CN110724995B - 提高p-Si/PtSi光阴极分解水光电转换效率的方法 - Google Patents

提高p-Si/PtSi光阴极分解水光电转换效率的方法 Download PDF

Info

Publication number
CN110724995B
CN110724995B CN201911112538.0A CN201911112538A CN110724995B CN 110724995 B CN110724995 B CN 110724995B CN 201911112538 A CN201911112538 A CN 201911112538A CN 110724995 B CN110724995 B CN 110724995B
Authority
CN
China
Prior art keywords
ptsi
photocathode
conversion efficiency
oxidation treatment
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911112538.0A
Other languages
English (en)
Other versions
CN110724995A (zh
Inventor
师文生
张皓月
佘广为
李生阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technical Institute of Physics and Chemistry of CAS
Original Assignee
Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technical Institute of Physics and Chemistry of CAS filed Critical Technical Institute of Physics and Chemistry of CAS
Priority to CN201911112538.0A priority Critical patent/CN110724995B/zh
Publication of CN110724995A publication Critical patent/CN110724995A/zh
Application granted granted Critical
Publication of CN110724995B publication Critical patent/CN110724995B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/32Anodisation of semiconducting materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/059Silicon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明公开一种提高p‑Si/PtSi光阴极分解水光电转换效率的方法。该方法包括:在碱性溶液中对p‑Si/PtSi光阴极进行电化学氧化处理,使p‑Si/PtSi光阴极中的PtSi薄膜表面形成富铂相铂硅化物PtxSi(x>1),增强了p‑Si/PtSi光阴极表面电化学催化分解水性能,从而提高了其光电化学分解水光电转换效率。该提高p‑Si/PtSi光阴极光电化学分解水转换效率的方法操作简单,成本低廉,对于促进光电化学分解水技术的发展和应用具有积极意义。

