CN110722173A - 一种银纳米片及其低温制备方法 - Google Patents

一种银纳米片及其低温制备方法 Download PDF

Info

Publication number
CN110722173A
CN110722173A CN201910982926.8A CN201910982926A CN110722173A CN 110722173 A CN110722173 A CN 110722173A CN 201910982926 A CN201910982926 A CN 201910982926A CN 110722173 A CN110722173 A CN 110722173A
Authority
CN
China
Prior art keywords
silver
solution
aqueous solution
low
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910982926.8A
Other languages
English (en)
Other versions
CN110722173B (zh
Inventor
梁雨
刘卫国
杨鹏飞
张大霄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Technological University
Original Assignee
Xian Technological University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Technological University filed Critical Xian Technological University
Priority to CN201910982926.8A priority Critical patent/CN110722173B/zh
Publication of CN110722173A publication Critical patent/CN110722173A/zh
Application granted granted Critical
Publication of CN110722173B publication Critical patent/CN110722173B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0553Complex form nanoparticles, e.g. prism, pyramid, octahedron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了一种银纳米片及其低温制备方法。本发明的技术方案为:一种低温制备银纳米片的方法,取十二烷基硫酸钠水溶液置于低温条件下均匀搅拌15~20分钟,依次加入海藻酸钠水溶液及硝酸银溶液和抗坏血酸溶液,在低温条件下持续搅拌反应1~3小时,反应后溶液离心10~15分钟后,取下层沉淀分散于水溶液中,再次重复离心步骤并将下层沉淀分散保存在水溶液中。本发明提供了一种在冰点低温条件下制备六边形银纳米片的方法,选用绿色天然多糖高分子材料的海藻酸钠和十二烷基硫酸钠在低温下作为反应体系的软模板,稳定高产的制备出银纳米片。

Description

一种银纳米片及其低温制备方法
技术领域
本发明属于纳米结构制备技术领域,具体涉及一种银纳米片及其低温制备方法。
背景技术
纳米结构以其自身独特的尺寸效应,在光学、电学、力学及催化等领域脱颖而出,尤其是金属纳米结构具有更为稳定的化学和物理性质,因此纳米尺度金属结构的制备成为纳米结构研究领域的一大热点。
金属纳米结构的制备方法包括物理刻蚀法、化学合成法、光诱导法、电化学法及生物法,其中化学合成的金属纳米结构多样化,自身缺陷少,适用于多种研究体系,但化学合成法大都依赖于高温下金属离子的还原及金属结构的分化和生长,还有在常温条件下借助晶种或者自制模板来制备金属纳米结构,目前还没有可以在冰点温度这样的极端条件下制备金属纳米结构的方法,或者说还没有验证极端低温条件下是否可以制备金属纳米结构的报道。
发明内容
本发明提出一种银纳米片及其低温制备方法,在0℃的冰点温度下,利用天然多糖高分子材料和表面活性剂自生成的软模板,稳定高产的制备出六边形银纳米片状结构。
一种低温制备银纳米片的方法,具体步骤如下:
(1)配制5×10-4mg/ml的海藻酸钠水溶液;
(2)分别配制摩尔浓度为0.1mol/L的抗坏血酸、0.01mol/L的硝酸银和0.005mol/L的十二烷基硫酸钠水溶液;
(3)取15ml的十二烷基硫酸钠水溶液置于低温条件下均匀搅拌15~20分钟;
(4)依次加入40μl~100μl的海藻酸钠水溶液及0.4ml的硝酸银溶液和0.1ml抗坏血酸溶液,在低温条件下持续搅拌反应1~3小时;
(5)反应后溶液以5000转/每分钟离心10~15分钟后,取下层沉淀分散于水溶液中,再次重复离心步骤并将下层沉淀分散保存在水溶液中。
上述水溶液为去离子水;上述低温制备环境为0±0.02℃。
如上述制备方法制得的银纳米片,表面包裹有海藻酸钠和十二烷基硫酸钠自生成的软模板;所述银纳米片为六边形,伴随极少量的五边形;所述的六边形银纳米片对边距离为200nm~1μm,厚度为30nm~70nm。
与现有技术相比,本发明显著的优点是:
1、本发明提出了一种在冰点低温(0±0.02℃)条件下制备六边形银纳米片的方法,为极端条件下制备金属纳米结构提供了可能,同时也验证了极端条件下制备出金属纳米结构的可能性。
2、本发明选用绿色天然多糖高分子材料的海藻酸钠和十二烷基硫酸钠在低温下作为反应体系的软模板,稳定高产的制备出银纳米片,这为海藻酸钠的适用体系范围提供了新的可能和新的研究方向。
附图说明
图1 本发明实施例1中所述六边形银纳米片扫描电镜图;
图2 本发明实施例1中所述六边形银纳米片能量散射谱图;
图3 本发明实施例1中所述六边形银纳米片X射线衍射谱图;
图4 本发明实施例2、实施例3及对比例中所述银纳米片扫描电镜图。
具体实施方式
下面将结合附图通过实施例对本发明进行详细地描述,如无特殊说明,本发明所采用的实验方法均为常规方法,所用实验试剂、耗材等均可从商业途径获得。
实施例1
光照充足条件下,室温为16±1℃,待到低温反应槽温度稳定在0±0.02℃时,将装有15ml 浓度为0.005mol/L的十二烷基硫酸钠(SDS)水溶液反应瓶在反应槽中以700转/分钟搅拌15~20min,依次取49μl浓度为5×10-4mg/ml的海藻酸钠(Alg)水溶液、0.4ml浓度为0.01mol/L的硝酸银溶液和0.1ml浓度为0.1mol/L的抗坏血酸(AA)加入到反应瓶持续搅拌反应1.5h后,以5000转/分钟的转速离心10~15min,去除上层清液,加入等体积水溶液保持相同的转速和时间进行第二次离心,再次去除上层清液,下层沉淀即为反应产物,加入一定量水溶液将其分散保存。
本实施例的反应产物呈六边形银纳米片结构,银纳米片对边距离为150nm~600nm,厚度为40nm~50nm,反应得到的产物离心分散之后仅伴随少量大颗粒,形貌扫描电镜图如图1所示。低温制备的六边形银纳米片能量散射谱图如图2所示,其中碳和铜的能谱峰是由于采集能谱的专用栅网所产生的。低温制备的六边形银纳米片X衍射谱图如图3所示。
实施例2
采用与实施例1基本相同的方法步骤制备六边形银纳米片,不同之处在于:海藻酸钠的用量为50μl,反应时间为2h,可以制备得到六边形银纳米片对边长度为350nm~500nm的,且会伴随200~300nm的尾状结构,形貌扫描电镜图如图4(a)所示,很明显高产量的银纳米片只伴随少量大块副产颗粒物。
实施例3
采用与实施例1基本相同的方法步骤制备六边形银纳米片,不同之处在于:海藻酸钠的用量为100μl,反应时间为3h,可以制备得到六边形银纳米片对边长度为400nm~600nm的,且会伴随300~700nm的尾状结构,形貌扫描电镜图如图4(b)所示。
对比例
采用与实施例1基本相同的方法步骤制备银纳米片,不同之处在于:没有加入海藻酸钠,反应时间为1h,制备得到银纳米片为100nm~300nm,大部分银纳米片无明显棱角边界,呈椭圆状或水滴状,且伴随着50nm~100nm的尾状结构,形貌扫描电镜图如图4(c)所示。
上述实施例为本发明的优选或参考案例,并不用来限制本发明的保护范围。

Claims (3)

1.一种低温制备银纳米片的方法,其特征在于:
具体步骤如下:
步骤一:配制5×10-4mg/ml的海藻酸钠水溶液;分别配制摩尔浓度为0.1mol/L的抗坏血酸、0.01mol/L的硝酸银和0.005mol/L的十二烷基硫酸钠水溶液;
步骤二:取15ml的十二烷基硫酸钠水溶液置于0±0.02℃的低温条件下均匀搅拌15~20分钟;
步骤三:依次加入40μl~100μl的海藻酸钠水溶液及体积比为4:1的硝酸银溶液和抗坏血酸溶液,在0±0.02℃的低温条件下持续搅拌反应1~3小时;抗坏血酸溶液的体积为0.1ml;
步骤四:反应后溶液以5000转/每分钟离心10~15分钟后,取下层沉淀分散于水溶液中,再次重复离心步骤并将下层沉淀分散保存在水溶液中。
2.根据权利要求1所述的一种低温制备银纳米片的方法,其特征在于:
所述的水溶液的溶剂为去离子水。
3.如权利要求1~2所述制备方法制得的银纳米片,其特征在于:
所述银纳米片表面包裹有海藻酸钠和十二烷基硫酸钠自生成的软模板;所述银纳米片为六边形,伴随极少量的五边形;所述的六边形银纳米片对边距离为200nm~1μm,厚度为30nm~70nm。
CN201910982926.8A 2019-10-16 2019-10-16 一种银纳米片及其低温制备方法 Active CN110722173B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910982926.8A CN110722173B (zh) 2019-10-16 2019-10-16 一种银纳米片及其低温制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910982926.8A CN110722173B (zh) 2019-10-16 2019-10-16 一种银纳米片及其低温制备方法

Publications (2)

Publication Number Publication Date
CN110722173A true CN110722173A (zh) 2020-01-24
CN110722173B CN110722173B (zh) 2022-05-20

Family

ID=69221349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910982926.8A Active CN110722173B (zh) 2019-10-16 2019-10-16 一种银纳米片及其低温制备方法

Country Status (1)

Country Link
CN (1) CN110722173B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111644634A (zh) * 2020-04-20 2020-09-11 北京邮电大学 一种基于溶液加工的热压制备二维金属方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103350236A (zh) * 2013-07-25 2013-10-16 湖南科技大学 一种合成六边形银纳米片的方法
CN103506630A (zh) * 2012-06-29 2014-01-15 中国科学院理化技术研究所 一种超低松装密度片状银粉的制备方法
CN103521777A (zh) * 2013-10-11 2014-01-22 南京邮电大学 制备不同形貌的二维银纳米片的方法
CN107716943A (zh) * 2017-09-07 2018-02-23 浙江大学 一种抗菌材料海藻酸钠‑抗坏血酸纳米银的绿色快速制备方法
KR20180104404A (ko) * 2017-03-13 2018-09-21 한국과학기술연구원 금속 나노플레이트의 제조 방법 및 이를 이용하여 제조된 금속 나노플레이트
WO2019177205A1 (ko) * 2018-03-15 2019-09-19 경희대학교 산학협력단 이방성 2d 은 나노 플레이트 및 이의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103506630A (zh) * 2012-06-29 2014-01-15 中国科学院理化技术研究所 一种超低松装密度片状银粉的制备方法
CN103350236A (zh) * 2013-07-25 2013-10-16 湖南科技大学 一种合成六边形银纳米片的方法
CN103521777A (zh) * 2013-10-11 2014-01-22 南京邮电大学 制备不同形貌的二维银纳米片的方法
KR20180104404A (ko) * 2017-03-13 2018-09-21 한국과학기술연구원 금속 나노플레이트의 제조 방법 및 이를 이용하여 제조된 금속 나노플레이트
CN107716943A (zh) * 2017-09-07 2018-02-23 浙江大学 一种抗菌材料海藻酸钠‑抗坏血酸纳米银的绿色快速制备方法
WO2019177205A1 (ko) * 2018-03-15 2019-09-19 경희대학교 산학협력단 이방성 2d 은 나노 플레이트 및 이의 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JISHENG YANG等: "Hydrothermal synthesis of silver nanoparticles by sodium alginate and their applications in surface-enhanced Raman scattering and catalysis", 《ACTA MATERIALIA》 *
MAN GUAN等: "Sodium alginate-assisted photosynthesis of complex silver microarchitectures", 《RSC ADVANCES》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111644634A (zh) * 2020-04-20 2020-09-11 北京邮电大学 一种基于溶液加工的热压制备二维金属方法

Also Published As

Publication number Publication date
CN110722173B (zh) 2022-05-20

Similar Documents

Publication Publication Date Title
Hwang et al. Controlling the morphology of metal–organic frameworks and porous carbon materials: Metal oxides as primary architecture-directing agents
Fröschl et al. High surface area crystalline titanium dioxide: potential and limits in electrochemical energy storage and catalysis
Dong et al. Hydrothermal synthesis and structure evolution of hierarchical cobalt sulfide nanostructures
Tong et al. Polymorphous α-and β-Ni (OH) 2 complex architectures: morphological and phasal evolution mechanisms and enhanced catalytic activity as non-enzymatic glucose sensors
Liu et al. Controlled synthesis of various hollow Cu nano/microstructures via a novel reduction route
Li et al. Polyhedral Cu2O crystal: Morphology evolution from meshed nanocube to solid and gas-sensing performance
Liu et al. Mesocrystals of rutile TiO2: Mesoscale transformation, crystallization, and growth by a biologic molecules-assisted hydrothermal process
CN1209789A (zh) 纳米结构的氧化物和氢氧化物及其合成方法
Liu et al. Morphology study by using scanning electron microscopy
CN111299603B (zh) 金纳米颗粒以及利用声悬浮制备金纳米颗粒的方法
CN102701283A (zh) 一种二硫化钨纳米棒的制备方法
CN110745784B (zh) 一种金属氧化物纳米颗粒及其制备方法和应用
Aghazadeh et al. La2O3 nanoplates prepared by heat-treatment of electrochemically grown La (OH) 3 nanocapsules from nitrate medium
Liu et al. Biopolymer-assisted construction and gas-sensing study of uniform solid and hollow ZnSn (OH) 6 spheres
KR101842763B1 (ko) 구리 나노구조물의 제조방법
CN110526293A (zh) 一种易分解盐辅助制备二维纳米材料的方法
CN110722173A (zh) 一种银纳米片及其低温制备方法
Pang et al. Synthesis of functional nanomaterials for electrochemical energy storage
Inguanta et al. Growth and characterization of ordered PbO2 nanowire arrays
Yousefi et al. Synthesis of Gd 2 O 3 nanoparticles: using bulk Gd 2 O 3 powders as precursor
Gao et al. Hydrothermal self-assembling of ZnO nanorods into sphere-like superstructures and their optical characteristics
CN1312330C (zh) α-MnO2单晶纳米棒的制备方法
CN102330149A (zh) 枝状金纳米单晶的制备方法
CN108479783B (zh) 二维超薄自独立NiCu-SiO2纳米复合材料及其合成方法
Wen et al. Structural evolution of palladium nanoparticles and their electrocatalytic activity toward ethanol oxidation in alkaline solution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant