CN110713520B - 油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽及其制备与应用 - Google Patents

油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽及其制备与应用 Download PDF

Info

Publication number
CN110713520B
CN110713520B CN201911074598.8A CN201911074598A CN110713520B CN 110713520 B CN110713520 B CN 110713520B CN 201911074598 A CN201911074598 A CN 201911074598A CN 110713520 B CN110713520 B CN 110713520B
Authority
CN
China
Prior art keywords
glutamyl
cysteinyl
glycine
gamma
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911074598.8A
Other languages
English (en)
Other versions
CN110713520A (zh
Inventor
侯庆锋
王源源
王哲
郑晓波
沈健
莫宏
付磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Petrochina Co Ltd
Original Assignee
Petrochina Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petrochina Co Ltd filed Critical Petrochina Co Ltd
Priority to CN201911074598.8A priority Critical patent/CN110713520B/zh
Publication of CN110713520A publication Critical patent/CN110713520A/zh
Application granted granted Critical
Publication of CN110713520B publication Critical patent/CN110713520B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/52Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/584Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific surfactants

Abstract

本发明公开了一种油酰基氨基酸‑γ‑L‑谷氨酰‑L‑半胱氨酰‑甘氨酸多肽及其制备与应用。该多肽结构式如下:
Figure DDA0002262021560000011
其中的
Figure DDA0002262021560000012
为油酰基氨基酸钠与氨基反应连接后的残基。本发明的油酰基氨基酸‑γ‑L‑谷氨酰‑L‑半胱氨酰‑甘氨酸多肽可作为离子响应驱油剂,该驱油剂适用于各类油田的清洁、高效驱油,克服了当前化学驱油剂残留污染严重,破乳困难,无法回收重复利用等问题,减少了对环境的污染及后期驱油剂的破乳和驱油剂的后处理问题。同目前广泛使用的化学驱油剂相比,该驱油剂具有环境污染小、乳化‑破乳便利、便于回收重复使用的突出优点,可作用各类油田清洁高效的驱油剂使用。

Description

油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽及其制 备与应用
技术领域
本发明涉及石油开采技术领域;具体涉及一种油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽及其制备与应用。
背景技术
石油是最重要的全球战略物资之一,石油的稳产、高产是关系到国家安全和经济发展速度的决定因素之一。
当前,我国采油领域已进入三次驱油阶段,大量的阴离子表面活性剂被使用于油田驱油。这些化学驱油剂虽然有效提高了油田的采出效率,但也造成了对对地层和水质的严重污染。此外,大多数阴离子表面活性剂虽然具有良好的乳化效果,但同时也具有破乳困难、无法重复使用的严重缺陷,造成采出液后续处理难度巨大和采出液污染治理困难,治理费用高昂的问题。
设计一类环境友好、乳化-破乳便利、可重复使用的高效、环保驱油剂已成为相关领域研究的重点和热点。
多肽类表面活性剂是一类由氨基酸残基组成,具有表面活性剂结构特征及性质的多肽分子。与普通氨基酸类表面活性剂相比,多肽类表面活性剂较高的分子链长可以形成较强的空间位阻,实现乳化体系的良好稳定性。
而将多种不同化学性质、空间结构按照预定的设计排列,则可以实现不同氨基酸类表面活性剂的优势互补,达到普通氨基酸类类表面活性剂无法企及的效果。同其他类型表面活性剂相比,多肽类表面活性剂基于氨基酸自身的结构特点和空间排列组合的多选择性,因而具有更好的环境友好性和可调节性,便于进行各种针对性的分子设计和化学改性,以适应不同实际用途的需要。
如何通过合理的分子设计,实现对原油的良好乳化效果,并可以通过简便的方法实现破乳和驱油剂的重复利用,在发挥多肽类表面活性剂环境友好优势的同时,实现良好乳化-破乳和重复利用是解决目前化学问题的可靠途径。
发明内容
基于以上背景技术,本发明提供一种油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽及其制备与应用。
为了实现以上目的,本发明采用以下技术方案:
一种油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽,其结构式如下:
Figure BDA0002262021540000021
其中的
Figure BDA0002262021540000022
为油酰基氨基酸钠(雷米邦A)与氨基反应连接后的残基。
具体的,其结构式如下:
Figure BDA0002262021540000023
本发明第二个方面提供以上油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽的制备方法,包括以下步骤:
氧化型γ-L-谷氨酰-L-半胱氨酰-甘氨酸和油酰基氨基酸钠(雷米邦A:C17H33CONHCH3(CONHCH2CH3)6COONa)为原料,在酸性条件下,加热进行反应,生成所述油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽。
优选地,所述氧化型γ-L-谷氨酰-L-半胱氨酰-甘氨酸和油酰基氨基酸钠进行反应的具体步骤包括:
将氧化型γ-L-谷氨酰-L-半胱氨酰-甘氨酸和油酰基氨基酸钠溶于水中,加入酸,加热回流进行反应。其反应式如下:
Figure BDA0002262021540000031
优选地,所述氧化型γ-L-谷氨酰-L-半胱氨酰-甘氨酸和油酰基氨基酸钠的摩尔比为1:1。
优选地,所述酸为硫酸、盐酸或硝酸。
更优选地,所述酸为浓硫酸,加入浓硫酸的体积为水体积的15%。
优选地,加热回流进行2h反应;,具体反应时以油酰基氨基酸的量不再变化为准。
优选地,所述氧化型γ-L-谷氨酰-L-半胱氨酰-甘氨酸以还原型γ-L-谷氨酰-L-半胱氨酰-甘氨酸为原料,碱性条件下经双氧水氧化得到。
优选的,所述氧化型γ-L-谷氨酰-L-半胱氨酰-甘氨酸以还原型γ-L-谷氨酰-L-半胱氨酰-甘氨酸为原料,碱性条件下经双氧水氧化得到;其反应式如下:
Figure BDA0002262021540000032
优选地,所述还原型γ-L-谷氨酰-L-半胱氨酰-甘氨酸通过以下步骤制备:
首先由2-[N-(N-苄基-脯氨酰)氨基]二苯甲酮1(即手型助剂BPB)、六水合氯化镍和L-谷氨酸反应,得到谷氨酸席夫碱Ni(II)配合物2;
进而采用二异丙基碳二亚胺(DIC)/1-羟基-苯并三氮唑(HOBt)复合缩合剂法与S-苄基-L-半胱氨酸反应,得到S-苄基-γ-L-谷氨酰-L-半胱氨酸席夫碱Ni(II)配合物3;
接着同样采用DIC/HOBt复合缩合剂法与甘氨酸反应,得到S-苄基-γ-L-谷氨酰-L-半胱氨酰-甘氨酸席夫碱Ni(II)配合物4;
然后稀酸水解配合物4,得到S-苄基-γ-L-谷氨酰-L-半胱氨酰-甘氨酸5;
最后采用甲酸铵催化转移氢化脱除S-苄基,得到γ-L-谷氨酰-L-半胱氨酰-甘氨酸6。
其反应式如下:
Figure BDA0002262021540000041
本发明第三个方面提供以上油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽在油田驱油中的应用。
优选地,所述油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽作为离子响应驱油剂,或作为驱油剂组分。
本发明的油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽可作为离子响应驱油剂,该驱油剂适用于各类油田的清洁、高效驱油,克服了当前化学驱油剂残留污染严重,破乳困难,无法回收重复利用等问题,减少了对环境的污染及后期驱油剂的破乳和驱油剂的后处理问题。同目前广泛使用的化学驱油剂相比,该驱油剂具有环境污染小、乳化-破乳便利、便于回收重复使用的突出优点,可作用各类油田清洁高效的驱油剂使用。
附图说明
图1为实施例2制备的油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽的红外谱图。
图2为不同浓度的油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽的表张力测试结果。
图3为不同浓度下的油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽的粘度测试结果。
图4为含水量10%时油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽乳化效果的测定结果。
图5为含水量20%时油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽乳化效果的测定结果。
图6为含水量30%时油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽乳化效果的测定结果。
图7为含水量40%时油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽乳化效果的测定结果。
图8为30℃下不同pH值条件下油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽乳化效果照片。
图9为30℃下不同pH值条件下油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽发泡倍率。
图10为70℃下不同pH值条件下油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽乳化效果照片。
图11为70℃下不同pH值条件下油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽发泡倍率。
图12为不同pH下油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽驱油剂的回收率。
具体实施方式
为了更清楚地说明本发明,下面结合优选实施例对本发明做进一步的说明。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。
实施例1
本实施例合成氧化型γ-L-谷氨酰-L-半胱氨酰-甘氨酸,其合成过程如下反应式:
Figure BDA0002262021540000061
Figure BDA0002262021540000071
1)谷氨酸席夫碱Ni(II)配合物2的合成
2-[N-(N-苄基-脯氨酰)氨基]二苯甲酮(即手型助剂BPB)(1.92g),六水合氯化镍(2.38g)和L-谷氨酸(3.68g)溶于17.5mL甲醇,氮气保护,搅拌,加热至40~50℃。加入氢氧化钾(4.49g溶在15mL MeOH)溶液,55~65℃搅拌反应2h,冷却至室温,搅拌状态下,将上述混合物倒入200mL水(含冰乙酸4.6mL)中,析出大量晶体。过滤,晶体用水洗涤两次。粗产物用丙酮重结晶,60℃真空干燥,得到谷氨酸席夫碱Ni(II)配合物2。
2)S-苄基-γ-L-谷氨酰-L-半胱氨酸席夫碱Ni(II)配合物3的合成
配合物2(2.85g)溶于20mL N,N-二甲基甲酰胺(DMF),氮气保护,室温搅拌溶解,加入DIC(N,N'-二异丙基碳二亚胺,1.01mL)和HOBt(1-羟基苯并三氮唑,0.68g),室温反应8h,过滤取滤液,即为活化酯溶液。S-苄基-L-半胱氨酸(1.06g)溶于20mL DMF(N,N-二甲基甲酰胺),加入约3mL N,O-双三甲硅基乙酰胺(BSA,C8H21NOSi2)助溶,稍加热至基本澄清,缓慢滴加至上述活化酯溶液中,室温反应1h。过滤,滤液倒入100mL水中,析出大量晶体。过滤,晶体用水洗涤两次。粗产物经硅胶柱层析纯化,V(丙酮)∶V(正己烷)∶V(冰乙酸)=6∶4∶0.7洗脱,60℃真空干燥,得到S-苄基-γ-L-谷氨酰-L-半胱氨酸席夫碱Ni(II)配合物3。
3)S-苄基-γ-L-谷氨酰-L-半胱氨酰-甘氨酸席夫碱Ni(II)配合物4的合成
配合物3(3.82g)溶于20mL DMF,氮气保护,室温搅拌溶解,加入DIC(1.01mL)和HOBt(0.68g),室温反应2h,过滤取滤液,即为活化酯溶液。甘氨酸(0.38g)加至上述活化酯溶液中,室温反应1h。过滤,滤液倒入100mL水中,析出大量晶体。过滤,晶体用水洗涤两次。粗产物经硅胶柱层析纯化,V(丙酮)∶V(正己烷)∶V(冰乙酸)=6:4:1洗脱,60℃真空干燥,得到S-苄基-γ-L-谷氨酰-L-半胱氨酰-甘氨酸席夫碱Ni(II)配合物4。
4)S-苄基-γ-L-谷氨酰-L-半胱氨酰-甘氨酸5的合成
配合物4(4.10g)溶于20mL MeOH,缓慢滴加到20mL 70℃的混合剂[V(3mol L-1盐酸)∶V(MeOH)=1∶1]中,搅拌,反应到红色消失,蒸除溶剂,加入至pH=7,加入氯仿萃取,有机相蒸除溶剂后用无水乙醇重结晶,回收手性助剂1,水转至阳离子交换柱内,水淋洗,再用氨水淋洗,收集溶液,蒸干,用水重结晶,60℃干燥,得到S-苄基-γ-L-谷氨酰-L-半胱氨酰-甘氨酸5。
5)还原型γ-L-谷氨酰-L-半胱氨酰-甘氨酸6的合成
配合物5(0.40g)溶于20mL MeOH,分五次,每次加入0.20g 10%钯碳加氢催化剂(Pd/C)和甲酸铵(0.13g),加热回流反应10h,冷却后过滤,用MeOH洗涤Pd/C两次,合并滤液,蒸除溶剂,粗产物溶于5mL水,转至阳离子交换柱内,水淋洗,再用氨水淋洗,收集溶液,蒸干,用水重结晶,60℃真空干燥,得到还原型γ-L-谷氨酰-L-半胱氨酰-甘氨酸6。
6)氧化型γ-L-谷氨酰-L-半胱氨酰-甘氨酸7的合成
以还原型γ-L-谷氨酰-L-半胱氨酰-甘氨酸6为原料,碱性条件下经双氧水氧化得到氧化型γ-L-谷氨酰-L-半胱氨酰-甘氨酸7。
实施例2
本实施例合成油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽,其合成过程如下反应式:
Figure BDA0002262021540000081
取氧化型γ-L-谷氨酰-L-半胱氨酰-甘氨酸6.12g,油酰基氨基酸钠7.1g为原料,溶于100mL水中,加入15mL的浓硫酸,100℃下通冷凝水回流2h。最终产物为油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽。
其中n的取值范围为5-7,本实施例取n=6,R’=CH3,R”=CH2CH3
图1为油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽的红外谱图,3000-3600cm-1的吸收峰是N-H和水峰(样品易吸潮含有少量水),2123cm-1的吸收峰是-CH2,1656cm-1处的吸收峰是C=O,1232cm-1处的吸收峰是C-O。
性能测试:
一、对油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽进行不同浓度下的表面张力的测定
在100mL的水中加入不同浓度的上述驱油剂,以表面张力仪对溶液的表张力进行测试,结果取3个有效样品的平均值,其测定结果如图2所示。由图2可以看出,该离子响应表面活性剂的加入使溶液的表面张力明显降低。
二、对油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽进行不同浓度下的粘度的测定
将50%水和50%的白油(体积比)进行混合,然后在25℃下,以旋转粘度计对不同浓度下该驱油剂的粘度进行测定,结果取3个有效样品的平均值,其测定结果如图3所示,由图3可以看出,该离子响应表面活性剂的加入使油/水界面粘度显著降低,界面老化现象也明显减轻。
三、对油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽进行不同含水量时乳化效果的测定
以大庆模拟离子水代替地下水,以白油代替原油。采用不同的油水比,加入0.3%的表面活性剂,机械搅拌2min的方式进行乳化,显微镜观察乳化效果,其乳化效图如图4-图7所示。
由显微镜图可以看出,随着含水量的增加,泡沫尺寸整体呈明显上升趋势,当体系含水量大于20%时,泡沫表面也呈现明显的乳化层。因此可以认为该多肽表面活性剂具有良好的乳化效果,可以作为高效驱油剂使用。
四、30℃下pH值对乳化效果的测试
实验以大庆模拟离子水代替地下水(矿化度为10000),以白油代替原油。采用油水比1:1,加入0.3%的表面活性剂,机械搅拌2min的方式进行乳化,并记录其发泡倍率,静置48小时,观察其不同时间段的乳化层高度变化,通过乳化层高度以及泡沫高度可以有效分析驱油剂的驱油效果,通常乳化层和泡沫高度越高,乳化效果越好,驱油效率则越高,但破乳也越困难。
30℃下不同pH值条件下乳化效果照片如图8所示,pH值由左向右依次为2、4、6、8、10、12;30℃下不同pH值条件下发泡倍率如图9所示。
由图8和图9可以看出,该驱油剂在pH值大于6时具有良好的乳化效果,即具有良好的驱油效果,当pH值为10时,发泡能力为290.33%。但当体系pH值为2时,乳化层高度和泡沫高度较低,因此乳化稳定性差,破乳容易,因此只要合理调节体系的H离子浓度即可实现良好的乳化-破乳效果。
五、70℃下pH值对乳化效果的测试
以大庆模拟离子水代替地下水(矿化度为10000),以白油代替原油。采用油水比1:1,加入0.3%的表面活性剂,机械搅拌2min的方式进行乳化,并记录其发泡倍率,静置48小时,观察其不同时间段的乳化层高度变化,通过乳化层高度以及泡沫高度可以有效分析驱油剂的驱油效果,通常乳化层和泡沫高度越高,乳化效果越好,驱油效率则越高,但破乳也越困难。
70℃下不同pH值条件下乳化效果照片如图10所示,pH值由左向右依次为2、4、6、8、10、12;70℃下不同pH值条件下发泡倍率如图11所示。
由图10和图11可以看出,该驱油剂在pH值为6或10左右时具有良好的乳化效果,发泡能力分别为222%和248.67%。具有良好的驱油效果,但当体系pH值为2时,乳化层高度和泡沫高度较低,因此乳化稳定性差,破乳容易,因此只要合理调节体系的H离子浓度即可实现良好的乳化-破乳效果。
结合性能测试四和(30℃)和性能测试五(70℃)可以看出,在低温和中高温条件下,该驱油剂均可以通过调节H离子浓度实现良好的乳化-破乳效果,即实现良好的回收效果。
不同pH下根据其乳化剂发泡能力,计算其回收率,其回收曲线如图12所示,随着体系pH的变化,回收率先增加后减少,当体系pH值为10,偏碱性时回收率最高达78.5%。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (11)

1.一种油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽,其特征在于,其结构式如下:
Figure FDA0002694030470000011
2.权利要求1所述油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽的制备方法,其特征在于,包括以下步骤:
氧化型γ-L-谷氨酰-L-半胱氨酰-甘氨酸和油酰基氨基酸钠C17H33CONHCH3(CONHCH2CH3)6COONa为原料,在酸性条件下,加热进行反应,生成所述油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽。
3.根据权利要求2所述的制备方法,其特征在于,所述氧化型γ-L-谷氨酰-L-半胱氨酰-甘氨酸和油酰基氨基酸钠进行反应的具体步骤包括:
将氧化型γ-L-谷氨酰-L-半胱氨酰-甘氨酸和油酰基氨基酸钠溶于水中,加入酸,加热回流进行反应。
4.根据权利要求3所述的制备方法,其特征在于,所述氧化型γ-L-谷氨酰-L-半胱氨酰-甘氨酸和油酰基氨基酸钠的摩尔比为1:1。
5.根据权利要求3所述的制备方法,其特征在于,所述酸为硫酸、盐酸或硝酸。
6.根据权利要求3所述的制备方法,其特征在于,所述酸为浓硫酸,加入浓硫酸的体积为水体积的15%。
7.根据权利要求3所述的制备方法,其特征在于,加热回流进行2h反应。
8.根据权利要求2所述的制备方法,其特征在于,所述氧化型γ-L-谷氨酰-L-半胱氨酰-甘氨酸以还原型γ-L-谷氨酰-L-半胱氨酰-甘氨酸为原料,碱性条件下经双氧水氧化得到。
9.根据权利要求8所述的制备方法,其特征在于,所述还原型γ-L-谷氨酰-L-半胱氨酰-甘氨酸通过以下步骤制备:
首先由2-[N-(N-苄基-脯氨酰)氨基]二苯甲酮、六水合氯化镍和L-谷氨酸反应,得到谷氨酸席夫碱Ni(II)配合物;
进而采用二异丙基碳二亚胺/1-羟基-苯并三氮唑复合缩合剂法与S-苄基-L-半胱氨酸反应,得到S-苄基-γ-L-谷氨酰-L-半胱氨酸席夫碱Ni(II)配合物;
接着同样采用二异丙基碳二亚胺/1-羟基-苯并三氮唑复合缩合剂法与甘氨酸反应,得到S-苄基-γ-L-谷氨酰-L-半胱氨酰-甘氨酸席夫碱Ni(II)配合物;
然后稀酸水解S-苄基-γ-L-谷氨酰-L-半胱氨酰-甘氨酸席夫碱Ni(II)配合物,得到S-苄基-γ-L-谷氨酰-L-半胱氨酰-甘氨酸;
最后采用甲酸铵催化转移氢化脱除S-苄基,得到γ-L-谷氨酰-L-半胱氨酰-甘氨酸。
10.权利要求1所述油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽在油田驱油中的应用。
11.根据权利要求10所述的应用,其特征在于,所述油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽作为离子响应驱油剂或作为驱油剂组分。
CN201911074598.8A 2019-11-06 2019-11-06 油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽及其制备与应用 Active CN110713520B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911074598.8A CN110713520B (zh) 2019-11-06 2019-11-06 油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽及其制备与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911074598.8A CN110713520B (zh) 2019-11-06 2019-11-06 油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽及其制备与应用

Publications (2)

Publication Number Publication Date
CN110713520A CN110713520A (zh) 2020-01-21
CN110713520B true CN110713520B (zh) 2021-01-01

Family

ID=69214698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911074598.8A Active CN110713520B (zh) 2019-11-06 2019-11-06 油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽及其制备与应用

Country Status (1)

Country Link
CN (1) CN110713520B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110713520B (zh) * 2019-11-06 2021-01-01 中国石油天然气股份有限公司 油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽及其制备与应用
CN113429954B (zh) * 2021-07-30 2022-07-12 南华大学 驱油表面活性剂体系及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1772916A (zh) * 2005-10-21 2006-05-17 南京工业大学 化学酶法合成谷胱甘肽的方法
CN101898986A (zh) * 2009-09-25 2010-12-01 东华大学 微波条件下制备s-苄基半胱氨酰甘氨酸乙酯的方法
CN102863352A (zh) * 2012-09-05 2013-01-09 长沙普济生物科技有限公司 一种椰油酰基氨基酸钠的合成方法
WO2013192364A1 (en) * 2012-06-22 2013-12-27 The University Of Vermont And State Agricultural College Treatments of oxidative stress conditions
CN103748105A (zh) * 2011-06-15 2014-04-23 生物技术工具公司 一种生产水解过敏原的方法
CN107722168A (zh) * 2017-10-19 2018-02-23 悦康药业集团安徽天然制药有限公司 一种低单体残留的中渗透缓释药用丙烯酸乙酯‑甲基丙烯酸甲酯共聚物水分散体的制备方法
CN110713520A (zh) * 2019-11-06 2020-01-21 中国石油天然气股份有限公司 油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽及其制备与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RS52930B (en) * 2006-01-26 2014-02-28 Zoetis P Llc A NEW COMPOSITION OF GLYCOLIPID ADVANCE

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1772916A (zh) * 2005-10-21 2006-05-17 南京工业大学 化学酶法合成谷胱甘肽的方法
CN101898986A (zh) * 2009-09-25 2010-12-01 东华大学 微波条件下制备s-苄基半胱氨酰甘氨酸乙酯的方法
CN103748105A (zh) * 2011-06-15 2014-04-23 生物技术工具公司 一种生产水解过敏原的方法
WO2013192364A1 (en) * 2012-06-22 2013-12-27 The University Of Vermont And State Agricultural College Treatments of oxidative stress conditions
CN102863352A (zh) * 2012-09-05 2013-01-09 长沙普济生物科技有限公司 一种椰油酰基氨基酸钠的合成方法
CN107722168A (zh) * 2017-10-19 2018-02-23 悦康药业集团安徽天然制药有限公司 一种低单体残留的中渗透缓释药用丙烯酸乙酯‑甲基丙烯酸甲酯共聚物水分散体的制备方法
CN110713520A (zh) * 2019-11-06 2020-01-21 中国石油天然气股份有限公司 油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽及其制备与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Reactions of glutathione and glutathione radicals with benzoquinones;John Butler等;《Free Radical Biology and Medicine》;ELSEVIER;19921231;第12卷(第5期);第337-345页 *
化学酶法合成γ-L-谷氨酰-L-半胱氨酸;吴明刚等;《现代化工》;CNKI;20081031;第28卷(第2期);第338-341页 *

Also Published As

Publication number Publication date
CN110713520A (zh) 2020-01-21

Similar Documents

Publication Publication Date Title
CN110713520B (zh) 油酰基氨基酸-γ-L-谷氨酰-L-半胱氨酰-甘氨酸多肽及其制备与应用
CN109486476B (zh) 一种用于高温自转向酸的黏弹性表面活性剂、制备方法及应用
CN101664657B (zh) 一种羧酸盐双子表面活性剂及其制备方法
RU2647554C2 (ru) Композиция на основе поверхностно-активного вещества, способ ее получения и ее применение
EP3995557B1 (en) Carbon-dioxide-responsive self-thickening intelligent fluid based on supramolecular self-assembly
CN110872357B (zh) 一种多肽表面活性剂及其制备及应用
CN115584268A (zh) 一种双磺酸基甜菜碱粘弹性表面活性剂及制备方法与应用
CN113563208A (zh) 一种具有多重响应性能的新型乳状液
CN107674074B (zh) 一种两亲性萘酰双亚胺凝胶因子的制备方法及应用
CN108929243A (zh) 一种含不对称荧光团结构的二胺单体及其制备方法和应用
CN105418511A (zh) 1-丁基-3-甲基咪唑萘甲酸盐离子液体及其制备方法、应用
CN109731526B (zh) 一种含氟表面活性剂化合物及制备方法与应用
CN105061232B (zh) 一种红色基b的制备方法
CN103012176A (zh) 一种长链烷基四羧基阴离子表面活性剂的制备方法
CN110845571B (zh) 油酰基氨基酸-α-环己基-α-羟基-苯乙酸-4-二乙氨基-2-丁炔酯、合成与应用
CN110467912B (zh) 一种高温触发润湿反转剂及其制备方法与应用
CN113603610B (zh) 一种萘酰肼类有机凝胶因子及其制备方法与应用
CN113480440A (zh) 一种含刚性基团双亲性-强极性切换的阳离子型表面活性剂
CN1220256A (zh) 硝基甲苯还原成甲基苯胺的工艺
WO1995021209A1 (fr) Amides et ethers d'acides perfluoropolyoxyalkylene sulfoniques ou perfluoropolyoxyalkylene carboxyliques et leur procede d'obtention
CN104326949B (zh) 一种可选择性分离氨基酸的功能化离子液体、制备方法及其应用
CN113698427A (zh) 一种稀土配合物/氧化石墨烯荧光材料及其制备方法和应用
CN115716789A (zh) 一种伯酰胺羧酸钠叔胺型表面活性剂及其制备方法与应用
CN1111158C (zh) 结晶紫内酯的制备方法
RU2791544C1 (ru) Самозагущающаяся интеллектуальная жидкость, реагирующая на диоксид углерода, на основе супрамолекулярной самосборки

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant