CN110732503B - 垂直腔面发射激光器芯片筛选方法及装置 - Google Patents

垂直腔面发射激光器芯片筛选方法及装置 Download PDF

Info

Publication number
CN110732503B
CN110732503B CN201911163132.5A CN201911163132A CN110732503B CN 110732503 B CN110732503 B CN 110732503B CN 201911163132 A CN201911163132 A CN 201911163132A CN 110732503 B CN110732503 B CN 110732503B
Authority
CN
China
Prior art keywords
screening
emitting laser
surface emitting
cavity surface
vertical cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911163132.5A
Other languages
English (en)
Other versions
CN110732503A (zh
Inventor
赖铭智
高逸群
向宇
许聪基
岳光礼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Changrui Photoelectric Co ltd
Original Assignee
Suzhou Changrui Photoelectric Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Changrui Photoelectric Co ltd filed Critical Suzhou Changrui Photoelectric Co ltd
Priority to CN201911163132.5A priority Critical patent/CN110732503B/zh
Publication of CN110732503A publication Critical patent/CN110732503A/zh
Application granted granted Critical
Publication of CN110732503B publication Critical patent/CN110732503B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/344Sorting according to other particular properties according to electric or electromagnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C2301/00Sorting according to destination
    • B07C2301/0008Electronic Devices, e.g. keyboard, displays

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

本发明公开了一种垂直腔面发射激光器芯片筛选方法。该方法包括对垂直腔面发射激光器芯片进行老化筛选的步骤;在所述老化筛选之前,先对垂直腔面发射激光器芯片进行预筛选,具体方法如下:用直流电流脉冲对垂直腔面发射激光器芯片进行循环冲击,并在冲击完成后通过性能测试将失效芯片剔除;所述直流电流脉冲的电流大小为Ith+S,脉冲宽度为50ms~200ms,Ith为所述垂直腔面发射激光器芯片的阈值电流,S的取值范围为20mA~40 mA。本发明还公开了一种垂直腔面发射激光器芯片筛选装置。本发明可有效剔除现有技术难以完全剔除的存在芯片量子阱区域内的黑色线缺陷和氧化层裂纹缺陷的不良芯片,从而大幅降低老化筛选的漏筛率并提高老化筛选的效率。

Description

垂直腔面发射激光器芯片筛选方法及装置
技术领域
本发明涉及一种芯片筛选方法,尤其涉及一种垂直腔面发射激光器(VerticalCavity Surface Emitting Laser,简称VCSEL)芯片筛选方法。
背景技术
垂直腔面发射激光器在光通信行业是非常有发展前景的光电器件。相比于传统的边发射激光器芯片,该类型激光器芯片具有远场发散角小,发射光束窄且圆,耦合效率高;阈值电流低;无需解理,可直接在晶圆级进行性能测试,可大大降低制造成本;易于二维集成制作阵列器件等优点。
VCSEL有源区附近的载流子横向限制主要有三种方式实现,简单的化学湿法、离子注入法及湿氧化法,目前最常用的方法为湿氧化法。VCSEL芯片在使用的过程中会出现失效品,而通常VCSEL芯片的失效率随时间的趋势呈现为“浴盆曲线”,即在早期失效率较高,此时出现的是早期失效,然后芯片进入失效率较低时期,该段时间较长,出现的失效为随机失效。最后进入wear-out时期,失效率急速变高。我们在使用芯片时,期望芯片已经进入上述第二阶段,使得在长期的使用过程中不出现失效,因此VCSEL芯片制造完成后,会进行老化操作,将早期失效筛选出来,使得芯片寿命进入第二阶段。
VCSEL芯片的老化筛选方法通常为对芯片施加一定时间的高温及电流应力(通常老化温度为85℃~150℃,电流范围为8mA~14mA),对芯片的寿命进行加速,通过检测芯片性能参数的变化,将早期失效的芯片在较短的时间内进行剔除,但是现有的老化筛选条件都无法100%剔除早期失效的芯片,尤其是芯片量子阱区域内的黑色线缺陷(Dark LineDefects)和氧化层裂纹缺陷,现有老化筛选的方法无法做到有效地发现和剔除,因此会产生漏筛的早期失效品,漏筛品在后续使用过程中出现,会导致报废成本增加,漏筛率越高相应报废成本越高。
发明内容
本发明所要解决的技术问题在于克服现有技术不足,提供一种垂直腔面发射激光器芯片筛选方法,可有效剔除现有技术难以有效剔除的存在芯片量子阱区域内的黑色线缺陷和氧化层裂纹缺陷的不良芯片,从而大幅降低老化筛选的漏筛率并提高老化筛选的效率。
本发明具体采用以下技术方案解决上述技术问题:
一种垂直腔面发射激光器芯片筛选方法,包括对垂直腔面发射激光器芯片进行老化筛选的步骤,以通过性能测试将经过老化处理后的失效芯片剔除;在所述老化筛选之前,先对垂直腔面发射激光器芯片进行预筛选,具体方法如下:用直流电流脉冲对垂直腔面发射激光器芯片进行循环冲击,并在冲击完成后通过性能测试将失效芯片剔除;所述直流电流脉冲的电流大小为Ith+S,脉冲宽度为50ms~200ms,Ith为所述垂直腔面发射激光器芯片的阈值电流,S的取值范围为20mA~40mA。
优选地,S的取值范围为25mA~35mA。
优选地,脉冲宽度为75ms~150ms。
优选地,所述循环冲击的循环次数为80~120次。
根据相同的发明思路还可以得到以下技术方案:
一种垂直腔面发射激光器芯片筛选装置,包括用于对垂直腔面发射激光器芯片进行老化筛选的老化测试模块,所述老化测试模块包括用于对垂直腔面发射激光器芯片进行老化处理的老化处理子模块,以及用于通过性能测试将经过老化处理后的失效芯片剔除的性能测试子模块;所述筛选装置还包括用于在所述老化筛选之前,先对垂直腔面发射激光器芯片进行预筛选的预筛选模块,所述预筛选模块包括直流冲击子模块和性能测试子模块,所述直流冲击子模块用于用直流电流脉冲对垂直腔面发射激光器芯片进行循环冲击,性能测试子模块用于在冲击完成后通过性能测试将失效芯片剔除;所述直流电流脉冲的电流大小为Ith+S,脉冲宽度为50ms~200ms,Ith为所述垂直腔面发射激光器芯片的阈值电流,S的取值范围为20mA~40mA。
优选地,S的取值范围为25mA~35mA。
优选地,脉冲宽度为75ms~150ms。
优选地,所述循环冲击的循环次数为80~120次。
优选地,预筛选模块中的性能测试子模块复用老化测试模块中的性能测试子模块。
相比现有技术,本发明技术方案具有以下有益效果:
本发明在老化筛选前进行预筛选,用直流电流脉冲对VCSEL芯片进行循环冲击,以使得现有老化测试难以有效剔除的存在芯片量子阱区域内的黑色线缺陷和氧化层裂纹缺陷的不良芯片提前失效,从而可通过性能检测将其剔除,再结合之后的常规老化筛选,可有效降低潜在不良芯片的漏筛率,提高产品可靠性;本发明方法可使芯片在老化处理过程中更快地达到性能稳定期,从而可有效减少老化处理的时间,提高老化筛选的效率。
附图说明
图1为未经直流电流脉冲循环冲击芯片的Pf变化情况;
图2为经直流电流脉冲循环冲击芯片的Pf变化情况;
图3为预筛选出的氧化层裂纹缺陷失效品的氧化层尖端裂纹照片;
图4为预筛选出的黑色线缺陷失效品的黑色线缺陷照片。
具体实施方式
现有VCSEL制造工艺中所采用的老化处理可使得大多数存在缺陷的不良品提前失效,从而可通过性能测试老化后早期失效的不良品剔除,以提高后续芯片使用中的可靠性。然而,经大量实验研究发现,对于VCSEL芯片,现有老化工艺无法确保令存在某些特定缺陷不良品提前失效,这些不良品可能会流入客户手中,可能在客户正常使用过程中突然失效,从而导致严重的质量问题。所谓特定缺陷主要是指芯片量子阱区域内的黑色线缺陷和氧化层裂纹缺陷。
对于施加的电流密度越高,激射越大的半导体激光器芯片来说,主要的失效为黑色线缺陷(Dark Line Defects,简称DLDs)的不均匀扩散。DLDs是一种晶格缺陷,它作为非辐射复合的中心,一般在高放大倍数下以黑线的形式呈现。现有VCSEL芯片的老化处理过程无法100%筛选出DLDs的不良品。
此外,相较于离子注入法制造的VCSEL,氧化层裂纹是氧化型VCSEL独有的失效类型。由于氧化层对应力比较敏感,在氧化步骤后的快速退火步骤,有时会导致氧化层的分层以及在氧化层尖端出现裂纹。经大量分析实验发现,此类不良品在常规老化筛选的漏筛不良品中也占到了相当大的比例。
为了解决现有老化处理无法令所有存在芯片量子阱区域内的黑色线缺陷和氧化层裂纹缺陷的不良品提前失效的问题,本发明的解决思路是在老化筛选前进行预筛选,用直流电流脉冲对VCSEL芯片进行循环冲击,以使得所有存在芯片量子阱区域内的黑色线缺陷和氧化层裂纹缺陷的不良芯片提前失效,从而可通过性能检测将其完全剔除。
电流应力对半导体芯片的寿命有加速的效果,电流(和温度)对芯片寿命的加速系数符合如下公式:
AF=(Jstress/Juse)N*exp[Ea/kB*(1/Tuse-1/Tstress)]
其中,Tuse是正常使用温度,Tstress是加速温度,Juse是正常使用电流密度,Jstress是加速电流密度,kB是玻尔兹曼常数。Ea是芯片的激活能,N是电流加速系数。
根据上述公式,随着电流冲击循环次数增加,芯片量子阱结温升高,相当于对芯片进行了加速老化。最初的DLDs产生于材料的杂质或者晶格缺陷,随着施加电流密度的提高以及温度的提升,DLDs会扩散。它的扩散是由于点缺陷的吸收或释放所导致的位错网的增长,并由非辐射复合提供能量。随着施加多次较大的直流电流冲击,芯片的结温升高,DLDs会逐步扩大,并且在施加固定的电流密度下,非辐射复合的电流密度升高,会导致相应发光功率降低,因此可以较早筛出该类型的不良。类似地,随着施加电流密度的增加,芯片量子阱区域的温度增加,应力提高,会加速裂纹的扩大,因此通过施加多次较大的直流电流冲击会将氧化层处裂纹的不良提前筛出。而常规的芯片老化步骤,由于施加的电流密度较低(通常仅比激光器的工作电流略高),DLDs在后续长期使用过程才会导致失效,并且产生的应力也无法使得氧化层裂纹进一步扩大,进而导致漏筛。
电流应力的大幅增加虽然可能令黑色线缺陷和氧化层裂纹缺陷的不良芯片提前失效,但也可能会对正常芯片产生一些不可逆的破坏,因此,如何能在保证不对正常芯片产生不良影响的前提下有效促使黑色线缺陷和氧化层裂纹缺陷扩大至令芯片提前失效,这就成了要解决的核心问题。
通过大量研究实验,发明人提出了以下的技术方案:
一种垂直腔面发射激光器芯片筛选方法,包括对垂直腔面发射激光器芯片进行老化筛选的步骤,以通过性能测试将经过老化处理后的失效芯片剔除;在所述老化筛选之前,先对垂直腔面发射激光器芯片进行预筛选,具体方法如下:用直流电流脉冲对垂直腔面发射激光器芯片进行循环冲击,并在冲击完成后通过性能测试将失效芯片剔除;所述直流电流脉冲的电流大小为Ith+S,脉冲宽度为50ms~200ms,Ith为所述垂直腔面发射激光器芯片的阈值电流,S的取值范围为20mA~40mA。其中,S的优选取值范围为25mA~35mA;脉冲宽度优选为75ms~150ms;所述循环冲击的循环次数优选为80~120次。具体的冲击参数可根据VCSEL芯片的规格在此范围内适当调整。
本发明的预筛选方案不需要额外增加硬件设备,可利用现有老化筛选所使用的芯片点测机实现,只需要调整输出电流参数即可。
为了验证本发明技术方案的效果,取同一批次芯片分两组分别作为循环电流冲击实验组以及对照组,进行对比实验。
实验方法:对于对照组芯片,不施加循环电流冲击,先测试直流性能,再选部分芯片进行常规老化,观察芯片的性能变化;对于实验组芯片,利用点测机对其施加大小为Ith+30mA,脉冲宽度为100ms,循环次数为100次的直流电流脉冲循环冲击,然后测试直流性能,再选部分芯片进行常规老化,观察芯片的性能变化。
实验结果:
1、100次循环直流电流脉冲冲击后,测得各性能参数的良率统计结果与未经电流冲击的统计结果,如下表所示,表明此方法剔除了一些早期失效品:
表1各参数不良率对比
不良率 Ith Pf Rs
实验组 12.8% 8.2% 10.2%
对照组 4.7% 2.6% 3.5%
2、循环直流电流脉冲冲击过的芯片比未经电流冲击的芯片更早进入性能稳定时期,且降低了漏筛率。
VCSEL芯片在常规老化96hrs后进入性能稳定时期,在2000hrs的长期老化过程发现2颗漏筛失效品。经过100次电流冲击后的芯片在老化48hrs后进入性能稳定时期,在2000hrs的长期老化过程中未发现漏筛的失效品。图1显示了未经循环直流电流冲击芯片的光功率变化情况,图2为经循环直流电流冲击后芯片的光功率变化情况。
3、分析循环直流电流脉冲冲击筛选出的失效品,发现存在氧化层尖端裂纹失效以及DLDs失效类型,分别如图3、图4所示;表明本发明技术方案可有效筛选出存在芯片量子阱区域内的黑色线缺陷和氧化层裂纹缺陷的不良芯片。

Claims (9)

1.一种垂直腔面发射激光器芯片筛选方法,包括对垂直腔面发射激光器芯片进行老化筛选的步骤,以通过性能测试将经过老化处理后的失效芯片剔除;其特征在于,在所述老化筛选之前,先对垂直腔面发射激光器芯片进行预筛选,具体方法如下:用直流电流脉冲对垂直腔面发射激光器芯片进行循环冲击,并在冲击完成后通过性能测试将失效芯片剔除;所述直流电流脉冲的电流大小为Ith+S,脉冲宽度为50ms~200ms,Ith为所述垂直腔面发射激光器芯片的阈值电流,S的取值范围为20mA~40 mA。
2.如权利要求1所述垂直腔面发射激光器芯片筛选方法,其特征在于,S的取值范围为25mA~35 mA。
3.如权利要求1所述垂直腔面发射激光器芯片筛选方法,其特征在于,脉冲宽度为75ms~150ms。
4.如权利要求1所述垂直腔面发射激光器芯片筛选方法,其特征在于,所述循环冲击的循环次数为80~120次。
5.一种垂直腔面发射激光器芯片筛选装置,包括用于对垂直腔面发射激光器芯片进行老化筛选的老化测试模块,所述老化测试模块包括用于对垂直腔面发射激光器芯片进行老化处理的老化处理子模块,以及用于通过性能测试将经过老化处理后的失效芯片剔除的性能测试子模块;其特征在于,所述筛选装置还包括用于在所述老化筛选之前,先对垂直腔面发射激光器芯片进行预筛选的预筛选模块,所述预筛选模块包括直流冲击子模块和性能测试子模块,所述直流冲击子模块用于用直流电流脉冲对垂直腔面发射激光器芯片进行循环冲击,性能测试子模块用于在冲击完成后通过性能测试将失效芯片剔除;所述直流电流脉冲的电流大小为Ith+S,脉冲宽度为50ms~200ms,Ith为所述垂直腔面发射激光器芯片的阈值电流,S的取值范围为20mA~40 mA。
6.如权利要求5所述垂直腔面发射激光器芯片筛选装置,其特征在于,S的取值范围为25mA~35 mA。
7.如权利要求5所述垂直腔面发射激光器芯片筛选装置,其特征在于,脉冲宽度为75ms~150ms。
8.如权利要求5所述垂直腔面发射激光器芯片筛选装置,其特征在于,所述循环冲击的循环次数为80~120次。
9.如权利要求5~8任一项所述垂直腔面发射激光器芯片筛选装置,其特征在于,预筛选模块中的性能测试子模块复用老化测试模块中的性能测试子模块。
CN201911163132.5A 2019-11-25 2019-11-25 垂直腔面发射激光器芯片筛选方法及装置 Active CN110732503B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911163132.5A CN110732503B (zh) 2019-11-25 2019-11-25 垂直腔面发射激光器芯片筛选方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911163132.5A CN110732503B (zh) 2019-11-25 2019-11-25 垂直腔面发射激光器芯片筛选方法及装置

Publications (2)

Publication Number Publication Date
CN110732503A CN110732503A (zh) 2020-01-31
CN110732503B true CN110732503B (zh) 2021-06-22

Family

ID=69273640

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911163132.5A Active CN110732503B (zh) 2019-11-25 2019-11-25 垂直腔面发射激光器芯片筛选方法及装置

Country Status (1)

Country Link
CN (1) CN110732503B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111585164B (zh) * 2020-05-14 2021-07-06 苏州长瑞光电有限公司 一种垂直腔面发射激光器快速老化方法及装置
CN114113961B (zh) * 2021-11-05 2024-09-17 珠海市大鹏电子科技有限公司 一种光电耦合器的筛选方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101363897A (zh) * 2007-08-08 2009-02-11 中国科学院半导体研究所 一种对列阵器件进行老化筛选的装置及方法
US7795896B2 (en) * 2008-08-13 2010-09-14 Finisar Corporation High-power optical burn-in
US8401045B2 (en) * 2011-05-27 2013-03-19 Fujitsu Limited Regulating a vertical-cavity surface-emitting laser (VCSEL)-based optical communication link
CN108110608B (zh) * 2018-02-06 2024-03-19 深圳市光脉电子有限公司 一种可阵列式激光器
CN109061330B (zh) * 2018-07-26 2020-07-07 长春理工大学 基于低频噪声与加速老化试验相结合的vcsel预筛选方法

Also Published As

Publication number Publication date
CN110732503A (zh) 2020-01-31

Similar Documents

Publication Publication Date Title
CN110732503B (zh) 垂直腔面发射激光器芯片筛选方法及装置
DE69318845T2 (de) Verfahren zur verkürzten alterungsprüfung von halbleiterbausteinen
JP6547844B2 (ja) 炭化珪素半導体基板、炭化珪素半導体基板の製造方法、半導体装置および半導体装置の製造方法
Hempel et al. Time‐resolved reconstruction of defect creation sequences in diode lasers
US20110244604A1 (en) Method of manufacturing semiconductor device
CN116804697A (zh) 激光器芯片的老化条件获取方法、系统及芯片筛选方法
CN108333209B (zh) 一种GaN HEMT加速寿命试验方法
CN108089072A (zh) 一种激光器封装初期的老化夹具及其应用
CN115189219A (zh) 一种获得边发射激光器芯片最优老化条件的方法及采用该条件筛选芯片的方法
Xu et al. A fast method for lifetime estimation of blue light-emitting diode chips based on nonradiative recombination defects
CN115524099B (zh) 半导体激光器的测试方法、装置、计算机设备及存储介质
CN114210605B (zh) 碳化硅功率半导体器件测试方法
CN111585164B (zh) 一种垂直腔面发射激光器快速老化方法及装置
Risch et al. External-cavity-induced nonlinearities in the light versus current characteristic of (Ga, Al) As continuous-wave diode lasers
JP2018170853A (ja) 太陽光発電モジュール評価方法、評価装置および評価プログラム
CN204128985U (zh) 半导体激光测试装置
CN114807840A (zh) 一种砷化镓基led芯片透明导电层测试点的制备方法
US10249791B2 (en) High-brightness light-emitting diode with surface microstructures
Hwang et al. Failure analysis of plastic packaged optocoupler light emitting diodes
CN110504183B (zh) 自动扩展扫描区域的扫描程式建立方法
CN202667932U (zh) 一种激光制作硅太阳能电池电极印刷网板的装置
Krassowski et al. Investigation of impact of cell-properties on LECO effectiveness using off-spec PERC-cells of different manufacturers on MK4 platform
JP2006135245A (ja) 半導体レーザ装置の製造方法および半導体レーザ装置
CN113030711B (zh) 一种功率放大器芯片、芯片测试系统及方法
CN111934186B (zh) 一种判断半导体激光器芯片光学灾变类型的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant