CN110729392B - 一种层状硅锗热电材料 - Google Patents

一种层状硅锗热电材料 Download PDF

Info

Publication number
CN110729392B
CN110729392B CN201911014107.0A CN201911014107A CN110729392B CN 110729392 B CN110729392 B CN 110729392B CN 201911014107 A CN201911014107 A CN 201911014107A CN 110729392 B CN110729392 B CN 110729392B
Authority
CN
China
Prior art keywords
layer
germanium
geo
film layer
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911014107.0A
Other languages
English (en)
Other versions
CN110729392A (zh
Inventor
刘英光
韩中合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201911014107.0A priority Critical patent/CN110729392B/zh
Publication of CN110729392A publication Critical patent/CN110729392A/zh
Application granted granted Critical
Publication of CN110729392B publication Critical patent/CN110729392B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明公开了一种层状硅锗热电材料,包括:锗基板和设置在锗基板上的超薄GeO2薄膜层;在超薄GeO2薄膜层上形成微型阵列孔,微型阵列孔的孔径为0.8nm~1.2nm,间距为3nm~5nm;7~66层硅原子在设置有微型阵列孔的超薄GeO2薄膜层沉积、长大,形成球形纳米晶体,相邻的球形纳米晶体在交界处达到接触状态,形成纳米硅球层;纳米硅球层上沉积有13~123层的外延锗层,外延锗层上设置超薄GeO2薄膜层,超薄GeO2薄膜层上设置纳米硅球层,逐次累计,形成层状硅锗热电材料,热电转化效率高,结构稳定性好。

Description

一种层状硅锗热电材料
技术领域
本发明涉及热电转化技术领域,具体涉及一种层状硅锗热电材料。
背景技术
能源是人类经济社会发展的根本动力和重要的物质基础。
中国的能源呈现多煤少油缺气的结构现状,改善能源结构和提高能源利用率刻不容缓。而且目前能源的利用效率较低,提高的空间较大。
热电材料是一种可利用材料Seebeck效应和Peltier效应实现热能和电能直接相互转换的新型能源材料,在工业余热和汽车尾气废热回收利用及热电制冷等方面表现出广泛的应用前景。它具有装置结构简单、无机械传动部件、体积小、寿命长、可靠性高、工作无噪音及环境友好等诸多优点。
热电材料的性能主要由热电优值ZT决定,可以表示为ZT=σS2Т/κ,其中:S为Seebeck系数、σ为电导率、κ为热导率、Т为绝对温度。
当前的热电材料热导率较高的现状仍然突出,本发明涉及的热电材料可以大大降低材料的热导率,提高材料的热电性能。
发明内容
鉴于上述,本发明提供了一种层状硅锗热电材料。
一种层状硅锗热电材料,包括:锗基板和设置在锗基板上的超薄GeO2薄膜层;
在超薄GeO2薄膜层上形成微型阵列孔,微型阵列孔的孔径为0.8nm~1.2nm,间距为3nm~5nm;
7~66层硅原子在设置有微型阵列孔的超薄GeO2薄膜层沉积、长大,形成球形纳米晶体,相邻的球形纳米晶体在交界处达到接触状态,形成纳米硅球层。
优选的,纳米硅球层上沉积有13~123层的外延锗层。
优选的,相邻的球形纳米晶体在交界处设置有微孔洞;外延锗层的部分锗原子穿过微孔洞,填充相邻的球形纳米晶体之间的空隙。
优选的,穿过微孔洞的锗原子包裹、填充在球形纳米晶体的表面,保证球形纳米晶体的相对独立。
优选的,球形纳米晶体的晶粒尺寸为3nm~5nm,可以保证相互处于活跃的状态,能够最大限度的吸收热量,转化为有序的电子流,热电效率高。
优选的,外延锗层的上表形成有第二层超薄GeO2薄膜层;
第二层超薄GeO2薄膜层设置有第二层纳米硅球层。
优选的,超薄GeO2薄膜层有1~5层GeO2分子层。
优选的,超薄GeO2薄膜层有2~3层GeO2分子层。
本发明还提供了上述层状硅锗热电材料的制备方法。
一种层状硅锗热电材料的制备方法,包括:
A. 在温度为330℃~430℃、氧气分压力为的环境下,在清洁的锗基板进行表面氧化,氧化10~20 min,形成超薄GeO2薄膜层;
B. 升温至550℃~650℃,硅以离子束的形式冲击超薄GeO2薄膜层的上表面,产生如下的化学反应:
Si+GeO2→SiO↑+GeO↑;
在超薄GeO2薄膜层上形成微型阵列孔,微型阵列孔的孔径为0.8nm~1.2nm,间距为3nm~5nm;
C. 在550℃~650℃温度环境下,硅通过电沉积的方法,以(1~1.4)ML/min的沉积速率沉积7~11层硅原子在设置有微型阵列孔的超薄GeO2薄膜层,电沉积的硅足以填平微型阵列孔;
D. 在550℃~650℃温度环境下,硅继续通过电沉积的方法,以(1~1.4)ML/min的沉积速率沉积26~66层硅原子在设置有微型阵列孔的超薄GeO2薄膜层,继续沉积的硅原子被困在微型阵列孔的中,导致了球形纳米晶体的形成,继续沉积,球形纳米晶体长大,相邻的球形纳米晶体在交界处达到接触状态,形成纳米硅球层。
优选的,D之后还包括:
E. 将温度降至450℃~500℃环境温度,以(1.5~1.8)ML/min的沉积速率在步纳米硅球层上继续沉积13~123层的外延锗层。
优选的,相邻的球形纳米晶体在交界处设置有微孔洞;外延锗层的部分锗原子穿过微孔洞,填充相邻的球形纳米晶体之间的空隙。
优选的,穿过微孔洞的锗原子包裹、填充在球形纳米晶体的表面,保证球形纳米晶体的相对独立。
优选的,球形纳米晶体的晶粒尺寸为3nm~5nm,可以保证相互处于活跃的状态,能够最大限度的吸收热量,转化为有序的电子流,热电效率高。
优选的,E之后还包括:
F. 在温度为330℃~430℃、氧气分压力为的环境下,对外延锗层进行表面氧化,氧化10~20 min,形成超薄GeO2薄膜层;
G. 重复B、C和D,获得第二层纳米硅球层。
优选的,A之前还包括:
A1. 采用硫酸-过氧化氢混合溶液的稀释液和氢氟酸溶液对非掺杂的锗基板进行常规清洗;
A2. 将进行常规清洗后的锗基板,在基本压力为环境中,引入分子束外延室,升温至350℃~410℃脱气3小时~5小时后,在锗基板上生长出(80~120)nm的锗的缓冲层,进而形成清洁的锗表面。
优选的,A2之后,A之前还包括:
A3. 利用高能电子衍射装置(RHEED)对锗表面进行观察,确定锗表面的清洁度。
优选的,超薄GeO2薄膜层有1~5层GeO2分子层。
优选的,超薄GeO2薄膜层有2~3层GeO2分子层。
本发明的有益效果:一种层状硅锗热电材料,包括:锗基板和设置在锗基板上的超薄GeO2薄膜层;在超薄GeO2薄膜层上形成微型阵列孔,微型阵列孔的孔径为0.8nm~1.2nm,间距为3nm~5nm;7~66层硅原子在设置有微型阵列孔的超薄GeO2薄膜层沉积、长大,形成球形纳米晶体,相邻的球形纳米晶体在交界处达到接触状态,形成纳米硅球层;纳米硅球层上沉积有13~123层的外延锗层,外延锗层上设置超薄GeO2薄膜层,超薄GeO2薄膜层上设置纳米硅球层,逐次累计,形成层状硅锗热电材料,热电转化效率高,结构稳定性好。
本发明的目的在于:一种层状硅锗热电材料,包括:A. 在温度为330℃~430℃、氧气分压力为的环境下,在清洁的锗基板进行表面氧化,氧化10~20 min,形成超薄GeO2薄膜层;B. 升温至550℃~650℃,硅以离子束的形式冲击超薄GeO2薄膜层的上表面,产生化学反应:Si+GeO2→SiO↑+GeO↑;在超薄GeO2薄膜层上形成微型阵列孔,微型阵列孔的孔径为0.8nm~1.2nm,间距为3nm~5nm;C. 在550℃~650℃温度环境下,硅通过电沉积的方法,以(1~1.4)ML/min的沉积速率沉积7~11层硅原子在设置有微型阵列孔的超薄GeO2薄膜层,电沉积的硅足以填平微型阵列孔;D. 在550℃~650℃温度环境下,硅继续通过电沉积的方法,以(1~1.4)ML/min的沉积速率沉积26~66层硅原子在设置有微型阵列孔的超薄GeO2薄膜层,继续沉积的硅原子被困在微型阵列孔的中,导致了球形纳米晶体的形成,继续沉积,球形纳米晶体长大,相邻的球形纳米晶体在交界处达到接触状态,形成纳米硅球层。E. 将温度降至450℃~500℃环境温度,以(1.5~1.8)ML/min的沉积速率在步纳米硅球层上继续沉积13~123层的外延锗层。F. 在温度为330℃~430℃、氧气分压力为/>的环境下,对外延锗层进行表面氧化,氧化10~20 min,形成超薄GeO2薄膜层;G. 重复B、C和D,获得第二层纳米硅球层。重复B、C、D、E和F获得第三层纳米硅球层、……、第N层纳米硅球层,N为自然数,N大于等于3。上述工艺简单,微型阵列孔的孔径为0.8nm~1.2nm,间距为3nm~5nm,保证了球形纳米晶体的晶粒尺寸为3~5 nm,相互之间可以通过晶界交汇处进行结合和原子互换,也能够保证相互独立性,结构稳定性好。
本发明,提供工艺简单的热电材料的制备方法,以推动热电材料科学的发展,以锗为基底且含有外延硅纳米点的热电材料及其制备方案,利用锗为衬底生长外延硅纳米点的复合纳米结构的热电材料,可以分别有效的控制材料的热导率和电导率,提高材料的热电优值。
有益的效果:材料中的热导率是由声子控制的,电导率是由电子控制的,本发明中的热电材料和现有结构的热电材料相比,该热电材料可以分别控制热导率和电导率;声子在通过外延生长的球形纳米晶体(纳米点)的时候会发生散射,从而增大了声子输运的阻力,进而降低了材料的热导率;而这种结构对电子输运的阻力影响比较小,所以根据热电优值的公式可知,降低材料的热导率、提高电导率可以提高热电优值,进而提高材料的热电性能。硅、锗都是良好的半导体材料,但是他们的单质都具有较高的热导率,在锗中掺杂硅之后可明显降低其热导率。
附图说明
下面结合附图对本发明一种层状硅锗热电材料。
图1是本发明一种层状硅锗热电材料的制备方法的流程示意图。
图2是本发明一种层状硅锗热电材料的结构示意图。
图3是本发明一种层状硅锗热电材料的结构示意图的图2的A处的局部放大图。
图中:
1-锗基板;2-超薄GeO2薄膜层;3-球形纳米晶体;30-纳米硅球层;4-外延锗层。
实施方式
下面结合附图1~3对本发明一种层状硅锗热电材料进一步说明。
一种层状硅锗热电材料,包括:锗基板1和设置在锗基板1上的超薄GeO2薄膜层2;
在超薄GeO2薄膜层2上形成微型阵列孔,微型阵列孔的孔径为0.8nm~1.2nm,间距为3nm~5nm;
7~66层硅原子在设置有微型阵列孔的超薄GeO2薄膜层2沉积、长大,形成球形纳米晶体3,相邻的球形纳米晶体3在交界处达到接触状态,形成纳米硅球层30。
本实施例中,纳米硅球层30上沉积有13~123层的外延锗层4。
本实施例中,相邻的球形纳米晶体3在交界处设置有微孔洞;外延锗层4的部分锗原子穿过微孔洞,填充相邻的球形纳米晶体3之间的空隙。
本实施例中,穿过微孔洞的锗原子包裹、填充在球形纳米晶体3的表面,保证球形纳米晶体3的相对独立。
本实施例中,球形纳米晶体3的晶粒尺寸为3nm~5nm,可以保证相互处于活跃的状态,能够最大限度的吸收热量,转化为有序的电子流,热电效率高。
本实施例中,外延锗层4的上表形成有第二层超薄GeO2薄膜层;
第二层超薄GeO2薄膜层设置有第二层纳米硅球层。
本实施例中,超薄GeO2薄膜层2有1~5层GeO2分子层。
本实施例中,超薄GeO2薄膜层2有2~3层GeO2分子层。
一种层状硅锗热电材料的制备方法,包括:
A. 在温度为330℃~430℃、氧气分压力为的环境下,在清洁的锗基板1进行表面氧化,氧化10~20 min,形成超薄GeO2薄膜层2;
B. 升温至550℃~650℃,硅以离子束的形式冲击超薄GeO2薄膜层2的上表面,产生如下的化学反应:
Si+GeO2→SiO↑+GeO↑;
在超薄GeO2薄膜层上形成微型阵列孔,微型阵列孔的孔径为0.8nm~1.2nm,间距为3nm~5nm;
C. 在550℃~650℃温度环境下,硅通过电沉积的方法,以(1~1.4)ML/min的沉积速率沉积7~11层硅原子在设置有微型阵列孔的超薄GeO2薄膜层2,电沉积的硅足以填平微型阵列孔;
D. 在550℃~650℃温度环境下,硅继续通过电沉积的方法,以(1~1.4)ML/min的沉积速率沉积26~66层硅原子在设置有微型阵列孔的超薄GeO2薄膜层2,继续沉积的硅原子被困在微型阵列孔的中,导致了球形纳米晶体3的形成,继续沉积,球形纳米晶体3长大,相邻的球形纳米晶体3在交界处达到接触状态,形成纳米硅球层30。
本实施例中,D之后还包括:
E. 将温度降至450℃~500℃环境温度,以(1.5~1.8)ML/min的沉积速率在步纳米硅球层30上继续沉积13~123层的外延锗层4。
本实施例中,相邻的球形纳米晶体3在交界处设置有微孔洞;外延锗层4的部分锗原子穿过微孔洞,填充相邻的球形纳米晶体3之间的空隙。
本实施例中,穿过微孔洞的锗原子包裹、填充在球形纳米晶体3的表面,保证球形纳米晶体3的相对独立。
本实施例中,球形纳米晶体3的晶粒尺寸为3nm~5nm,可以保证相互处于活跃的状态,能够最大限度的吸收热量,转化为有序的电子流,热电效率高。
本实施例中,E之后还包括:
F. 在温度为330℃~430℃、氧气分压力为的环境下,对外延锗层4进行表面氧化,氧化10~20 min,形成超薄GeO2薄膜层2;
G. 重复B、C和D,获得第二层纳米硅球层30。
本实施例中,A之前还包括:
A1. 采用硫酸-过氧化氢混合溶液的稀释液和氢氟酸溶液对非掺杂的锗基板1进行常规清洗;
A2. 将进行常规清洗后的锗基板1,在基本压力为环境中,引入分子束外延室,升温至350℃~410℃脱气3小时~5小时后,在锗基板1上生长出(80~120)nm的锗的缓冲层,进而形成清洁的锗表面。
本实施例中,A2之后,A之前还包括:
A3. 利用高能电子衍射装置(RHEED)对锗表面进行观察,确定锗表面的清洁度。
本实施例中,超薄GeO2薄膜层2有1~5层GeO2分子层。
本实施例中,超薄GeO2薄膜层2有2~3层GeO2分子层。
重复B、C、D、E和F获得第三层纳米硅球层、……、第N层纳米硅球层,N为自然数,N大于等于3。
上述工艺简单,微型阵列孔的孔径为0.8nm~1.2nm,间距为3nm~5nm,保证了球形纳米晶体的晶粒尺寸为3~5 nm,相互之间可以通过晶界交汇处进行结合和原子互换,也能够保证相互独立性,结构稳定性好。
以上仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下还可以作出若干改进,这些改进也应视为本发明的保护范围。

Claims (6)

1.一种层状硅锗热电材料,其特征在于,包括:锗基板(1)和设置在锗基板(1)上的超薄GeO2薄膜层(2);
在所述超薄GeO2薄膜层(2)上形成微型阵列孔,所述微型阵列孔的孔径为0.8nm~1.2nm,间距为3nm~5nm;
7~66层硅原子在所述设置有微型阵列孔的超薄GeO2薄膜层(2)沉积、长大,形成球形纳米晶体(3),相邻的球形纳米晶体(3)在交界处达到接触状态,形成纳米硅球层(30);
所述纳米硅球层(30)上沉积有13~123层的外延锗层(4);所述外延锗层(4)的上表形成有第二层超薄GeO2薄膜层;第二层超薄GeO2薄膜层设置有第二层纳米硅球层;
逐次累计,第N-1层纳米硅球层上沉积有13~123层的第N-1层外延锗层;第N-1层外延锗层的上表形成有第N层超簿GeO2薄膜层;第N层超薄GeO2薄膜层设置有第N层纳米硅球层;所述N为大于等于3的自然数。
2.如权利要求1所述层状硅锗热电材料,其特征在于,相邻的球形纳米晶体(3)在交界处设置有微孔洞;所述外延锗层(4)的部分锗原子穿过所述微孔洞,填充相邻的球形纳米晶体(3)之间的空隙。
3.如权利要求2所述层状硅锗热电材料,其特征在于,穿过所述微孔洞的锗原子包裹、填充在球形纳米晶体(3)的表面,保证球形纳米晶体(3)的相对独立。
4.如权利要求2所述层状硅锗热电材料,其特征在于,所述球形纳米晶体(3)的晶粒尺寸为3nm~5nm,可以保证相互处于活跃的状态,能够最大限度的吸收热量,转化为有序的电子流,热电效率高。
5.如权利要求1所述层状硅锗热电材料,其特征在于,所述超薄GeO2薄膜层(2)有1~5层GeO2分子层。
6.如权利要求1所述层状硅锗热电材料,其特征在于,所述超薄GeO2薄膜层(2)有2~3层GeO2分子层。
CN201911014107.0A 2019-10-23 2019-10-23 一种层状硅锗热电材料 Active CN110729392B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911014107.0A CN110729392B (zh) 2019-10-23 2019-10-23 一种层状硅锗热电材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911014107.0A CN110729392B (zh) 2019-10-23 2019-10-23 一种层状硅锗热电材料

Publications (2)

Publication Number Publication Date
CN110729392A CN110729392A (zh) 2020-01-24
CN110729392B true CN110729392B (zh) 2023-09-29

Family

ID=69221899

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911014107.0A Active CN110729392B (zh) 2019-10-23 2019-10-23 一种层状硅锗热电材料

Country Status (1)

Country Link
CN (1) CN110729392B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1731594A (zh) * 2005-08-03 2006-02-08 北京科技大学 一种纳-微米多孔硅锗合金热电材料的制备方法
CN103959496A (zh) * 2012-05-31 2014-07-30 独立行政法人科学技术振兴机构 热电材料,制造该热电材料的方法,和使用该热电材料的热电变换模块

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3559962B2 (ja) * 2000-09-04 2004-09-02 日本航空電子工業株式会社 熱電変換材料及びその製造方法
JP6470422B2 (ja) * 2015-10-02 2019-02-13 セントラル硝子株式会社 熱電変換材料及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1731594A (zh) * 2005-08-03 2006-02-08 北京科技大学 一种纳-微米多孔硅锗合金热电材料的制备方法
CN103959496A (zh) * 2012-05-31 2014-07-30 独立行政法人科学技术振兴机构 热电材料,制造该热电材料的方法,和使用该热电材料的热电变换模块

Also Published As

Publication number Publication date
CN110729392A (zh) 2020-01-24

Similar Documents

Publication Publication Date Title
Geng et al. Recent advances in growth of novel 2D materials: beyond graphene and transition metal dichalcogenides
Wang et al. Two-dimensional wide band-gap nitride semiconductor GaN and AlN materials: properties, fabrication and applications
KR101956278B1 (ko) 그래핀 함유 복합 적층체, 이를 포함하는 열전재료, 열전모듈과 열전 장치
Snyder et al. Complex thermoelectric materials
US9219215B1 (en) Nanostructures having high performance thermoelectric properties
KR101482598B1 (ko) 열전재료, 그 제조방법, 및 그것을 사용한 열전 변환 모듈
US8961810B2 (en) SiGe matrix nanocomposite materials with an improved thermoelectric figure of merit
US20110168978A1 (en) High Efficiency Thermoelectric Materials and Devices
JP6072427B2 (ja) ナノメートル(nm)級の厚さの導電層と誘電体層を交互に積層したセーベック/ペルティ効果を利用した熱−電気変換装置
JP2010192580A (ja) 熱電変換素子及びその製造方法
WO2010112956A1 (en) Magnesium based nanocomposite materials for thermoelectric energy conversion
Maeda et al. High thermoelectric performance in polycrystalline GeSiSn ternary alloy thin films
CN110729392B (zh) 一种层状硅锗热电材料
Tervo et al. State-of-the-art of thermoelectric materials processing
CN110724901B (zh) 一种硅锗热电材料的制备方法
Sifi et al. Comparison between the thermoelectric properties of new materials: The alloy of iron, vanadium, tungsten, and aluminum (Fe2V0. 8W0. 2Al) against an oxide such as NaCO2O4
JP2006287000A (ja) 熱電デバイス用基板および熱電デバイス
CN212542474U (zh) 一种平面碲化铋基薄膜热电模块及热电发电机
Toko et al. Layer Exchange Synthesis of SiGe for Flexible Thermoelectric Generators: A Comprehensive Review
CN116709887A (zh) 一种高性能的氧化物超晶格室温热电薄膜器件及其制备方法
Snedaker Alternative Approaches to Group IV Thermoelectric Materials
Nguyen et al. Session 1: Growth and Structural Characterization of Si and Si-based Thin Film Materials
Andrews Charge and Thermal Transport in Oxide Nanowire Systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant