CN110719028B - 补偿控制系统及方法 - Google Patents

补偿控制系统及方法 Download PDF

Info

Publication number
CN110719028B
CN110719028B CN201810770017.3A CN201810770017A CN110719028B CN 110719028 B CN110719028 B CN 110719028B CN 201810770017 A CN201810770017 A CN 201810770017A CN 110719028 B CN110719028 B CN 110719028B
Authority
CN
China
Prior art keywords
side compensation
output
converter
compensation amount
current signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810770017.3A
Other languages
English (en)
Other versions
CN110719028A (zh
Inventor
刘云峰
徐国金
沈国桥
章进法
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delta Electronics Inc
Original Assignee
Delta Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta Electronics Inc filed Critical Delta Electronics Inc
Priority to CN201810770017.3A priority Critical patent/CN110719028B/zh
Priority to US16/379,412 priority patent/US11139669B2/en
Publication of CN110719028A publication Critical patent/CN110719028A/zh
Application granted granted Critical
Publication of CN110719028B publication Critical patent/CN110719028B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C3/00Electric locomotives or railcars
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/50Charging of capacitors, supercapacitors, ultra-capacitors or double layer capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0022Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being input voltage fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本公开提供一种补偿控制方法以及一种补偿控制系统,包含变换器及控制模块。变换器电连接于直流母线及负载,是架构于实现直流母线的母线电压与负载的负载电压间的转换。控制模块电连接于变换器,是架构于依据参考电流信号产生指令电流信号,并根据指令电流信号输出相应的驱动信号至变换器,以控制变换器的运行。其中,当变换器处于待机模式时,控制模块依据母线电压产生输入侧补偿量,及依据负载电压产生输出侧补偿量,以补偿电流误差,并产生对应的指令电流信号及驱动信号,进而控制变换器的输出电流为零,其中电流误差由变换器的损耗和测量误差所引起。

Description

补偿控制系统及方法
技术领域
本公开涉及一种补偿控制系统及方法,特别涉及一种变换器在待机模式下控制输出电流为零的补偿控制系统及方法。
背景技术
ESS(Energy Storage System,储能系统)系统架构主要应用储能领域中,其是利用DC/DC双向变换器来实现直流侧电网与负载之间的能量交换,从而优选地调整能量的存储与释放。举例而言,ESS系统架构应用于现代城市轨道交通系统中,采用非隔离DC/DC双向变换器来快速调节城轨接触网与超级电容能量存储系统间的能量流动。例如,当列车减速或剎车时,会因再生制动而产生大量电能,故可经由控制双向变换器将所产生的电能及时存储于超级电容,从而防止母线电压过高。当列车启动或加速时,需要额外的能量,故可经由控制双向变换器自超级电容提供所需能量,从而防止母线电压降低。
然而,因双向变换器实际上多处于待机模式,例如在现代城市轨道交通系统中,除了在列车进出站时,其余时间双向变换器均处于待机模式,而在待机模式下,受到双向变换器自身损耗及采样精度限制等影响,在经过一定时间的运行后,直流母线电压及负载电压(例如超级电容的输出电压)将无法保持稳定,并造成电能损耗。
因此,如何发展一种可改善上述现有技术的补偿控制系统及方法,实为目前迫切的需求。
发明内容
本公开的目的在于提供一种补偿控制系统及方法,适用于与直流母线及负载相连接的变换器,在变换器处于待机模式时,根据母线电压产生输入侧补偿量,并根据负载电压产生输出侧补偿量,利用输入侧补偿量及输出侧补偿量对变换器的电流误差进行补偿,进而产生对应的指令电流信号及驱动信号,并经由驱动信号控制变换器的输出电流为零,借此维持母线电压及负载电压的稳定,以避免电能损耗。此外,当变换器在工作模式下对负载进行充放电时,可以处于电流环控制方式,而通过本公开的补偿控制系统及方法,变换器在待机模式下亦处于电流环控制方式,因此当变换器从待机模式切换至正常工作模式时均工作在电流环模式下,其动态响应时间较短。
为达上述目的,本公开提供一种补偿控制系统,包含变换器及控制模块。变换器电连接于直流母线及负载,是架构于实现直流母线的母线电压与负载的负载电压间的转换。控制模块电连接于变换器,是架构于依据参考电流信号产生指令电流信号,并根据指令电流信号输出相应的驱动信号至变换器,以控制变换器的运行。其中,当变换器处于待机模式时,控制模块依据母线电压产生输入侧补偿量,及依据负载电压产生输出侧补偿量,以补偿电流误差,并产生对应的指令电流信号及驱动信号,进而控制变换器的输出电流为零。
为达上述目的,本公开还提供一种补偿控制方法,适用于处于待机模式下的变换器,变换器电连接于直流母线及负载,且变换器是架构于实现直流母线的母线电压与负载的负载电压间的转换。首先,设置参考电流信号为零。接着,根据母线电压产生输入侧补偿量,并根据负载电压产生输出侧补偿量。而后,利用输入侧补偿量及输出侧补偿量补偿电流误差,并产生指令电流信号。最后,根据指令电流信号输出相应的驱动信号至变换器,以控制变换器的输出电流为零。
附图说明
图1为本公开优选实施例的补偿控制系统的电路结构示意图。
图2为图1所示电路结构的一实施例的母线电压、负载电压、母线电流及输出电流的示例性变化图。
图3为本公开优选实施例的补偿控制方法的流程图
符号说明
1:补偿控制系统
11:变换器
12:控制模块
13:负载
14:输入侧补偿单元
141:第一运算器
142:第一调节器
15:输出侧补偿单元
151:第二运算器
152:第二调节器
16:第三运算器
Vdc:母线电压
Vdcref:参考母线电压
Vdcbus:实际母线电压
Vload:负载电压
Vo:初始负载电压
Vt:实际负载电压
Iref:参考电流信号
Ierror:电流误差
Icontrol:指令电流信号
C1:输入侧补偿量
C2:输出侧补偿量
Io:输出电流
Idc:母线电流
A:第一系数
B:第二系数
S1~S4:补偿控制方法的步骤
具体实施方式
体现本公开特征与优点的一些典型实施例将在后段的说明中详细叙述。应理解的是本公开能够在不同的实施方式上具有各种的变化,其皆不脱离本公开的范围,且其中的说明及图示在本质上是当作说明之用,而非架构于限制本公开。
图1为本公开优选实施例的补偿控制系统的电路结构示意图。如图1所示,本公开的补偿控制系统1包含变换器11及控制模块12。变换器11电连接于直流母线与负载13之间,其是架构于实现直流母线的母线电压Vdc与负载13的负载电压Vload间的转换。于一些实施例中,负载13可为超级电容或锂电池,但不以此为限。控制模块12电连接于变换器11,其是架构于依据参考电流信号Iref产生指令电流信号Icontrol,并根据指令电流信号Icontrol输出相应的驱动信号至变换器11,以控制变换器11的运行。当变换器11处于待机模式时,控制模块12依据母线电压Vdc产生输入侧补偿量C1,以及依据负载电压Vload产生输出侧补偿量C2,以利用输入侧补偿量C1及输出侧补偿量C2补偿电流误差,并产生对应的指令电流信号Icontrol及驱动信号,进而控制变换器11的输出电流Io为零,使得母线电压Vdc及负载电压Vload维持稳定。
在理想状况下,当变换器11处于待机模式时,参考电流信号Iref为零,经驱动信号控制的变换器11的输出电流Io为零。然而实际上,因变换器11自身损耗及采样精度限制等等因素而产生电流误差,导致变换器11的实际输出电流不为零,并使直流母线电压Vdc及负载电压Vload产生变化而无法保持稳定。为此,如图1所示,本公开的补偿控制系统1的控制模块12产生输入侧补偿量C1及输出侧补偿量C2,以对电流误差进行补偿,借此抵销电流误差的影响,并控制变换器11的输出电流Io为零,从而维持直流母线电压Vdc及负载电压Vload的稳定。此外,当变换器11在工作模式下对负载13进行充放电时,可以处于电流环控制方式,而通过图1所示的补偿控制系统1,变换器11在待机模式下亦处于电流环控制方式,因此当变换器11从待机模式切换至工作模式时,其动态响应时间较短。
图2为图1所示电路结构的一实施例的母线电压、负载电压、母线电流及输出电流的示例性变化图。如图2所示,于此实施例中,在开始时刻,变换器11具有9A的电流偏差而导致作为负载13的超级电容放电,但不以此为限。受到电流误差的影响,使得变换器11的输出电流Io不为零,导致母线电流Idc距离零也有一定偏差,而母线电压Vdc及负载电压Vload亦无法维持稳定。通过图1的补偿控制系统1对电流误差进行补偿,控制变换器11的输出电流Io逐渐稳定为零,母线电流Idc也逐渐趋近并最终维持为零,而母线电压Vdc及负载电压Vload亦趋于稳定,并最终保持于一定值。
请再参阅图1,于一些实施例中,指令电流信号Icontrol、参考电流信号Iref、输入侧补偿量C1及输出侧补偿量C2间的关系满足等式(1),
Icontrol=Iref+C1-C2 (1)
当变换器11处于待机模式时,参考电流信号Iref为零,而为使变换器11的实际输出电流为零,电流误差、输入侧补偿量C1及输出侧补偿量C2间的关系满足等式(2),
Ierror=C2-C1 (2)
其中,Ierror为电流误差,输入侧补偿量C1与输出侧补偿量C2的差值用于补偿该电流误差。
于一些实施例中,控制模块12包含输入侧补偿单元14,输入侧补偿单元14包含第一运算器141及第一调节器142,第一运算器141接收参考母线电压Vdcref及实际母线电压Vdcbus,并输出参考母线电压Vdcref与实际母线电压Vdcbus间的差值至第一调节器142,第一调节器142输出输入侧补偿量C1,其中参考母线电压Vdcref为需要母线电压Vdc稳定的电压值,第一调节器142优选但不限于为比例运算器。于一些实施例中,输入侧补偿量C1为参考母线电压Vdcref与实际母线电压Vdcbus间的差值与第一系数的乘积,如等式(3)所示,
C1=A*(Vdcbus-Vdcref) (3)
其中A为第一系数,第一系数A可依据电流误差进行调整。
于一些实施例中,控制模块12包含输出侧补偿单元15,输出侧补偿单元15包含第二运算器151及第二调节器152,第二运算器151接收初始负载电压Vo及实际负载电压Vt,并输出初始负载电压Vo与实际负载电压Vt间的差值至第二调节器152,第二调节器152输出输出侧补偿量C2,其中初始负载电压Vo为设置参考电流信号Iref为零时的负载电压Vload,第二调节器152优选但不限于为比例积分器。于一些实施例中,输出侧补偿量C2为初始负载电压Vo与实际负载电压Vt的差值与第二系数的乘积,如等式(4)所示,
C2=B*(Vt-Vo) (4)
其中B为第二系数,第二系数B可依据电流误差进行调整。
于一些实施例中,控制模块12包含第三运算器16,第三运算器16接收参考电流信号Iref、电流误差、输入侧补偿量C1及输出侧补偿量C2,并输出指令电流信号Icontrol。
请参阅图3,并搭配图1,其中图3为本公开优选实施例的补偿控制方法的流程图,且图3所示的补偿控制方法适用于图1所示的补偿控制系统1。如图3所示,待机模式下补偿控制方法包含下列步骤:
首先,设置参考电流信号Iref为零(如步骤S1所示)。
接着,根据母线电压Vdc产生输入侧补偿量C1,并根据负载电压Vload产生输出侧补偿量C2(如步骤S2所示)。于一些实施例中,根据参考母线电压Vdcref及实际母线电压Vdcbus间的差值产生输入侧补偿量C1,并根据初始负载电压Vo及实际负载电压Vt间的差值产生输出侧补偿量C2。于一些实施例中,输入侧补偿量C1为参考母线电压Vdcref及实际母线电压Vdcbus间的差值与第一系数A的乘积,输出侧补偿量C2为初始负载电压Vo及实际负载电压Vt间的差值与第二系数B的乘积,其中第一系数A及第二系数B可依据电流误差进行调整。
而后,利用输入侧补偿量C1及输出侧补偿量C2补偿电流误差,并产生指令电流信号Icontrol(如步骤S3所示)。于一些实施例中,参考电流信号Iref、指令电流信号Icontrol、输入侧补偿量C1及输出侧补偿量C2间的关系满足前述等式(1)。此外,为使变换器11的实际输出电流为零,电流误差、输入侧补偿量C1及输出侧补偿量C2间的关系满足前述等式(2)。
最后,根据指令电流信号Icontrol输出相应的驱动信号至变换器11,以控制变换器11的输出电流Io为零(如步骤S4所示)。
综上所述,本公开提供一种补偿控制系统及方法,适用于与直流母线及负载相连接的变换器,在变换器处于待机模式时,根据母线电压产生输入侧补偿量,并根据负载电压产生输出侧补偿量,利用输入侧补偿量及输出侧补偿量对由变换器损耗和测量误差引起的电流误差进行补偿,进而产生对应的指令电流信号及驱动信号,并经由驱动信号控制变换器的输出电流为零,借此维持母线电压及负载电压的稳定,以避免电能损耗。此外,当变换器在工作模式下对负载进行充放电时,处于电流环控制方式,而通过本公开的补偿控制系统及方法,变换器在待机模式下亦处于电流环控制方式,因此当变换器从待机模式切换至正常工作模式时均工作在电流环模式下,其动态响应时间较短。
需注意,上述仅是为说明本公开而提出的优选实施例,本公开不限于所述的实施例,本公开的范围由权利要求决定。且本公开可以由本领域技术人员任施匠思而为诸般修饰,然均不脱离权利要求的保护范围。

Claims (13)

1.一种补偿控制系统,包含:
一变换器,电连接于一直流母线及一负载,是架构于实现所述直流母线的一母线电压与所述负载的一负载电压间的转换;以及
一控制模块,电连接于所述变换器,是架构于依据一参考电流信号产生一指令电流信号,并根据所述指令电流信号输出相应的一驱动信号至所述变换器,以控制所述变换器的运行,
其中,当所述变换器处于待机模式时,所述控制模块依据所述母线电压产生一输入侧补偿量,及依据所述负载电压产生一输出侧补偿量,以补偿一电流误差,并产生对应的所述指令电流信号及所述驱动信号,进而控制所述变换器的一输出电流为零,
其中,所述指令电流信号、所述参考电流信号、所述输入侧补偿量及所述输出侧补偿量间的关系满足下列等式:
Icontrol=Iref+C1-C2
其中,Icontrol为所述指令电流信号,Iref为所述参考电流信号,C1为所述输入侧补偿量,C2为所述输出侧补偿量。
2.如权利要求1所述的补偿控制系统,其中所述控制模块包含一输入侧补偿单元,所述输入侧补偿单元接收一参考母线电压及一实际母线电压,并输出所述输入侧补偿量。
3.如权利要求2所述的补偿控制系统,其中所述输入侧补偿单元包含一第一运算器及一第一调节器,所述第一运算器接收所述参考母线电压及所述实际母线电压,并输出所述参考母线电压及所述实际母线电压间的一差值至所述第一调节器,所述第一调节器输出所述输入侧补偿量。
4.如权利要求3所述的补偿控制系统,其中所述第一调节器为一比例运算器。
5.如权利要求1所述的补偿控制系统,其中所述控制模块包含一输出侧补偿单元,所述输出侧补偿单元接收一初始负载电压及一实际负载电压,并输出所述输出侧补偿量。
6.如权利要求5所述的补偿控制系统,其中所述输出侧补偿单元包含一第二运算器及一第二调节器,所述第二运算器接收所述初始负载电压及所述实际负载电压,并输出所述初始负载电压及所述实际负载电压间的一差值至所述第二调节器,所述第二调节器输出所述输出侧补偿量。
7.如权利要求1所述的补偿控制系统,其中所述变换器处于待机模式时,所述参考电流信号为零,为使所述变换器的实际输出电流为零,则所述电流误差、所述输入侧补偿量及所述输出侧补偿量间的关系满足下列等式:
Ierror=C2-C1
其中,Ierror为所述电流误差,所述输入侧补偿量与所述输出侧补偿量的差值用于补偿所述电流误差。
8.如权利要求7所述的补偿控制系统,其中控制模块包含一第三运算器,所述第三运算器接收所述参考电流信号、所述电流误差、所述输入侧补偿量及所述输出侧补偿量,并输出所述指令电流信号。
9.如权利要求1所述的补偿控制系统,其中所述负载为一超级电容或一锂电池。
10.一种补偿控制方法,适用于处于待机模式下的一变换器,所述变换器电连接于一直流母线及一负载,且所述变换器是架构于实现所述直流母线的一母线电压与所述负载的一负载电压间的转换,所述补偿控制方法包含:
设置一参考电流信号为零;
根据所述母线电压产生一输入侧补偿量,并根据所述负载电压产生一输出侧补偿量;
利用所述输入侧补偿量及所述输出侧补偿量补偿一电流误差,并产生一指令电流信号;以及
根据所述指令电流信号输出相应的一驱动信号至所述变换器,以控制所述变换器的一输出电流为零,
其中所述参考电流信号、所述指令电流信号、所述输入侧补偿量及所述输出侧补偿量间的关系满足下列等式:
Icontrol=Iref+C1-C2
其中,Icontrol为所述指令电流信号,Iref为所述参考电流信号,C1为所述输入侧补偿量,C2为所述输出侧补偿量。
11.如权利要求10所述的补偿控制方法,其中根据一参考母线电压及一实际母线电压间的一差值产生所述输入侧补偿量,并根据一初始负载电压及一实际负载电压间的一差值产生所述输出侧补偿量。
12.如权利要求10所述的补偿控制方法,其中待机模式下,所述参考电流信号为零,为使所述变换器的实际输出电流为零,则所述电流误差、所述输入侧补偿量及所述输出侧补偿量间的关系满足下列等式:
Ierror=C2-C1
其中,Ierror为所述电流误差,所述输入侧补偿量与所述输出侧补偿量的差值用于补偿所述电流误差。
13.如权利要求10所述的补偿控制方法,其中所述负载为一超级电容或一锂电池。
CN201810770017.3A 2018-07-13 2018-07-13 补偿控制系统及方法 Active CN110719028B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810770017.3A CN110719028B (zh) 2018-07-13 2018-07-13 补偿控制系统及方法
US16/379,412 US11139669B2 (en) 2018-07-13 2019-04-09 Converter system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810770017.3A CN110719028B (zh) 2018-07-13 2018-07-13 补偿控制系统及方法

Publications (2)

Publication Number Publication Date
CN110719028A CN110719028A (zh) 2020-01-21
CN110719028B true CN110719028B (zh) 2021-03-19

Family

ID=69138523

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810770017.3A Active CN110719028B (zh) 2018-07-13 2018-07-13 补偿控制系统及方法

Country Status (2)

Country Link
US (1) US11139669B2 (zh)
CN (1) CN110719028B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022006493A1 (en) * 2020-07-02 2022-01-06 Cal-Chip Electronics Specialty Products, Inc. Connected secure key redistribution system and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201045747Y (zh) * 2006-09-25 2008-04-09 德观电子(上海)有限公司 不间断电源
CN201230276Y (zh) * 2008-07-18 2009-04-29 无锡芯朋微电子有限公司 一种同步峰值电流控制模式脉宽调制dc/dc转换器
CN202178711U (zh) * 2011-04-02 2012-03-28 广东美的电器股份有限公司 具有极低的空载功耗和低负载下高效率的双电源输出电路
CN103401420A (zh) * 2013-07-03 2013-11-20 西安电子科技大学 应用于dc-dc转换器中的自适应导通时间产生电路
CN104579120A (zh) * 2015-01-04 2015-04-29 国家电网公司 一种光伏发电离网运行时的控制方法
CN105050853A (zh) * 2013-03-28 2015-11-11 宝马股份公司 车辆车载电网
CN107634541A (zh) * 2017-10-19 2018-01-26 天津大学 基于ipos直流升压的光伏汇集接入系统协调控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI220083B (en) * 2003-08-07 2004-08-01 Analog Integrations Corp Control circuit of pulse width modulation DC-to-DC converter
US20080003462A1 (en) * 2006-06-29 2008-01-03 More Energy Ltd. Digital logic control DC-to-DC converter with controlled input voltage and controlled power output
EP3127213B1 (en) * 2014-04-04 2020-07-15 Schneider Electric IT Corporation Systems and methods for quick power delivery mode changes
CN104218658B (zh) 2014-09-18 2016-08-24 上海电力学院 一种微电网混合储能系统控制方法
US9998053B2 (en) * 2015-09-01 2018-06-12 Rockwell Automation Technologies, Inc. System and method for improved motor drive tuning
CN107069695B (zh) 2017-06-09 2019-07-12 太原理工大学 一种基于双有源全桥变换器的混合储能系统及其控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201045747Y (zh) * 2006-09-25 2008-04-09 德观电子(上海)有限公司 不间断电源
CN201230276Y (zh) * 2008-07-18 2009-04-29 无锡芯朋微电子有限公司 一种同步峰值电流控制模式脉宽调制dc/dc转换器
CN202178711U (zh) * 2011-04-02 2012-03-28 广东美的电器股份有限公司 具有极低的空载功耗和低负载下高效率的双电源输出电路
CN105050853A (zh) * 2013-03-28 2015-11-11 宝马股份公司 车辆车载电网
CN103401420A (zh) * 2013-07-03 2013-11-20 西安电子科技大学 应用于dc-dc转换器中的自适应导通时间产生电路
CN104579120A (zh) * 2015-01-04 2015-04-29 国家电网公司 一种光伏发电离网运行时的控制方法
CN107634541A (zh) * 2017-10-19 2018-01-26 天津大学 基于ipos直流升压的光伏汇集接入系统协调控制方法

Also Published As

Publication number Publication date
CN110719028A (zh) 2020-01-21
US11139669B2 (en) 2021-10-05
US20200021117A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
US7459874B2 (en) System and method for controlling electric drive systems
JP2013120604A5 (zh)
KR100999244B1 (ko) 저주파 리플전류 제거를 위한 전력변환장치, 방법 및 기록매체
KR101451903B1 (ko) 평균 전류 제한을 갖는 전력 컨버터
EP2544328A2 (en) Power supply system
WO2012114468A1 (ja) 電力変換装置
CN102884719A (zh) 用于开关模式电源的前馈数字控制单元及其方法
WO2014090886A2 (en) Control system for a converter and method for controlling the converter
KR20220103626A (ko) 인버터 시스템, 인버터 시스템의 제어방법 및 병렬연결 인버터 시스템
WO2012114467A1 (ja) 電力変換装置
CN110719028B (zh) 补偿控制系统及方法
JP2011050228A (ja) 無停電電源システム
JP6439165B2 (ja) 交流電源装置の出力電力制御方法及び交流電源装置
EP3203620B1 (en) Dc-dc converter including dynamically adjusted duty cycle limit
Vladimir et al. Three-loop control system of energy storage device in the frequency-controlled electric drive
KR101549313B1 (ko) 배터리 에너지 저장 시스템 및 배터리 에너지 저장 시스템의 운전 방법
JPH05328748A (ja) 太陽光発電システム
KR101811589B1 (ko) 컨버터 제어 장치 및 방법 그리고 상기 컨버터 제어 장치를 포함하는 무정전 전원 장치
JP5109484B2 (ja) 発電システム
JP2006136054A (ja) 無停電電源装置
JPS6277867A (ja) 電力変換装置
JP3097348B2 (ja) 独立電源装置の負荷変動対策回路
JP2001169403A (ja) 直流電気車の制御装置
JP2005137124A (ja) 単独運転検出方法およびその電源装置
KR102679435B1 (ko) 차량 배터리 출력 시스템 및 구동 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant