CN110722173B - 一种银纳米片及其低温制备方法 - Google Patents

一种银纳米片及其低温制备方法 Download PDF

Info

Publication number
CN110722173B
CN110722173B CN201910982926.8A CN201910982926A CN110722173B CN 110722173 B CN110722173 B CN 110722173B CN 201910982926 A CN201910982926 A CN 201910982926A CN 110722173 B CN110722173 B CN 110722173B
Authority
CN
China
Prior art keywords
silver
aqueous solution
low temperature
solution
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910982926.8A
Other languages
English (en)
Other versions
CN110722173A (zh
Inventor
梁雨
刘卫国
杨鹏飞
张大霄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Technological University
Original Assignee
Xian Technological University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Technological University filed Critical Xian Technological University
Priority to CN201910982926.8A priority Critical patent/CN110722173B/zh
Publication of CN110722173A publication Critical patent/CN110722173A/zh
Application granted granted Critical
Publication of CN110722173B publication Critical patent/CN110722173B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0553Complex form nanoparticles, e.g. prism, pyramid, octahedron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了一种银纳米片及其低温制备方法。本发明的技术方案为:一种低温制备银纳米片的方法,取十二烷基硫酸钠水溶液置于低温条件下均匀搅拌15~20分钟,依次加入海藻酸钠水溶液及硝酸银溶液和抗坏血酸溶液,在低温条件下持续搅拌反应1~3小时,反应后溶液离心10~15分钟后,取下层沉淀分散于水溶液中,再次重复离心步骤并将下层沉淀分散保存在水溶液中。本发明提供了一种在冰点低温条件下制备六边形银纳米片的方法,选用绿色天然多糖高分子材料的海藻酸钠和十二烷基硫酸钠在低温下作为反应体系的软模板,稳定高产的制备出银纳米片。

Description

一种银纳米片及其低温制备方法
技术领域
本发明属于纳米结构制备技术领域,具体涉及一种银纳米片及其低温制备方法。
背景技术
纳米结构以其自身独特的尺寸效应,在光学、电学、力学及催化等领域脱颖而出,尤其是金属纳米结构具有更为稳定的化学和物理性质,因此纳米尺度金属结构的制备成为纳米结构研究领域的一大热点。
金属纳米结构的制备方法包括物理刻蚀法、化学合成法、光诱导法、电化学法及生物法,其中化学合成的金属纳米结构多样化,自身缺陷少,适用于多种研究体系,但化学合成法大都依赖于高温下金属离子的还原及金属结构的分化和生长,还有在常温条件下借助晶种或者自制模板来制备金属纳米结构,目前还没有可以在冰点温度这样的极端条件下制备金属纳米结构的方法,或者说还没有验证极端低温条件下是否可以制备金属纳米结构的报道。
发明内容
本发明提出一种银纳米片及其低温制备方法,在0℃的冰点温度下,利用天然多糖高分子材料和表面活性剂自生成的软模板,稳定高产的制备出六边形银纳米片状结构。
一种低温制备银纳米片的方法,具体步骤如下:
(1)配制5×10-4mg/ml的海藻酸钠水溶液;
(2)分别配制摩尔浓度为0.1mol/L的抗坏血酸、0.01mol/L的硝酸银和0.005mol/L的十二烷基硫酸钠水溶液;
(3)取15ml的十二烷基硫酸钠水溶液置于低温条件下均匀搅拌15~20分钟;
(4)依次加入40μl~100μl的海藻酸钠水溶液及0.4ml的硝酸银溶液和0.1ml抗坏血酸溶液,在低温条件下持续搅拌反应1~3小时;
(5)反应后溶液以5000转/每分钟离心10~15分钟后,取下层沉淀分散于水溶液中,再次重复离心步骤并将下层沉淀分散保存在水溶液中。
上述水溶液为去离子水;上述低温制备环境为0±0.02℃。
如上述制备方法制得的银纳米片,表面包裹有海藻酸钠和十二烷基硫酸钠自生成的软模板;所述银纳米片为六边形,伴随极少量的五边形;所述的六边形银纳米片对边距离为200nm~1μm,厚度为30nm~70nm。
与现有技术相比,本发明显著的优点是:
1、本发明提出了一种在冰点低温(0±0.02℃)条件下制备六边形银纳米片的方法,为极端条件下制备金属纳米结构提供了可能,同时也验证了极端条件下制备出金属纳米结构的可能性。
2、本发明选用绿色天然多糖高分子材料的海藻酸钠和十二烷基硫酸钠在低温下作为反应体系的软模板,稳定高产的制备出银纳米片,这为海藻酸钠的适用体系范围提供了新的可能和新的研究方向。
附图说明
图1 本发明实施例1中所述六边形银纳米片扫描电镜图;
图2 本发明实施例1中所述六边形银纳米片能量散射谱图;
图3 本发明实施例1中所述六边形银纳米片X射线衍射谱图;
图4 本发明实施例2、实施例3及对比例中所述银纳米片扫描电镜图。
具体实施方式
下面将结合附图通过实施例对本发明进行详细地描述,如无特殊说明,本发明所采用的实验方法均为常规方法,所用实验试剂、耗材等均可从商业途径获得。
实施例1
光照充足条件下,室温为16±1℃,待到低温反应槽温度稳定在0±0.02℃时,将装有15ml 浓度为0.005mol/L的十二烷基硫酸钠(SDS)水溶液反应瓶在反应槽中以700转/分钟搅拌15~20min,依次取49μl浓度为5×10-4mg/ml的海藻酸钠(Alg)水溶液、0.4ml浓度为0.01mol/L的硝酸银溶液和0.1ml浓度为0.1mol/L的抗坏血酸(AA)加入到反应瓶持续搅拌反应1.5h后,以5000转/分钟的转速离心10~15min,去除上层清液,加入等体积水溶液保持相同的转速和时间进行第二次离心,再次去除上层清液,下层沉淀即为反应产物,加入一定量水溶液将其分散保存。
本实施例的反应产物呈六边形银纳米片结构,银纳米片对边距离为150nm~600nm,厚度为40nm~50nm,反应得到的产物离心分散之后仅伴随少量大颗粒,形貌扫描电镜图如图1所示。低温制备的六边形银纳米片能量散射谱图如图2所示,其中碳和铜的能谱峰是由于采集能谱的专用栅网所产生的。低温制备的六边形银纳米片X衍射谱图如图3所示。
实施例2
采用与实施例1基本相同的方法步骤制备六边形银纳米片,不同之处在于:海藻酸钠的用量为50μl,反应时间为2h,可以制备得到六边形银纳米片对边长度为350nm~500nm的,且会伴随200~300nm的尾状结构,形貌扫描电镜图如图4(a)所示,很明显高产量的银纳米片只伴随少量大块副产颗粒物。
实施例3
采用与实施例1基本相同的方法步骤制备六边形银纳米片,不同之处在于:海藻酸钠的用量为100μl,反应时间为3h,可以制备得到六边形银纳米片对边长度为400nm~600nm的,且会伴随300~700nm的尾状结构,形貌扫描电镜图如图4(b)所示。
对比例
采用与实施例1基本相同的方法步骤制备银纳米片,不同之处在于:没有加入海藻酸钠,反应时间为1h,制备得到银纳米片为100nm~300nm,大部分银纳米片无明显棱角边界,呈椭圆状或水滴状,且伴随着50nm~100nm的尾状结构,形貌扫描电镜图如图4(c)所示。
上述实施例为本发明的优选或参考案例,并不用来限制本发明的保护范围。

Claims (2)

1.一种低温制备银纳米片的方法,其特征在于:
具体步骤如下:
步骤一:配制5×10-4mg/ml的海藻酸钠水溶液;分别配制摩尔浓度为0.1mol/L的抗坏血酸、0.01mol/L的硝酸银和0.005mol/L的十二烷基硫酸钠水溶液;
步骤二:取15ml的十二烷基硫酸钠水溶液置于0±0.02℃的低温条件下均匀搅拌15~20分钟;
步骤三:依次加入40μl~100μl的海藻酸钠水溶液及体积比为4:1的硝酸银溶液和抗坏血酸溶液,在0±0.02℃的低温条件下持续搅拌反应1~3小时;抗坏血酸溶液的体积为0.1ml;
步骤四:反应后溶液以5000转/每分钟离心10~15分钟后,取下层沉淀分散于水溶液中,再次重复离心步骤并将下层沉淀分散保存在水溶液中。
2.如权利要求1所述低温制备银纳米片的方法制得的银纳米片,其特征在于:
所述银纳米片表面包裹有海藻酸钠和十二烷基硫酸钠自生成的软模板;所述银纳米片为六边形,伴随极少量的五边形;所述的六边形银纳米片对边距离为200nm~1μm,厚度为30nm~70nm。
CN201910982926.8A 2019-10-16 2019-10-16 一种银纳米片及其低温制备方法 Active CN110722173B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910982926.8A CN110722173B (zh) 2019-10-16 2019-10-16 一种银纳米片及其低温制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910982926.8A CN110722173B (zh) 2019-10-16 2019-10-16 一种银纳米片及其低温制备方法

Publications (2)

Publication Number Publication Date
CN110722173A CN110722173A (zh) 2020-01-24
CN110722173B true CN110722173B (zh) 2022-05-20

Family

ID=69221349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910982926.8A Active CN110722173B (zh) 2019-10-16 2019-10-16 一种银纳米片及其低温制备方法

Country Status (1)

Country Link
CN (1) CN110722173B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111644634A (zh) * 2020-04-20 2020-09-11 北京邮电大学 一种基于溶液加工的热压制备二维金属方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103350236A (zh) * 2013-07-25 2013-10-16 湖南科技大学 一种合成六边形银纳米片的方法
CN103506630A (zh) * 2012-06-29 2014-01-15 中国科学院理化技术研究所 一种超低松装密度片状银粉的制备方法
CN103521777A (zh) * 2013-10-11 2014-01-22 南京邮电大学 制备不同形貌的二维银纳米片的方法
KR20180104404A (ko) * 2017-03-13 2018-09-21 한국과학기술연구원 금속 나노플레이트의 제조 방법 및 이를 이용하여 제조된 금속 나노플레이트
WO2019177205A1 (ko) * 2018-03-15 2019-09-19 경희대학교 산학협력단 이방성 2d 은 나노 플레이트 및 이의 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107716943B (zh) * 2017-09-07 2019-09-20 浙江大学 一种抗菌材料海藻酸钠-抗坏血酸纳米银的绿色快速制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103506630A (zh) * 2012-06-29 2014-01-15 中国科学院理化技术研究所 一种超低松装密度片状银粉的制备方法
CN103350236A (zh) * 2013-07-25 2013-10-16 湖南科技大学 一种合成六边形银纳米片的方法
CN103521777A (zh) * 2013-10-11 2014-01-22 南京邮电大学 制备不同形貌的二维银纳米片的方法
KR20180104404A (ko) * 2017-03-13 2018-09-21 한국과학기술연구원 금속 나노플레이트의 제조 방법 및 이를 이용하여 제조된 금속 나노플레이트
WO2019177205A1 (ko) * 2018-03-15 2019-09-19 경희대학교 산학협력단 이방성 2d 은 나노 플레이트 및 이의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Hydrothermal synthesis of silver nanoparticles by sodium alginate and their applications in surface-enhanced Raman scattering and catalysis;Jisheng Yang等;《Acta Materialia》;20120628;第60卷;第4753-4758页 *

Also Published As

Publication number Publication date
CN110722173A (zh) 2020-01-24

Similar Documents

Publication Publication Date Title
Liu et al. Controlled synthesis of various hollow Cu nano/microstructures via a novel reduction route
Tong et al. Polymorphous α-and β-Ni (OH) 2 complex architectures: morphological and phasal evolution mechanisms and enhanced catalytic activity as non-enzymatic glucose sensors
JP5467252B2 (ja) 銀ナノワイヤーの製造方法及び銀ナノワイヤー
CN1209789A (zh) 纳米结构的氧化物和氢氧化物及其合成方法
CN108588751B (zh) 氧族钴基催化剂、制备方法及电催化析氧应用
CA2377152C (en) Process for making high density and large particle size cobalt hydroxide or cobalt mixed hydroxides and a product made by this process
Liu et al. Morphology study by using scanning electron microscopy
CN110745784B (zh) 一种金属氧化物纳米颗粒及其制备方法和应用
CN106745282B (zh) 一种具有蛋黄‑蛋壳结构三氧化二锰的制备方法
CN112960696B (zh) 一种宽层间距二硫化钼纳米片及其制备方法
CN110722173B (zh) 一种银纳米片及其低温制备方法
CN111233048A (zh) 一种双壳层MnCo2O4中空纳米球材料及其合成方法
Zhang et al. Solvothermal synthesis of manganese sulfides and control of their phase and morphology
WO2018140091A1 (en) Low temperature, high yield synthesis of nanomaterials and composites from zintl phases
CN103752841B (zh) 一种纳米铜粉的制备方法
CN108328647B (zh) 一种纤锌矿结构CuInS2纳米晶的制备方法
CN111595918A (zh) 一种八面体Cu-Cu2O复合材料的制备方法
Wu et al. Hydrothermal synthesis and photoluminescence behavior of CeO2 nanowires with the aid of surfactant PVP
CN109160538B (zh) 制备超结构孪晶材料的方法
CN1513767A (zh) 一种超细二氧化锰的制备方法
Ke et al. Synthesis of flower-like SnS2 nanostructured microspheres using PEG 200 as solvent
Regulacio et al. Selective formation of ternary Cu–Ge–S nanostructures in solution
CN112191860A (zh) 一种连续调节金纳米颗粒表面粗糙度的化学合成方法
JPS58213633A (ja) 酸化アルミニウムの製造方法
CN113182525B (zh) 一种纳米多孔银粉末的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant