以及激光加工设备;
半导体激光器出射的探测光束上依次设置有光束准直单元、偏振器、四分之一波片、二向色分光镜以及被加工件;所述偏振器的偏振方向和探测光束偏振态一致;
激光加工设备的出射的加工光束经过二向色分光镜后与探测光束空间上共线重合,共同入射待被加工件上;
所述探测光束的波长与加工光束的波长不同;
数据采集单元的输入端与半导体激光器连接,数据采集单元的输出端与数据处理单元的输入端连接,数据处理单元的输出端与所述激光加工设备连接。
进一步地,为了防止部分残余光和杂散光对被加工件反射回半导体激光器的反射光造成影响,上述半导体激光器和光束准直单元之间或光束准直单元和偏振器之间或偏振器与四分之一波片之间或四分之一波片与二向色分光镜之间设置仅对探测光束波长高透的滤光片。
进一步地,上述激光加工设备包括激光器、激光聚焦单元以及参数调节和运动控制单元。
进一步地,上述激光器为连续激光器或脉冲激光器或超短脉冲激光器。
基于上述对一种兼备加工和实时检测能力的激光孔洞加工系统的结构描述,现对采用该系统进行孔洞加工的方法做一下说明,具体步骤如下:
步骤1:反馈光的形成;
开启半导体激光器和激光加工设备;激光加工设备出射的加工光束经二向色分光镜反射后在被加工件进行孔洞的加工;
与此同时,半导体激光器出射探测光束依次经过光束准直单元、偏振器、四分之一波片、二向色分光镜后在被加工件上孔洞上形成反馈光;所述反馈光携带有被加工件上孔洞实时深度相对应的相位信息;
步骤2:根据反馈光实时获取孔洞加工深度;
步骤2.1:反馈光依次经过二向色分光镜、四分之一波片、偏振器、光束准直单元重新入射回半导体激光器腔内部,数据采集单元采集半导体激光器相对强度变化信号与加工时间的变化曲线;
所述相对强度变化信号为两端节电压变化信号或者后腔面激光强度变化信号;
步骤2.2:根据所述变化曲线可知孔洞深度变化半个波长,变化曲线中的峰值或者谷值变化一个周期;
以工件表面为孔深深度零点,以该相对强度变化信号的周期数累计即可获得孔洞加工深度,即孔洞加工深度满足公式为:
d=(λ/2)×max{(n-1),(n-1)};
其中,λ为半导体激光器出射波长,n和n分别为变化曲线中峰值数量和谷值数量;
步骤3:获得加工速度;
数据处理单元8根据孔洞加工深度,并结合加工时间,得到加工速度;
步骤4:数据处理单元将加工深度、加工速度实时反馈到激光加工设备,实现对激光加工设备的激光功率、激光偏振态、聚焦位置进行调整。
本发明的有益效果是:
本发明通过半导体激光器、光束准直单元、偏振器、四分之一波片、二向色分光镜、数据采集单元、数据处理单元以及激光加工设备构成的加工系统,兼备加工和实时检测能力,并且该系统结构简单,另外该系统中所使用的光学器件均属于常规光学器件成本低,且易于实现。
本发明中可同时调节偏振器和四分之一波片,使得反馈光在半导体激光器内部形成的自干涉信号最强,从而有效提升数据采集信号的信噪比。
本发明中的半导体激光器出射的探测光束在被加工件的孔洞内形成的反馈光,由反馈光回射入半导体激光器,对半导体激光器进行干扰,数据处理单元通过半导体激光器对两端节电压变化或者后腔面激光强度变化信息进行分析的到孔洞的实时深度,从而结构加工时间可对激光加工设备进行调整,使得整个加工过程更加可靠、高效。
本发明属于实时性相干探测,能达到微米甚至纳米级的实时性探测精度;能够应用于粗糙的表面探测;结构紧凑简单,集成度高,易于和激光加工系统集成,并切本发明可对激光微纳加工深度进行了实时的监测,对提高微纳群孔加工的稳定性提供了保证。
附图说明
图1为本发明的结构原理图。
图2为半导体激光器相对强度变化信号与加工时间的变化曲线。
其中:1-半导体激光器;2-光束准直单元;3-偏振器;4-四分之一波片;5-二向色分束镜;6-被加工件;7-数据采集单元;8-数据处理单元;9-激光加工设备。
具体实施方式
为使本发明的目的、优点和特征更加清楚,以下结合附图和具体实施例对本发明提出的一种兼备加工和实时检测能力的激光孔洞加工系统及方法作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需要说明的是:附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的;其次,附图所展示的结构往往是实际结构的一部分。
实施例
参见图1,一种兼备加工和实时检测能力的激光孔洞加工系统,包括半导体激光器1、光束准直单元2、偏振器3、四分之一波片4、二向色分光镜5、数据采集单元7、数据处理单元8以及激光加工设备9;需要说明的是:激光加工设备8采用现有常规的激光加工设备,其主要组成部分包括激光器、激光聚焦单元以及参数调节和运动控制单元。另外,此处的激光器可以为连续激光器或脉冲激光器或超短脉冲激光器。本实施例中选用超短脉冲激光器。此处的光束准直单元2为快慢轴准直系统;
半导体激光器1出射的探测光束上依次设置有光束准直单元2、偏振器3、四分之一波片4、二向色分光镜5以及被加工件6;偏振器3的偏振方向和探测光束偏振态一致;
激光加工设备9的出射的加工光束经过二向色分光镜5后与探测光束空间上共线重合,共同入射待被加工件6上;
所述探测光束的波长与加工光束的波长不同;
数据采集单元7的输入端与半导体激光器1连接,数据采集单元7的输出端与数据处理单元8的输入端连接,数据处理单元8的输出端与所述激光加工设备9连接。
为了防止部分残余光和杂散光对被加工件反射回半导体激光器的反射光造成影响,可在半导体激光器1和二向色分光镜5之间插入仅对半导体激光器波长高透的滤光片,其插入位置可以是半导体激光器1和光束准直单元2之间或光束准直单元2和偏振器3之间或偏振器3与四分之一波片4之间或四分之一波片4与二向色分光镜5之间的任意位置。
通过对实施例的系统结构描述,现对利用该实施例进行孔洞加工的方法作进一步详尽的描述:
(1)对半导体激光器1出射的探测光束通过光束准直单元2分别进行快轴准直和慢轴准直;
(2)调节偏振器3的偏振方向使其和探测光束的偏振态一致,之后经过四分之一波片4;
(3)探测光束在二向色分光镜5处和激光加工设备9中超短脉冲激光器出射的加工光束(微纳米级超短脉冲激光)空间上共线重合,探测光束和加工光束共同入射到被加工件6上;
(4)孔型判断;
(4.1)若数据采集单元7未采集到半导体激光器1两端节电压变化或者后腔面激光强度变化信息,则认为,此时被加工件6已被击穿,判断孔洞为通孔,根据情况可以停止进行加工;
(4.2)若数据采集单元7采集到半导体激光器1两端节电压变化或者后腔面激光强度变化信息,认为该孔洞为盲孔;
其中,半导体激光器1两端节电压变化或者后腔面激光强度变化信息产生的原因是:
探测光束照射到被加工件6上后,产生部分反馈光,反馈光依次经过二向色分光镜5、四分之一波片4、偏振器3、光束准直单元2重新入射回半导体激光器1腔内部,从而使得半导体激光器1两端节电压或者后腔面激光强度会发生变化;
(5)数据采集单元7获取半导体激光器1相对强度变化信号与加工时间的变化曲线,如图2所示,并将该变化曲线传输至数据处理单元8;所述相对强度变化信号为两端节电压变化信号或者后腔面激光强度变化信号;
(6)数据处理单元8计算孔洞的深度信息;
根据所述变化曲线,得到的关系是:孔洞深度变化半个波长,变化曲线中的峰值或者谷值变化一个周期;
以工件表面为孔深深度零点,以该相对强度变化信号的周期数累计即可获得加工深度,即孔洞加工深度满足公式为:
d=(λ/2)×max{(n-1),(n-1)};
其中,λ为半导体激光器出射波长,n和n分别为变化曲线中峰值数量和谷值数量;
(7)数据处理单元8根据孔洞加工深度,并结合加工时间,得到加工速度;
(8)数据处理单元8将加工深度、加工速度实时反馈到激光加工设备9,实现对激光加工设备9的激光功率、激光偏振态、聚焦位置进行调整。
其中,在步骤(5)中可同时调节偏振器和四分之一波片,使得反馈光在半导体激光器内部形成的自干涉信号最强,增大数据采集信号的信噪比。

Claims (5)

1.一种兼备加工和实时检测能力的激光孔洞加工系统,其特征在于:包括半导体激光器(1)、光束准直单元(2)、偏振器(3)、四分之一波片(4)、二向色分光镜(5)、数据采集单元(7)、数据处理单元(8)以及激光加工设备(9);
半导体激光器(1)出射的探测光束上依次设置有光束准直单元(2)、偏振器(3)、四分之一波片(4)、二向色分光镜(5)以及被加工件(6);所述偏振器(3)的偏振方向和探测光束偏振态一致;
激光加工设备(9)的出射的加工光束经过二向色分光镜(5)后与探测光束空间上共线重合,共同入射待被加工件(6)上;
所述探测光束的波长与加工光束的波长不同;
数据采集单元(7)的输入端与半导体激光器(1)连接,数据采集单元(7)的输出端与数据处理单元(8)的输入端连接,数据处理单元(8)的输出端与所述激光加工设备(9)连接。
2.根据权利要求1所述的兼备加工和实时检测能力的激光孔洞加工系统,其特征在于:所述半导体激光器(1)和光束准直单元(2)之间或光束准直单元(2)和偏振器(3)之间或偏振器(3)与四分之一波片(4)之间或四分之一波片(4)与二向色分光镜(5)之间设置仅对探测光束波长高透的滤光片。
3.根据权利要求2所述的兼备加工和实时检测能力的激光孔洞加工系统,其特征在于:所述激光加工设备(9)包括激光器、激光聚焦单元以及参数调节和运动控制单元。
4.根据权利要求3所述的兼备加工和实时检测能力的激光孔洞加工系统,其特征在于:所述激光器为连续激光器或脉冲激光器或超短脉冲激光器。
5.一种兼备加工和实时检测能力的激光孔洞加工方法,其特征在于,采用如权利要求1所述的兼备加工和实时检测能力的激光孔洞加工系统,并通过以下具体步骤实现:
步骤1:反馈光的形成;
开启半导体激光器和激光加工设备;激光加工设备出射的加工光束经二向色分光镜反射后在被加工件进行孔洞的加工;与此同时,半导体激光器出射探测光束依次经过光束准直单元、偏振器、四分之一波片、二向色分光镜后在被加工件上孔洞上形成反馈光;
步骤2:根据反馈光实时获取孔洞加工深度;
步骤2.1:反馈光依次经过二向色分光镜、四分之一波片、偏振器、光束准直单元重新入射回半导体激光器腔内部,数据采集单元采集半导体激光器相对强度变化信号与加工时间的变化曲线;
所述相对强度变化信号为两端节电压变化信号或者后腔面激光强度变化信号;
步骤2.2:根据所述变化曲线可知孔洞深度变化半个波长,变化曲线中的峰值或者谷值变化一个周期;
以工件表面为孔深深度零点,以该相对强度变化信号的周期数累计即可获得孔洞加工深度,即孔洞加工深度满足公式为:
d=(λ/2)×max{(n-1),(n-1)};
其中,λ为半导体激光器出射波长,n和n分别为变化曲线中峰值数量和谷值数量;
步骤3:获得加工速度;
数据处理单元根据孔洞加工深度,并结合加工时间,得到加工速度;
步骤4:数据处理单元将加工深度、加工速度实时反馈到激光加工设备,实现对激光加工设备的激光功率、激光偏振态、聚焦位置进行实时调整。
CN201910864354.3A 2019-09-12 2019-09-12 一种兼备加工和实时检测能力的激光孔洞加工系统及方法 Active CN110744211B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910864354.3A CN110744211B (zh) 2019-09-12 2019-09-12 一种兼备加工和实时检测能力的激光孔洞加工系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910864354.3A CN110744211B (zh) 2019-09-12 2019-09-12 一种兼备加工和实时检测能力的激光孔洞加工系统及方法

Publications (2)

Publication Number Publication Date
CN110744211A true CN110744211A (zh) 2020-02-04
CN110744211B CN110744211B (zh) 2021-02-19

Family

ID=69276418

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910864354.3A Active CN110744211B (zh) 2019-09-12 2019-09-12 一种兼备加工和实时检测能力的激光孔洞加工系统及方法

Country Status (1)

Country Link
CN (1) CN110744211B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111331263A (zh) * 2020-03-28 2020-06-26 北京工业大学 一种皮秒激光精确制备涡轮叶片冷却孔的装置及方法
CN112894149A (zh) * 2021-01-21 2021-06-04 北京理工大学 超短脉冲激光烧蚀物体的超快连续三维成像系统及方法
CN113218317A (zh) * 2021-04-23 2021-08-06 长春理工大学 激光原位压头印压工件成孔过程中的原位检测方法
CN113634873A (zh) * 2021-08-31 2021-11-12 西安交通大学 基于干涉测量的激光加工后壁组合防护方法及系统
CN113953663A (zh) * 2021-10-21 2022-01-21 武汉锐科光纤激光技术股份有限公司 一种激光焊接监测装置及激光焊接系统
CN114353697A (zh) * 2021-12-09 2022-04-15 中国科学院西安光学精密机械研究所 一种烧蚀过程结构表面形貌测量方法
CN116833576A (zh) * 2023-08-21 2023-10-03 广东工业大学 一种闭环反馈式激光精密加工方法及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013000663A1 (de) * 2011-06-27 2013-01-03 Robert Bosch Gmbh Verfahren und anordnung zur abstandsmessung bei einer laserbearbeitungsanlage
CN107617819A (zh) * 2016-07-13 2018-01-23 发那科株式会社 激光加工装置以及激光加工系统
CN108286936A (zh) * 2017-04-18 2018-07-17 北京理工大学 激光微纳加工差动共焦在线监测一体化方法与装置
CN108747001A (zh) * 2018-07-26 2018-11-06 中国科学院西安光学精密机械研究所 用于激光加工的多功能监测系统及监测方法、指向方法
CN208147182U (zh) * 2018-04-18 2018-11-27 中国科学院西安光学精密机械研究所 基于光学相干层析扫描的超快激光微孔加工装置
CN109702337A (zh) * 2017-10-26 2019-05-03 松下知识产权经营株式会社 激光焊接装置及激光焊接方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013000663A1 (de) * 2011-06-27 2013-01-03 Robert Bosch Gmbh Verfahren und anordnung zur abstandsmessung bei einer laserbearbeitungsanlage
CN107617819A (zh) * 2016-07-13 2018-01-23 发那科株式会社 激光加工装置以及激光加工系统
CN108286936A (zh) * 2017-04-18 2018-07-17 北京理工大学 激光微纳加工差动共焦在线监测一体化方法与装置
CN109702337A (zh) * 2017-10-26 2019-05-03 松下知识产权经营株式会社 激光焊接装置及激光焊接方法
CN208147182U (zh) * 2018-04-18 2018-11-27 中国科学院西安光学精密机械研究所 基于光学相干层析扫描的超快激光微孔加工装置
CN108747001A (zh) * 2018-07-26 2018-11-06 中国科学院西安光学精密机械研究所 用于激光加工的多功能监测系统及监测方法、指向方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111331263A (zh) * 2020-03-28 2020-06-26 北京工业大学 一种皮秒激光精确制备涡轮叶片冷却孔的装置及方法
CN111331263B (zh) * 2020-03-28 2022-03-29 北京工业大学 一种皮秒激光精确制备涡轮叶片冷却孔的装置及方法
CN112894149A (zh) * 2021-01-21 2021-06-04 北京理工大学 超短脉冲激光烧蚀物体的超快连续三维成像系统及方法
US11313971B1 (en) 2021-01-21 2022-04-26 Beijing Institute Of Technology Three-dimensional imaging system and method
CN113218317A (zh) * 2021-04-23 2021-08-06 长春理工大学 激光原位压头印压工件成孔过程中的原位检测方法
CN113634873A (zh) * 2021-08-31 2021-11-12 西安交通大学 基于干涉测量的激光加工后壁组合防护方法及系统
CN113953663A (zh) * 2021-10-21 2022-01-21 武汉锐科光纤激光技术股份有限公司 一种激光焊接监测装置及激光焊接系统
CN114353697A (zh) * 2021-12-09 2022-04-15 中国科学院西安光学精密机械研究所 一种烧蚀过程结构表面形貌测量方法
CN116833576A (zh) * 2023-08-21 2023-10-03 广东工业大学 一种闭环反馈式激光精密加工方法及设备

Also Published As

Publication number Publication date
CN110744211B (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
CN110744211B (zh) 一种兼备加工和实时检测能力的激光孔洞加工系统及方法
CN108406092B (zh) 一种同轴实时检测的振镜扫描激光加工方法
JP7436208B2 (ja) 材料の改変についてのコヒーレント撮像およびフィードバック制御のための方法およびシステム
CN109163672B (zh) 一种基于白光干涉零光程差位置拾取算法的微观形貌测量方法
CN110369859B (zh) 一种飞秒激光闭环加工系统
Schmitt et al. Inline process metrology system for the control of laser surface structuring processes
CN106441157B (zh) 一种复杂形貌快速测量方法
CA3020046A1 (en) Method and device for measuring the depth of the vapor capillary during a machining process with a high energy beam
JP2009508114A (ja) ダブル光ファイバ接続を利用した微小空洞測定装置および方法
CN106595515B (zh) 一种白光干涉及激光扫描结合的形貌测量装置
CN109807471B (zh) 一种激光打标装置及方法
Webster et al. Coaxial real-time metrology and gas assisted laser micromachining: process development, stochastic behavior, and feedback control
CN104330039A (zh) 一种用于三坐标测量的大数值孔径光纤点衍射干涉装置及方法
JP2021107808A (ja) サブサンプリングに起因した歪みの下での低コヒーレンス光干渉法テクニックを用いた本体と物体の表面との間の分離距離を決定する方法およびシステム
CN106338258B (zh) 一种用于点衍射干涉仪针孔对准的装置及方法
Webster et al. Inline coherent imaging of laser micromachining
US10012491B2 (en) Large numerical aperture phase-shifting dual pinhole diffraction interferometer and its test method
Zuric et al. Multi-Sensor System for Real-Time Monitoring of Laser Micro-Structuring.
Schmitt et al. Automated process initialization of laser surface structuring processes by inline process metrology
CN219015241U (zh) 一种飞秒激光极端微孔加工在线监控装置
JP2006007257A (ja) レーザ加工装置
CN114160967A (zh) 一种随动式激光加工装置及其控制方法
CN203405180U (zh) 一种pcb板内外层线路量测仪
CN112684460A (zh) 一种面阵扫频测量装置和方法
CN112684461A (zh) 一种抗振型面阵扫频测量装置和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant