CN110716218A - 一种阵列伪卫星与gnss相结合的定位方法及系统 - Google Patents

一种阵列伪卫星与gnss相结合的定位方法及系统 Download PDF

Info

Publication number
CN110716218A
CN110716218A CN201911036914.2A CN201911036914A CN110716218A CN 110716218 A CN110716218 A CN 110716218A CN 201911036914 A CN201911036914 A CN 201911036914A CN 110716218 A CN110716218 A CN 110716218A
Authority
CN
China
Prior art keywords
receiver
array
pseudo
satellite
navigation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911036914.2A
Other languages
English (en)
Inventor
甘兴利
黄璐
张衡
梁晓虎
祝瑞辉
李雅宁
李爽
程建强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 54 Research Institute
Original Assignee
CETC 54 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 54 Research Institute filed Critical CETC 54 Research Institute
Priority to CN201911036914.2A priority Critical patent/CN110716218A/zh
Publication of CN110716218A publication Critical patent/CN110716218A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/33Multimode operation in different systems which transmit time stamped messages, e.g. GPS/GLONASS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • G01S19/256Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS relating to timing, e.g. time of week, code phase, timing offset
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/29Acquisition or tracking or demodulation of signals transmitted by the system carrier including Doppler, related
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/30Acquisition or tracking or demodulation of signals transmitted by the system code related

Abstract

本发明公开了一种阵列伪卫星与GNSS相结合的定位方法及系统,属于伪卫星定位导航技术领域。该系统包括多通道信号发射器、阵列天线、接收机、智能终端和导航卫星,其中,多通道信号发射机用于发射不同的PRN码,其信号与GPS和BDS信号兼容;商业化的GNSS接收机可以接收这些信号,并与阵列伪卫星和GNSS进行组合定位,通过使用阵列信道之间的差异来消除伪卫星伪距的时钟偏差。本发明利用一颗阵列伪卫星和三颗导航卫星组成的微型定位系统进行定位,实验表明,与四颗全球导航卫星系统相比,微型定位系统可以实现组合定位,水平定位精度有所提高。

Description

一种阵列伪卫星与GNSS相结合的定位方法及系统
技术领域
本发明涉及伪卫星定位导航技术领域,特别是指一种阵列伪卫星与GNSS相结合的定位方法及系统。
背景技术
目前,室内定位的需求越来越迫切,卫星导航在城市峡谷中信号受阻,通常不能提供正常的定位服务。伪卫星具有通过提供额外的导航信号来提高全球导航卫星系统的定位精度和可用性的潜在能力。
伪卫星定位实际上是通过伪卫星阵列天线实现的,该天线将导航模拟器输出的类似于实际的卫星信号发送给用户终端,利用这些原始观测数据实现位置的预测。然而在伪卫星系统研究中,通常会遇到时间同步、时钟偏差等问题,导致基于伪卫星系统的定位方法无法得到推广应用。
发明内容
有鉴于此,本发明提出一种阵列伪卫星与GNSS相结合的定位方法及系统,能够实现连续、高精度的室外定位。
为了实现上述目的,本发明采用的技术方案为:
一种阵列伪卫星与GNSS相结合的定位方法,用于通过接收机u对多通道信号发射器所发射的导航信号和导航卫星信号进行跟踪,从而实现对所述接收机u的定位;所述多通道信号发射器连接有多个位置固定的伪卫星发射天线,每个伪卫星发射天线对应于一个伪卫星通道,每个伪卫星通道的信号均具有唯一的C/A码,各伪卫星通道均在GPS的L1码和BDS的B1码调制,且各通道信号均同时由1PPS生成;所述接收机u通过对导航信号的跟踪获取接收机u与伪卫星发射天线i、伪卫星发射天线j以及三颗导航卫星之间的伪距测量值;该方法包括以下步骤:
(1)根据接收机u相对于伪卫星发射天线i和j的距离,建立如下阵列伪距的表达式:
Δρij=Fij(ru)+εij
其中,Δρij为阵列伪距,εij为噪声,Fij(ru)为中间变量:
Fij(ru)=||ri-ru||-||rj-ru||,
式中,ri和rj分别为发射天线i和j的位置坐标,ru为接收机的位置坐标;
(2)对Fij(ru)求偏导:
Figure BDA0002251755300000021
利用Newton-Raphson牛顿迭代法对Fij(ru)进行迭代更新,从而求得Fij(ru)的近似解,其中,Fij(ru)迭代的初始值Fij(ru,1)为:
Figure BDA0002251755300000022
式中,ru,0=(x0,y0,z0),为接收机的初始坐标;
根据Fij(ru)的解得到Δρij,并利用Δρij消除天线i和j之间的钟差;
(3)建立阵列伪卫星与导航卫星的伪距观测方程:
Figure BDA0002251755300000023
Figure BDA0002251755300000024
求得接收机的位置增量
Figure BDA0002251755300000025
Figure BDA0002251755300000026
式中,xk、yk、zk为k时刻接收机的三维坐标,为k时刻的Fij(ru)函数,Δρs代表接收机到导航卫星的伪距变化量,εs代表多径和测量噪声误差;
(4)根据k时刻接收机的三维坐标以及位置增量,求得下一时刻接收机的三维坐标。
此外,本发明还提供一种阵列伪卫星与GNSS相结合的定位系统,其包括多通道信号发射器、阵列天线、接收机、智能终端和导航卫星,所述阵列天线包括多个位置固定的伪卫星发射天线,所述多通道信号发射器通过阵列天线发送导航信号,阵列天线中的每个伪卫星发射天线对应于多通道信号发射器的一个通道,每个通道的信号均具有唯一的C/A码,多通道信号发射器的各通道均在GPS的L1码和BDS的B1码调制,且各通道信号均同时由1PPS生成;所述接收机包括GNSS接收芯片,所述智能终端通过蓝牙与所述接收机进行数据传输;接收机u通过GNSS接收芯片对多通道信号发射器的信号进行跟踪,获取接收机u与伪卫星发射天线i、伪卫星发射天线j以及导航卫星之间的伪距测量值;所述智能终端用于执行如下程序:
(1)根据接收机u相对于伪卫星i和j的距离,建立如下阵列伪距的表达式:
Δρij=Fij(ru)+εij
其中,Δρij为阵列伪距,εij为噪声,Fij(ru)为中间变量:
Fij(ru)=||ri-ru||-||rj-ru||,
式中,ri和rj分别为发射天线i和j的位置坐标,ru为接收机的位置坐标;
(2)对Fij(ru)求偏导:
Figure BDA0002251755300000032
利用Newton-Raphson牛顿迭代法对Fij(ru)进行迭代更新,从而求得Fij(ru)的近似解,其中,Fij(ru)迭代的初始值Fij(ru,1)为:
Figure BDA0002251755300000033
式中,ru,0=(x0,y0,z0),为接收机的初始坐标;
根据Fij(ru)的解得到Δρij,并利用Δρij消除天线i和j之间的钟差;
(3)建立阵列伪卫星与导航卫星的伪距观测方程:
Figure BDA0002251755300000041
求得接收机的位置增量
Figure BDA0002251755300000043
Figure BDA0002251755300000044
式中,xk、yk、zk为k时刻接收机的三维坐标,
Figure BDA0002251755300000045
为k时刻的Fij(ru)函数,Δρs代表接收机到导航卫星的伪距变化量,εs代表多径和测量噪声误差;
(4)根据k时刻接收机的三维坐标以及位置增量,求得下一时刻接收机的三维坐标。
本发明与现有技术相比具有如下有益效果:
(1)避免了传统伪卫星存在的时间同步问题。通过具有相同时钟源的多信道发射机,每个信道的导航信号基于相同的1PPS,通过利用不同阵列信道的伪距不同,消除接收机和伪距的时钟偏差。
(2)阵列伪卫星伪距测量方程可以与GNSS相结合,阵列伪卫星信号与GPS和BDS信号兼容,商业化的GNSS接收机可以跟踪这些信号并估计用户位置。
附图说明
图1为本发明系统架构图。
图2为阵列伪卫星原理图。
图3为用户终端结构图。
图4为系统定位解算流程图。
具体实施方式
下面结合附图和具体实施实施方式对本发明作更进一步的描述。
一种阵列伪卫星与GNSS相结合的定位方法,用于通过接收机u对多通道信号发射器所发射的导航信号和导航卫星信号进行跟踪,从而实现对所述接收机u的定位;所述多通道信号发射器连接有多个位置固定的伪卫星发射天线,每个伪卫星发射天线对应于一个伪卫星通道,每个伪卫星通道的信号均具有唯一的C/A码,各伪卫星通道均在GPS的L1码和BDS的B1码调制,且各通道信号均同时由1PPS生成;所述接收机u通过对导航信号的跟踪获取接收机u与伪卫星发射天线i、伪卫星发射天线j以及三颗导航卫星之间的伪距测量值;该方法包括以下步骤:
(1)根据接收机u相对于伪卫星发射天线i和j的距离,建立如下阵列伪距的表达式:
Δρij=Fij(ru)+εij
其中,Δρij为阵列伪距,εij为噪声,Fij(ru)为中间变量:
Fij(ru)=||ri-ru||-||rj-ru||,
式中,ri和rj分别为发射天线i和j的位置坐标,ru为接收机的位置坐标;
(2)对Fij(ru)求偏导:
Figure BDA0002251755300000051
利用Newton-Raphson牛顿迭代法对Fij(ru)进行迭代更新,从而求得Fij(ru)的近似解,其中,Fij(ru)迭代的初始值Fij(ru,1)为:
Figure BDA0002251755300000052
式中,ru,0=(x0,y0,z0),为接收机的初始坐标;
根据Fij(ru)的解得到Δρij,并利用Δρij消除天线i和j之间的钟差;
(3)建立阵列伪卫星与导航卫星的伪距观测方程:
Figure BDA0002251755300000061
Figure BDA0002251755300000062
求得接收机的位置增量
Figure BDA0002251755300000063
Figure BDA0002251755300000064
式中,xk、yk、zk为k时刻接收机的三维坐标,
Figure BDA0002251755300000065
为k时刻的Fij(ru)函数,Δρs代表接收机到导航卫星的伪距变化量,εs代表多径和测量噪声误差;
(4)根据k时刻接收机的三维坐标以及位置增量,求得下一时刻接收机的三维坐标。
一种阵列伪卫星与GNSS相结合的定位系统,其包括多通道信号发射器、阵列天线、接收机、智能终端和导航卫星,所述阵列天线包括多个位置固定的伪卫星发射天线,所述多通道信号发射器通过阵列天线发送导航信号,阵列天线中的每个伪卫星发射天线对应于多通道信号发射器的一个通道,每个通道的信号均具有唯一的C/A码,多通道信号发射器的各通道均在GPS的L1码和BDS的B1码调制,且各通道信号均同时由1PPS生成;所述接收机包括GNSS接收芯片,所述智能终端通过蓝牙与所述接收机进行数据传输;接收机u通过GNSS接收芯片对多通道信号发射器的信号进行跟踪,获取接收机u与伪卫星发射天线i、伪卫星发射天线j以及导航卫星之间的伪距测量值;所述智能终端用于执行如下程序:
(1)根据接收机u相对于伪卫星i和j的距离,建立如下阵列伪距的表达式:
Δρij=Fij(ru)+εij
其中,Δρij为阵列伪距,εij为噪声,Fij(ru)为中间变量:
Fij(ru)=||ri-ru||-||rj-ru||,
式中,ri和rj分别为发射天线i和j的位置坐标,ru为接收机的位置坐标;
(2)对Fij(ru)求偏导:
Figure BDA0002251755300000071
利用Newton-Raphson牛顿迭代法对Fij(ru)进行迭代更新,从而求得Fij(ru)的近似解,其中,Fij(ru)迭代的初始值Fij(ru,1)为:
Figure BDA0002251755300000072
式中,ru,0=(x0,y0,z0),为接收机的初始坐标;
根据Fij(ru)的解得到Δρij,并利用Δρij消除天线i和j之间的钟差;
(3)建立阵列伪卫星与导航卫星的伪距观测方程:
Figure BDA0002251755300000073
Figure BDA0002251755300000081
求得接收机的位置增量
Figure BDA0002251755300000082
Figure BDA0002251755300000083
式中,xk、yk、zk为k时刻接收机的三维坐标,
Figure BDA0002251755300000084
为k时刻的Fij(ru)函数,Δρs代表接收机到导航卫星的伪距变化量,εs代表多径和测量噪声误差;
(4)根据k时刻接收机的三维坐标以及位置增量,求得下一时刻接收机的三维坐标。
图1为系统组成,该系统主要包括阵列伪卫星、全球导航卫星系统和用户终端等部分。
图2为阵列伪卫星设计原理图,由DSP和FPGA组成的基带单元驱动多个射频通道(AD9361)。每个信道通过调制GPS L1和BDS B1载波发送具有不同C/A码和导航消息的信号。由于阵列伪卫星信号是在同一时间点(相同的1PPS)产生的,所以对于GNSS接收机,阵列伪卫星的时钟误差是相同的。本发明设计了一种简单的GNSS时序设计,以确保商用GNSS芯片能够同时接收伪卫星信号和GNSS信号。
图3为用户终端结构图,用户终端包括三个主要部分:接收天线、商用接收机芯片(如ublox M8T、Unicorecomm UC6220)、ARM处理器。
图4为系统流程图,其具体步骤为:
1)根据传统的伪距测量方程测量伪距ρi为用户终端到第i个阵列天线的计算公式为:
Figure BDA0002251755300000085
其中ρi为用户位置(x,y,z)和第i个阵列天线的位置(xi,yi,zi)之间的距离,Ti是对流层延迟,tr是接收机时钟误差,ti是伪卫星时钟误差,εi是多径和接收机热噪声误差。
从用户终端到阵列伪卫星信道j的伪距测量ρj被建模为:
Figure BDA0002251755300000091
其中ρj为用户位置(x,y,z)和第j个阵列天线的位置(xj,yj,zj)之间的距离,Tj是对流层延迟,tr是接收机时钟误差,tj是伪卫星时钟误差,εj是多径和接收机热噪声误差。
在上面的等式中,因为它们使用相同的时钟,ti的项等于tj,所以ρi和ρj之间的差可以写成:
这里,如果
Figure BDA0002251755300000093
Figure BDA0002251755300000094
则公式(3)可以简化为:
Δρij=||ri-ru||-||rj-ru||+εij (4)
如果方程(4)中的非线性项被定义为Fij
Fij(ru)=||ri-ru||-||rj-ru||
它关于ru的偏导数是:
Figure BDA0002251755300000095
如果Newton-Raphson法解更新过程所用的ru的初始值被描述为ru,0=(x0,y0,z0),并且如果忽略Fij(ru)的泰勒展开的二阶和高阶项,则第一更新解被表示为:
那么公式(4)可表示为:
Figure BDA0002251755300000102
这些阵列伪距的观测方程用矩阵的形式表示为:
Figure BDA0002251755300000103
式(8)左侧的矩阵定义为G,右侧的两个列向量分别定义为b(左一)和ε(右一),式(8)表示为:
G·Δru,0=b+ε (9)
方程(9)的解为:
Δru,0=(GTG)-1GTb (10)
通过下面公式迭代更新估计的位置:
Figure BDA0002251755300000105
2)阵列伪卫星与GNSS的组合
从用户终端到导航卫星的伪距测量ρs建模为:
Figure BDA0002251755300000104
这里ρs表示用户到导航卫星的伪距,(xsysz)表示导航卫星的位置,T表示对流层延迟,I表示电离层误差,ts表示卫星的时钟误差,εs表示多径误差和接收机热噪声误差。
第一个更新方程为:
Figure BDA0002251755300000111
公式(4)可以表示为:
Figure BDA0002251755300000112
阵列伪卫星各个天线和三颗导航卫星的观测方程以如下矩阵形式表示:
Figure BDA0002251755300000113
公式(15)可以表示为:
G·Δru,0=b+ε (16)
方程(16)的解为:
Δru,0=(GTG)-1GTb (17)
根据下面公式迭代更新估计位置:
Figure BDA0002251755300000114
本发明解决了传统伪卫星复杂的时间同步问题,提出一种新型的异步阵列伪卫星系统。多通道信号发射机用于发射不同的PRN码,其信号与GPS和BDS信号兼容。商业化的GNSS接收机可以接收这些信号,并与阵列伪卫星和GNSS进行组合定位,通过使用阵列信道之间的差异来消除伪卫星伪距的时钟偏差。利用一颗阵列伪卫星和三颗导航卫星组成的微型定位系统进行定位实验,结果表明,与四颗全球导航卫星系统相比,微型定位系统可以实现组合定位,水平定位精度有所提高。

Claims (2)

1.一种阵列伪卫星与GNSS相结合的定位方法,其特征在于,用于通过接收机u对多通道信号发射器所发射的导航信号和导航卫星信号进行跟踪,从而实现对所述接收机u的定位;所述多通道信号发射器连接有多个位置固定的伪卫星发射天线,每个伪卫星发射天线对应于一个伪卫星通道,每个伪卫星通道的信号均具有唯一的C/A码,各伪卫星通道均在GPS的L1码和BDS的B1码调制,且各通道信号均同时由1PPS生成;所述接收机u通过对导航信号的跟踪获取接收机u与伪卫星发射天线i、伪卫星发射天线j以及三颗导航卫星之间的伪距测量值;该方法包括以下步骤:
(1)根据接收机u相对于伪卫星发射天线i和j的距离,建立如下阵列伪距的表达式:
Δρij=Fij(ru)+εij
其中,Δρij为阵列伪距,εij为噪声,Fij(ru)为中间变量:
Fij(ru)=||ri-ru||-||rj-ru||,
式中,ri和rj分别为发射天线i和j的位置坐标,ru为接收机的位置坐标;
(2)对Fij(ru)求偏导:
Figure FDA0002251755290000011
利用Newton-Raphson牛顿迭代法对Fij(ru)进行迭代更新,从而求得Fij(ru)的近似解,其中,Fij(ru)迭代的初始值Fij(ru,1)为:
Figure FDA0002251755290000012
式中,ru,0=(x0,y0,z0),为接收机的初始坐标;
根据Fij(ru)的解得到Δρij,并利用Δρij消除天线i和j之间的钟差;
(3)建立阵列伪卫星与导航卫星的伪距观测方程:
Figure FDA0002251755290000021
Figure FDA0002251755290000022
求得接收机的位置增量
Figure FDA0002251755290000024
式中,xk、yk、zk为k时刻接收机的三维坐标,
Figure FDA0002251755290000025
为k时刻的Fij(ru)函数,Δρs代表接收机到导航卫星的伪距变化量,εs代表多径和测量噪声误差;
(4)根据k时刻接收机的三维坐标以及位置增量,求得下一时刻接收机的三维坐标。
2.一种阵列伪卫星与GNSS相结合的定位系统,其特征在于,包括多通道信号发射器、阵列天线、接收机、智能终端和导航卫星,所述阵列天线包括多个位置固定的伪卫星发射天线,所述多通道信号发射器通过阵列天线发送导航信号,阵列天线中的每个伪卫星发射天线对应于多通道信号发射器的一个通道,每个通道的信号均具有唯一的C/A码,多通道信号发射器的各通道均在GPS的L1码和BDS的B1码调制,且各通道信号均同时由1PPS生成;所述接收机包括GNSS接收芯片,所述智能终端通过蓝牙与所述接收机进行数据传输;接收机u通过GNSS接收芯片对多通道信号发射器的信号进行跟踪,获取接收机u与伪卫星发射天线i、伪卫星发射天线j以及导航卫星之间的伪距测量值;所述智能终端用于执行如下程序:
(1)根据接收机u相对于伪卫星i和j的距离,建立如下阵列伪距的表达式:
Δρij=Fij(ru)+εij
其中,Δρij为阵列伪距,εij为噪声,Fij(ru)为中间变量:
Fij(ru)=||ri-ru||-||rj-ru||,
式中,ri和rj分别为发射天线i和j的位置坐标,ru为接收机的位置坐标;
(2)对Fij(ru)求偏导:
利用Newton-Raphson牛顿迭代法对Fij(ru)进行迭代更新,从而求得Fij(ru)的近似解,其中,Fij(ru)迭代的初始值Fij(ru,1)为:
Figure FDA0002251755290000032
式中,ru,0=(x0,y0,z0),为接收机的初始坐标;
根据Fij(ru)的解得到Δρij,并利用Δρij消除天线i和j之间的钟差;
(3)建立阵列伪卫星与导航卫星的伪距观测方程:
Figure FDA0002251755290000041
Figure FDA0002251755290000042
求得接收机的位置增量
Figure FDA0002251755290000043
Figure FDA0002251755290000044
式中,xk、yk、zk为k时刻接收机的三维坐标,为k时刻的Fij(ru)函数,Δρs代表接收机到导航卫星的伪距变化量,εs代表多径和测量噪声误差;
(4)根据k时刻接收机的三维坐标以及位置增量,求得下一时刻接收机的三维坐标。
CN201911036914.2A 2019-10-29 2019-10-29 一种阵列伪卫星与gnss相结合的定位方法及系统 Pending CN110716218A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911036914.2A CN110716218A (zh) 2019-10-29 2019-10-29 一种阵列伪卫星与gnss相结合的定位方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911036914.2A CN110716218A (zh) 2019-10-29 2019-10-29 一种阵列伪卫星与gnss相结合的定位方法及系统

Publications (1)

Publication Number Publication Date
CN110716218A true CN110716218A (zh) 2020-01-21

Family

ID=69213422

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911036914.2A Pending CN110716218A (zh) 2019-10-29 2019-10-29 一种阵列伪卫星与gnss相结合的定位方法及系统

Country Status (1)

Country Link
CN (1) CN110716218A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111596323A (zh) * 2020-06-17 2020-08-28 中国电子科技集团公司第三十六研究所 一种伪卫星星座校准方法与系统
CN112363182A (zh) * 2020-11-06 2021-02-12 江苏集萃未来城市应用技术研究所有限公司 一种多波束伪卫星信号生成方法与发射装置
CN116299560A (zh) * 2023-02-20 2023-06-23 中国人民解放军军事科学院系统工程研究院 一种基于伪卫星的安卓终端导航定位系统及方法
CN116540284A (zh) * 2023-07-06 2023-08-04 河北新合芯电子科技有限公司 室内导航定位方法、装置、系统及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7830993B2 (en) * 2008-02-20 2010-11-09 Trimble Navigation Limited Sample decimation in a GNSS receiver
CN103033825A (zh) * 2012-12-26 2013-04-10 江苏科技大学 一种gnss接收机的定位解算方法
CN104122567A (zh) * 2014-07-29 2014-10-29 中国电子科技集团公司第五十四研究所 伪卫星、gps和北斗导航系统组合的定位方法
CN104570005A (zh) * 2014-12-26 2015-04-29 北京理工雷科电子信息技术有限公司 一种用于隧道内的实时同步卫星导航信号模拟系统
CN108008426A (zh) * 2016-11-02 2018-05-08 清华大学 基于伪卫星的定位系统和方法
CN109358487A (zh) * 2018-10-10 2019-02-19 武汉大学 一种基于gnss精密授时的伪卫星系统及方法
CN110045407A (zh) * 2019-05-14 2019-07-23 中国电子科技集团公司第五十四研究所 一种分布式伪卫星/gnss优化定位方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7830993B2 (en) * 2008-02-20 2010-11-09 Trimble Navigation Limited Sample decimation in a GNSS receiver
CN103033825A (zh) * 2012-12-26 2013-04-10 江苏科技大学 一种gnss接收机的定位解算方法
CN104122567A (zh) * 2014-07-29 2014-10-29 中国电子科技集团公司第五十四研究所 伪卫星、gps和北斗导航系统组合的定位方法
CN104570005A (zh) * 2014-12-26 2015-04-29 北京理工雷科电子信息技术有限公司 一种用于隧道内的实时同步卫星导航信号模拟系统
CN108008426A (zh) * 2016-11-02 2018-05-08 清华大学 基于伪卫星的定位系统和方法
CN109358487A (zh) * 2018-10-10 2019-02-19 武汉大学 一种基于gnss精密授时的伪卫星系统及方法
CN110045407A (zh) * 2019-05-14 2019-07-23 中国电子科技集团公司第五十四研究所 一种分布式伪卫星/gnss优化定位方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XINGLI GAN 等: "Combination of Asynchronous Array Pseudolites and GNSS for Outdoor Localization", 《SPECIAL SECTION ON EMERGING TRENDS, ISSUES AND CHALLENGES FOR ARRAY SIGNAL PROCESSING AND ITS APPLICATIONS IN SMART CITY》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111596323A (zh) * 2020-06-17 2020-08-28 中国电子科技集团公司第三十六研究所 一种伪卫星星座校准方法与系统
CN112363182A (zh) * 2020-11-06 2021-02-12 江苏集萃未来城市应用技术研究所有限公司 一种多波束伪卫星信号生成方法与发射装置
CN116299560A (zh) * 2023-02-20 2023-06-23 中国人民解放军军事科学院系统工程研究院 一种基于伪卫星的安卓终端导航定位系统及方法
CN116299560B (zh) * 2023-02-20 2024-01-30 中国人民解放军军事科学院系统工程研究院 一种基于伪卫星的安卓终端导航定位系统及方法
CN116540284A (zh) * 2023-07-06 2023-08-04 河北新合芯电子科技有限公司 室内导航定位方法、装置、系统及存储介质
CN116540284B (zh) * 2023-07-06 2023-10-20 河北新合芯电子科技有限公司 室内导航定位方法、装置、系统及存储介质

Similar Documents

Publication Publication Date Title
CN110716218A (zh) 一种阵列伪卫星与gnss相结合的定位方法及系统
JP3361864B2 (ja) 衛星をベースとするナビゲーションシステムを使用してビークルの位置を決定する方法及び装置
US6734821B2 (en) Method and apparatus for processing of satellite signals without time of day information
KR100941342B1 (ko) 대략적인 초기 위치추정값에 기초하여 향상된 위치추정값을제공하는 방법 및 장치
AU2009330687B2 (en) Navigation receiver and method for combined use of a standard RTK system and a global carrier-phase differential positioning system
CN101512376B (zh) 相对定位
ES2359841T3 (es) Posicionamiento usando una estación de referencia.
Reussner et al. GLONASS inter-frequency biases and their effects on RTK and PPP carrier-phase ambiguity resolution
JP2021526217A (ja) 高速精密測位方法及びシステム
WO2008034728A1 (en) Integrated mobile-terminal navigation
JP2009529677A (ja) 測量スティッチングを用いる位置測定方法
CN110716217A (zh) 一种阵列伪卫星室内定位方法及系统
US6559793B1 (en) Differential global positioning system using coarse GPS data for a fast time to a precise first fix
Li et al. Review of PPP–RTK: Achievements, challenges, and opportunities
CN110196419B (zh) 用于gnss信号采集回放设备的伪距精度校准方法及系统
US7511667B2 (en) Precise local positioning systems using ground-based transmitters
CN110749907A (zh) 一种基于北斗动定位中接收机的钟差补偿方法及其系统
Cao et al. Performance evaluation of integrated GPS/GIOVE precise point positioning
CN110568464A (zh) 基于bds/gnss多模芯片的精密定位方法及装置
JP4723801B2 (ja) 相対測位装置
CN105158781A (zh) 一种地球gnss卫星实现外层空间用户定位的方法
CN116359968B (zh) 一种联合北斗二号和北斗三号的三频差分定位方法
Rho et al. The usefulness of WADGPS satellite orbit and clock corrections for dual-frequency precise point positioning
CN114779301A (zh) 一种基于广播星历的卫星导航实时精密单点定位方法
CN112444832A (zh) 一种一机多天线接收机的周跳修复方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200121

RJ01 Rejection of invention patent application after publication