Description

提高p-Si/PtSi光阴极分解水光电转换效率的方法
技术领域
本发明涉及光电化学技术领域,具体涉及一种提高p-Si/PtSi光阴极分解水光电转换效率的方法。
背景技术
当前,化石能源日益紧缺,并且在能源使用过程中产生严重的环境污染问题。利用光电化学分解水将太阳能转化成清洁能源氢能,是解决上述能源和环境污染问题的一种有效方式。在光电化学分解水反应过程中,光阴极发生产氢半反应,光阳极发生产氧半反应。其中,光阴极产生的氢气可直接用作清洁燃料或用于化学品合成。因此,构建具有高性能的光阴极器件是实现高效光电化学分解水的重点。
Si在地球上储量丰富,具有可吸收大部分可见光能量的带宽、适合发生光电化学分解水反应的能级位置以及高的载流子迁移率,因而被认为是一种理想的光阴极材料。但是,在光电化学条件下Si的稳定性较差,并且Si表面的产氢反应动力学过程缓慢。在Si表面沉积具有高产氢催化活性的金属(例如Pt),并通过硅化处理形成硅化物,可以在提高光电极表面催化活性的同时保护Si不受腐蚀。但是,p-Si与PtSi直接接触会造成很强的费米能级钉扎,导致肖特基势垒高度很低。通过杂质分凝(Dopant Segregation,DS)过程可以提高p-Si/PtSi肖特基势垒高度,从而提高器件光生电压。然而,p-Si/PtSi光阴极光电化学分解水开启电位仍然较低,需要外界提供较高的能量实现分解水,这使太阳能在光电分解水过程中的光电转换效率(Applied bias photo-to-current efficiency,ABPE)较低。
为此,本发明提出了通过对p-Si/PtSi在碱性溶液里进行电化学氧化处理,大幅提高p-Si/PtSi光阴极光电化学分解水光电转换效率的新方法。
发明内容
基于以上技术问题,本发明提供一种提高p-Si/PtSi光阴极分解水光电转换效率的方法,通过在碱性溶液中对p-Si/PtSi光阴极进行电化学氧化处理,在p-Si/PtSi光阴极中的PtSi表面形成富铂相铂硅化物PtxSi(x>1),同时使电极表面变粗糙,大幅提高p-Si/PtSi光阴极表面对分解水反应的催化活性,并且增大其电化学表面积,从而提高光电化学分解水的光电转换效率。
为达到上述目的,本发明采用下述技术方案:
本发明提供一种提高p-Si/PtSi光阴极分解水光电转换效率的方法,该方法包括:在碱性溶液中对p-Si/PtSi光阴极进行电化学氧化处理。
其中,所述的p-Si/PtSi光阴极以p-Si为基底,其表面上包括有PtSi薄膜,具有光电效应分解水产氢的光电极。
该方法通过在碱性溶液中对p-Si/PtSi光阴极进行电化学氧化处理,使p-Si/PtSi光阴极中的PtSi表面形成富铂相铂硅化物PtxSi(x>1),同时p-Si/PtSi光阴极表面变粗糙,大幅提高p-Si/PtSi光阴极表面对分解水反应的催化活性,并增大其电化学表面积,从而实现p-Si/PtSi光阴极光电化学分解水光电转换效率的提高。
优选地,所述碱性溶液为KOH水溶液或NaOH水溶液。
优选地,所述碱性溶液为1M的KOH水溶液或1M的NaOH水溶液。本领域技术人员理解的,碱液的浓度选择常规浓度均可实现本发明目的,本发明经过条件优化选定浓度为1M,此时氧化处理时间适宜。
优选地,所述电化学氧化处理的过程包括:在三电极电化学体系中,以p-Si/PtSi作为工作电极,采用循环伏安法或恒电流法使p-Si/PtSi发生阳极氧化。
优选地,所述三电极电化学体系中的对电极为石墨棒电极、参比电极为汞/氧化汞电极。
优选地,所述循环伏安法中的电位扫描范围为0V-1V(相对于参比电极),循环次数为20–50次。
优选地,所述恒电流法中所使用的电流密度为1×10-5A/cm2-1×10-3A/cm2
优选地,所述恒电流法中电化学氧化处理的时间为10min–30min。
本领域技术人员容易理解的,当碱溶液的浓度改变时,相应的氧化处理时间也需要改变,以使电极氧化完全。
优选地,本发明实施例中所使用的p-Si/PtSi光阴极通过以下方法制备:
75℃下,将B掺杂的电阻率为8-12Ω·cm的单晶p-Si片在H2O:H2O2:NH4OH体积比为5:1:1的溶液中浸泡10分钟。将浸泡后的p-Si片再在H2SO4:H2O2体积比3:1的溶液中、120℃下浸泡15分钟进行清洗。将清洗后的p-Si片在浓度为5%的HF溶液中浸泡10秒去除表面氧化层,然后用去离子水清洗并在旋转干燥箱中、在惰性气体N2保护下烘干。将干燥后的p-Si片立即放入磁控溅射室,用铂靶以0.2318nm/s的沉积速率在p-Si片上沉积厚度约为8nm的Pt薄膜。将沉积有Pt薄膜的p-Si片放入快速热处理炉,在高纯N2气氛中、在550℃下快速热处理30秒,在p-Si表面形成厚度约为15nm的PtSi薄膜。快速热处理过程中升温速率为30℃/s,热处理时间30秒不包括升温过程所用时间。将p-Si/PtSi样品放入离子蒸气室,利用离子增强化学蒸气法在PtSi表面沉积
Figure BDA0002273153010000031
厚的SiO2掩膜,然后向样品表面注入1×1015cm-2P杂质,在700℃自退火处理30秒。最后,将样品在浓度为5%的HF溶液中浸泡去除SiO2掩膜,得到p-Si/PtSi光阴极。
本发明的有益效果如下:
本发明提供的提高p-Si/PtSi光阴极光电转换效率的方法,通过对制备的p-Si/PtSi光阴极进行简单的电化学氧化处理过程,在电极表面产生富铂相铂硅化物PtxSi(x>1),同时使电极表面变得更加粗糙,提高了p-Si/PtSi光阴极表面电化学分解水产氢催化活性,并且增大了电极的电化学表面积,最终提高了p-Si/PtSi光阴极光电化学分解水光电转换效率。该提高p-Si/PtSi光阴极光电转换效率的方法操作简单,成本低廉,对于促进光电化学分解水技术的发展和应用具有积极意义。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例2中经过电化学氧化处理的p-Si/PtSi光阴极表面与实施例1中未电化学氧化处理的p-Si/PtSi光阴极表面的XPS谱图对比。
图2a为实施例1中未电化学氧化处理的p-Si/PtSi光阴极的横截面TEM图。
图2b为实施例1中未电化学氧化处理的p-Si/PtSi光阴极的横截面HR-TEM图。
图2c为本发明实施例2中经过电化学氧化处理的p-Si/PtSi光阴极横截面HR-TEM图。
图2d为本发明实施例2中经过电化学氧化处理的p-Si/PtSi光阴极横截面HADDF-TEM图。
图3为本发明实施例2中经过电化学氧化处理的p-Si/PtSi光阴极表面与实施例1中未电化学氧化处理的DS p-Si/PtSi光阴极表面的电催化性能LSV曲线对比图。
图4a为实施例1中未电化学氧化处理的p-Si/PtSi光阴极在不同扫速下的循环伏安曲线。
图4b为本发明实施例2中经过电化学氧化处理的p-Si/PtSi光阴极在不同扫速下的循环伏安曲线。
图4c为本发明实施例2中经过电化学氧化处理的p-Si/PtSi光阴极与实施例1中未电化学氧化处理的p-Si/PtSi光阴极的双电层电容法测得的电化学表面积。
图5为本发明实施例2中经过电化学氧化处理的p-Si/PtSi光阴极与实施例1中未电化学氧化处理的p-Si/PtSi光阴极的LSV曲线对比图。
具体实施方式
为使本发明的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
需要说明的是,本发明所有数值指定(例如温度、时间、浓度及重量等,包括其中每一者的范围)通常可是适当以0.1或1.0的增量改变(+)或(-)的近似值。所有数值指定均可理解为前面有术语“约”。
实施例1
本实施例制备p-Si/PtSi光阴极:
75℃下,将B掺杂的电阻率为8-12Ω·cm的单晶p-Si片在H2O:H2O2:NH4OH体积比为5:1:1的溶液中浸泡10分钟。将浸泡后的p-Si片再在H2SO4:H2O2体积比3:1的溶液中、120℃下浸泡15分钟进行清洗。将清洗后的p-Si片在浓度为5%的HF溶液中浸泡10秒去除表面氧化层,然后用去离子水清洗并在旋转干燥箱中、在惰性气体N2保护下烘干。将干燥后的p-Si片立即放入磁控溅射室,用铂靶以4nm/min的沉积速率在p-Si片上沉积厚度约为8nm的Pt薄膜。将沉积有Pt薄膜的p-Si片放入快速热处理炉,在高纯N2气氛中、在550℃下快速热处理30秒,在p-Si表面形成厚度约为15nm的PtSi薄膜。快速热处理过程中升温速率为30℃/s,热处理时间30秒不包括升温过程所用时间。将p-Si/PtSi样品放入离子蒸气室,利用离子增强化学蒸气法在PtSi表面沉积
Figure BDA0002273153010000051
厚的SiO2掩膜,然后向样品表面注入1×1015cm-2P杂质,在700℃自退火处理30秒。最后,将样品在浓度为5%的HF溶液中浸泡去除SiO2掩膜,得到p-Si/PtSi光阴极。
实施例2
本实施例使用恒电流法对p-Si/PtSi光阴极进行电化学氧化处理:
在1M KOH水溶液中,分别以实施例1所制备的p-Si/PtSi光阴极、石墨棒电极和汞/氧化汞电极作为工作电极、对电极和参比电极,通过CHI 660E电化学工作站给工作电极施加电流密度为1×10-5A/cm2的恒定电流并持续30分钟,得到电化学氧化处理的p-Si/PtSi光阴极。
图1所示为电化学氧化处理前、后p-Si/PtSi光阴极的XPS图谱。通过对此结果的分析可知,电化学氧化处理后p-Si/PtSi表面的PtSi转化成为富铂相的铂硅化合物PtxSi(x>1)。
图2a为实施例1中未电化学氧化处理的p-Si/PtSi光阴极的横截面TEM图,图2b为实施例1中未电化学氧化处理的p-Si/PtSi光阴极的横截面HR-TEM图,图2c为本发明实施例2中经过电化学氧化处理的p-Si/PtSi光阴极横截面HR-TEM图,图2d为本发明实施例2中经过电化学氧化处理的p-Si/PtSi光阴极横截面HADDF-TEM图。通过对此结果的分析可知,电化学氧化处理后p-Si/PtSi表面变粗糙,并且有富铂相的铂硅化合物PtxSi(x>1)。
图3为表征氧化处理前后p-Si/PtSi光阴极表面电催化性能的LSV曲线。可以看出,当电极开启后,相同电位下经过电化学氧化处理后p-Si/PtSi光阴极的电流密度更大,说明经过电化学氧化处理后p-Si/PtSi光阴极对电解水析氢反应催化活性显著提高。
图4a-图4c为电化学氧化处理前后p-Si/PtSi样品的电化学表面积测试结果。可以看出,通过双电层电容法测试拟合,电化学氧化处理后p-Si/PtSi表面斜率更大,双电层电容更大,电化学氧化处理后p-Si/PtSi表面的电化学活性面积增大。
图5为电化学氧化处理前后p-Si/PtSi光阴极的LSV曲线。从图中可以看出,电化学氧化处理的p-Si/PtSi光阴极分解水产氢曲线开启电位变正,开启后,相同电位下电流密度更大,使得p-Si/PtSi光阴极的光电转换效率(ABPE)由0.08%提高至5.8%。
实施例3
本实施例使用恒电流法对p-Si/PtSi光阴极进行电化学氧化处理:
以1M KOH水溶液中,分别以实施例1所制备的p-Si/PtSi光阴极、石墨电极和汞/氧化汞作为工作电极、对电极和参比电极,通过CHI 660E电化学工作站给工作电极施加电流密度1×10-3A/cm2的恒定电流并持续30分钟,得到电化学氧化处理的p-Si/PtSi光阴极。
实施例4
本实施例使用恒电流法对p-Si/PtSi光阴极进行电化学氧化处理:
以1M KOH水溶液中,分别以实施例1所制备的p-Si/PtSi光阴极、石墨电极和汞/氧化汞作为工作电极、对电极和参比电极,通过CHI 660E电化学工作站给工作电极施加电流密度1×10-5A/cm2的恒定电流并持续10分钟,得到电化学氧化处理的p-Si/PtSi光阴极。
实施例5
本实施例使用循环伏安法对p-Si/PtSi光阴极进行电化学氧化处理:
以1M KOH水溶液中,分别以实施例1所制备的p-Si/PtSi光阴极、石墨电极和汞/氧化汞作为工作电极、对电极和参比电极,通过CHI 660E电化学工作站给工作电极采用循环伏安法扫描,电位范围为0-1V,扫描次数为20次,得到电化学氧化处理的p-Si/PtSi光阴极。
实施例6
本实施例使用循环伏安法对p-Si/PtSi光阴极进行电化学氧化处理:
以1M KOH水溶液中,分别以实施例1所制备的p-Si/PtSi光阴极、石墨电极和汞/氧化汞作为工作电极、对电极和参比电极,通过CHI 660E电化学工作站给工作电极采用循环伏安法扫描,电位范围为0-1V,扫描次数为50次,得到电化学氧化处理的p-Si/PtSi光阴极。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (4)

1.一种提高p-Si/PtSi光阴极分解水光电转换效率的方法,其特征在于,该方法包括:在碱性溶液中对p-Si/PtSi光阴极进行电化学氧化处理;
所述碱性溶液为KOH水溶液或NaOH水溶液;
所述电化学氧化处理的过程包括:在三电极电化学体系中,以p-Si/PtSi作为工作电极,采用循环伏安法或恒电流法使p-Si/PtSi发生阳极氧化;
所述循环伏安法中的电位扫描范围为0V-1V,循环次数为20-50次;
所述恒电流法中所使用的电流密度为1×10-5A/cm2-1×10-3A/cm2
2.根据权利要求1所述的提高p-Si/PtSi光阴极分解水光电转换效率的方法,其特征在于,所述碱性溶液为1M的KOH水溶液或1M的NaOH水溶液。
3.根据权利要求1所述的提高p-Si/PtSi光阴极分解水光电转换效率的方法,其特征在于,所述三电极电化学体系中的对电极为石墨棒电极、参比电极为汞/氧化汞电极。
4.根据权利要求1所述的提高p-Si/PtSi光阴极分解水光电转换效率的方法,其特征在于,所述恒电流法中电化学氧化处理的时间为10min–30min。
CN201911112538.0A 2019-11-14 2019-11-14 提高p-Si/PtSi光阴极分解水光电转换效率的方法 Active CN110724995B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911112538.0A CN110724995B (zh) 2019-11-14 2019-11-14 提高p-Si/PtSi光阴极分解水光电转换效率的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911112538.0A CN110724995B (zh) 2019-11-14 2019-11-14 提高p-Si/PtSi光阴极分解水光电转换效率的方法

Publications (2)

Publication Number Publication Date
CN110724995A CN110724995A (zh) 2020-01-24
CN110724995B true CN110724995B (zh) 2021-04-02

Family

ID=69224189

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911112538.0A Active CN110724995B (zh) 2019-11-14 2019-11-14 提高p-Si/PtSi光阴极分解水光电转换效率的方法

Country Status (1)

Country Link
CN (1) CN110724995B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112442705B (zh) * 2020-11-09 2022-08-02 西安电子科技大学 一种双组分复合助催化剂修饰硅基光电阴极及制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102593476B (zh) * 2012-03-15 2015-01-14 中国人民解放军国防科学技术大学 纳米多孔PtSi材料及其制备方法
CN106086933B (zh) * 2016-07-27 2018-03-02 苏州大学 一种硅光阴极及其制备方法

Also Published As

Publication number Publication date
CN110724995A (zh) 2020-01-24

Similar Documents

Publication Publication Date Title
Zhao et al. New insight into the roles of oxygen vacancies in hematite for solar water splitting
Carroll et al. Mechanistic insights into solar water oxidation by cobalt-phosphate-modified α-Fe 2 O 3 photoanodes
Young et al. Photo-assisted water oxidation with cobalt-based catalyst formed from thin-film cobalt metal on silicon photoanodes
Eftekharinia et al. Optimization of charge transport in a Co–Pi modified hematite thin film produced by scalable electron beam evaporation for photoelectrochemical water oxidation
Wang et al. Fabrication of visible-light active Fe2O3-GQDs/NF-TiO2 composite film with highly enhanced photoelectrocatalytic performance
CN108010747B (zh) 一种超级电容器用氮硫双掺杂活性炭的制备方法
Basiriparsa et al. High-efficiency ozone generation via electrochemical oxidation of water using Ti anode coated with Ni–Sb–SnO 2
CN108328599A (zh) 一种基于柠檬酸过渡/碱金属络合物盐制备氮掺杂多孔碳材料的方法
CN108172852A (zh) 一种微生物燃料电池阳极、其制备方法及微生物燃料电池
CN103474517A (zh) SrTiO3纳米复合膜光阳极的制备方法
CN111514916A (zh) 一种制备氮掺杂钼基硫族化合物电解水析氢催化材料的方法
Chong et al. Transition metal (Ni, Fe, and Cu) hydroxides enhanced α-Fe 2 O 3 photoanode-based photofuel cell
Liu et al. Molybdenum-supported amorphous MoS 3 catalyst for efficient hydrogen evolution in solar-water-splitting devices
Goryachev et al. On the origin of the photocurrent of electrochemically passivated p-InP (100) photoelectrodes
Rufino et al. Influence of lead dioxide electrodes morphology on kinetics and current efficiency of oxygen-ozone evolution reactions
CN110724995B (zh) 提高p-Si/PtSi光阴极分解水光电转换效率的方法
Desilvestro et al. Photoelectrochemistry of polycrystalline n-WO3: Electrochemical characterization and photoassisted oxidation processes
US9988732B2 (en) Manufacturing method of titanium oxide electrode, active oxygen species production system including same, chlorine production system, dye-sensitised solar cell and electric double-layer capacitor
CN112844348A (zh) 一种具有微纳米结构的TiO2纳米管阵列光阳极的制备方法
CN107513723B (zh) 一种降低Ni/n-Si光阳极光电化学分解水开启电位的方法
Chen et al. Effect of univalent cations fluoride in F-Sb codoped SnO2 electrode on electro-catalytic degradation of methyl orange
Toghraei et al. Electrodeposited co-pi catalyst on α-Fe2O3 photoanode for water-splitting applications
Luk’yanenko et al. Voltametric behavior of platinized titanium electrodes
CN109904251B (zh) 一种B掺杂的NiSi/n-Si光电阳极及其制备方法和应用
CN112850860A (zh) 一种氮掺杂有序介孔碳电极的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant