CN110698487B - DDQ介导的卟啉meso位碳氧和碳碳偶联的卟啉衍生物的制备方法 - Google Patents
DDQ介导的卟啉meso位碳氧和碳碳偶联的卟啉衍生物的制备方法 Download PDFInfo
- Publication number
- CN110698487B CN110698487B CN201911167069.2A CN201911167069A CN110698487B CN 110698487 B CN110698487 B CN 110698487B CN 201911167069 A CN201911167069 A CN 201911167069A CN 110698487 B CN110698487 B CN 110698487B
- Authority
- CN
- China
- Prior art keywords
- porphyrin
- carbon
- ddq
- preparation
- nmr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/22—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0057—Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
- A61K41/0076—PDT with expanded (metallo)porphyrins, i.e. having more than 20 ring atoms, e.g. texaphyrins, sapphyrins, hexaphyrins, pentaphyrins, porphocyanines
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biochemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明涉及一种DDQ介导的卟啉meso位碳氧和碳碳偶联的卟啉衍生物的制备方法,所述卟啉是5,15位二芳基取代的金属配位卟啉。本发明所述的制备方法,不需要官能团的介导,也不需要使用昂贵的过渡金属催化,具有效率高、选择性好、反应条件温和、环境友好等优点。本发明所述卟啉类衍生物通过DDQ催化氧化的过程,成功避免了自身偶联以及亲核试剂与氧化剂之间的偶联反应,并通过向卟啉类化合物中引入极性氧原子,使得其共轭体系进一步增大,水溶性增强,为新的光敏剂开发奠定了坚实的基础。
Description
技术领域
本发明属于有机化学领域,特别涉及一种DDQ介导的卟啉meso位碳氧和碳碳偶联的卟啉衍生物的制备方法。
背景技术
卟啉类化合物作为光动力治疗的光敏剂,在临床上被用于治疗乳腺癌、眼癌、结直肠癌,脑和颈部肿瘤等癌症。同时卟啉类化合物由于其独特的光物理学和光化学性质,在仿生化学、太阳能利用、特种材料、声动力学治疗等方面也发挥着越来越重要的作用。尽管卟啉衍生物的应用价值越来越广,但是由于其结构较复杂、合成较困难等特点,卟啉类化合物衍生方式有限,卟啉的结构和功能拓展受到了一定的局限。
氧化交叉偶联反应被认为是构建碳碳和碳杂键的最有效的方式之一,也是目前常用于合成天然化合物和药物的方法。现阶段大部分实现化学和区域选择性碳碳和碳杂键的方式主要有两种,一种是催化底物形成自由基之后发生自由基偶联,另一种是过渡金属配合物催化下的金属转移反应。因此,发展一种效率高,选择性好,反应条件温和的氧化策略是现代有机合成的有效手段。
Garg课题组报道了苯酚衍生物之间通过金属镍催化的Suzuki-Miyaura交叉偶联反应形成碳碳键;通过金属铁催化的Kumada交叉偶联反应形成碳氮键等等。可见,目前大部分的交叉偶联反应是通过金属催化实现。2019年,Chao-Jun Li课题组在JACS上报道了一篇通过光能够高效实现苯酚衍生物和不同底物之间形成碳碳,碳氧,碳氮键的文章。但是他使用的是有官能团介导的苯酚底物。由此可见,苯酚作为一种廉价易得的亲电子试剂而被广泛的应用于交叉偶联反应中。
另一方面,文献报道的常用非金属氧化剂有DDQ、高价碘试剂、电催化等,这些非金属氧化方式都已经成功的应用到构建碳碳键的交叉偶联反应中。然而,对于苯酚和其他底物之间交叉偶联形成碳氧键的方法鲜有报道。在大部分的非金属氧化实例中,芳香类底物经常作为亲核试剂去进攻通过单电子转移过程形成的苯酚自由基。由于苯酚氧自由基较苯酚碳自由基更难稳定。因此,如何能够通过氧化交叉偶联反应实现化学选择性的构建碳氧键而非碳碳键一直是一个难题。
卟啉衍生物作为一种具有较大平面结构的芳香亲核试剂而广泛存在于自然界中。而且,卟啉衍生物目前有着广阔的应用价值。比如说卟啉衍生物已经广泛的应用于光合成系统、传感器、非线性光学器件等领域。与此同时,meso位带有苯酚取代的卟啉衍生物Temoporfin被证明是一种具有较好的光动力学治疗效果的药物。基于卟啉的应用价值越来越广阔的前提下,卟啉衍生物的合成方法也不断发展着。包括单点法、[2+2]和[3+3]环加成方法等。然而,这些方法合成不同取代卟啉的收率都很低。近期有文献报道,5,15位二芳基取代的卟啉可以在金属钯的催化下通过溴化和官能团化两个步骤实现卟啉meso位碳氧的形成。在此基础上,我们希望能够发展一种不需要官能团介导的情况下,直接修饰5,15二芳基取代卟啉的方法。
发明内容
本发明的目的是提供一种DDQ介导的卟啉meso位碳氧和碳碳偶联的卟啉衍生物的制备方法,本发明所述的制备方法,不需要官能团的介导,也不需要使用昂贵的过渡金属催化,具有效率高、选择性好、反应条件温和、环境友好等优点。本发明所述卟啉类衍生物通过DDQ催化氧化的过程,成功避免了自身偶联及亲核试剂与氧化剂之间的偶联反应。并通过向卟啉类化合物中引入极性氧原子,使得其共轭体系进一步增大,水溶性增强,为新的光敏剂开发奠定了坚实的基础。
本发明所述卟啉meso位衍生化产物通过DDQ氧化剂的氧化实现了卟啉meso位和酚类底物之间C-O键或C-C键的形成。在反应体系中,二氯甲烷或者二氯乙烷作为溶剂,以5,15位二芳基取代金属卟啉类化合物和酚类化合物为原料,在2,3-二氯-5,6-二氰基对苯醌(DDQ)催化下反应得到meso位形成C-C键或C-O键的产物,其制备方法,简单易行。
本发明的技术方案是:
meso-O取代卟啉衍生物的制备方法,有以下步骤:
1)将0.05mmol卟啉类化合物1和0.25mmol苯酚类化合物2溶于50mL1,2-二氯乙烷中,90℃下加入50mol%Sc(OTf)3和0.1mmol DDQ,搅拌3小时,直至卟啉类原料反应完全;
2)将反应体系旋干,去除溶剂,得粗品;
柱层析分离纯化,得到卟啉10位,20位同时氧化产物4,其反应式为:
所述卟啉类化合物1中的M为Zn,Cu,Ni金属中的任意一种;Ar为对位取代芳基中的任意一种;R1为C1-C6的烷基、氢、溴、甲氧基的任意一种。
所述对位取代芳基为对甲基苯基,对正丁氧基苯基,对三氟甲基苯基中的任意一种。
所述C1-C6的烷基为4-甲基,3,4-二甲基,4-叔丁基,3-叔丁基,3,5-二叔丁基,2,4-二甲基中的任意一种。
所述甲氧基为4-甲氧基,2-甲氧基。
meso-C取代卟啉衍生物的制备方法,有以下步骤:
1)将0.05mmol卟啉类化合物1和0.15mmol苯酚类化合物2溶于50mL二氯甲烷中,室温下加入0.2mmol DDQ,搅拌过夜,直至卟啉类原料反应完全;
2)将反应体系旋干,去除溶剂,得粗品;
3)柱层析分离纯化,得到卟啉10位,20位同时氧化产物5,其反应式为:
所述R1为2,6-二甲氧基、2-叔丁基中的任意一种。
将反应物苯酚类化合物2替换为萘酚类化合物3时,其反应式为:
其制备方法同meso-C取代卟啉衍生物的制备方法。
所述R1为氢、溴、甲氧基中的任意一种。
本发明通过DDQ介导的化学氧化能够直接实现卟啉meso位碳氧或碳碳交叉偶联反应。这种方法不需要官能团的介导,也不需要使用金属催化剂,就能够高效的获得卟啉meso位衍生化的产物,这也是目前第一个报道在非金属氧化条件下利用交叉偶联反应实现卟啉和苯酚衍生物之间的碳氧偶联。同时,本发明所述的卟啉meso位衍生化的方法有非常广的底物适用性,其化学选择性主要取决于底物类型的不同。碳碳交叉偶联反应主要适用于酚羟基周围位阻较大的苯酚衍生物,也适用于萘酚衍生物。碳氧交叉偶联反应不仅仅适用于各种苯酚衍生物,而且对于不同金属配位的卟啉底物同样适用。
本发明所述方法在5,15位二芳基取代的金属卟啉底物跟苯酚类底物之间直接发生碳氧交叉偶联的反应,其反应温和,可以高效的在卟啉meso位直接形成碳氧键,同时通过在卟啉结构中引入氧原子而改善其水溶性,为卟啉结构的丰富和生物领域的应用提供动力。
具体实施方式
本发明所述试剂均采用市售的分析纯试剂。
实施例1
取100mL的圆底烧瓶,将称量好的5,15-二对甲基苯基锌卟啉(0.05mmol)、对甲基苯酚(0.25mmol),三氟甲磺酸钪(50mol%)溶解在50mL1,2-二氯乙烷中,将反应体系的温度升至90℃,搅拌3小时直至卟啉原料消失。将反应体系旋干去除溶剂得粗品,柱层析分离纯化,得到产品4a,收率66%。
1H NMR(600MHz,CDCl3):δ(ppm)9.35(m,4H),8.90(m,4H),8.05(m,4H),7.53(m,4H),7.04(m,4H),6.93(m,4H),2.69(s,6H),2.28(s,6H);13C NMR(150MHz,CDCl3):δ(ppm)164.04,160.93,149.89,146.75,137.22,132.62,130.75,130.01,127.91,127.38,116.25,21.48,20.49;
HR-MS(MALDI)m/z:[M]+计算值C48H36N4O2Zn 764.2130,实际值764.2126。
实施例2
1a和2b做反应物,其余同实施例1,得到产物4b,产率93%。
1H NMR(600MHz,CDCl3):δ(ppm)9.32(m,4H),8.89(m,4H),8.04(d,J=5.5Hz,4H),7.54(m,4H),6.93(d,J=8Hz,4H),6.70(d,J=7.4Hz,4H),3.64(s,6H),2.69(s,6H);13C NMR(150MHz,CDCl3):δ(ppm)149.83,134.34,132.59,128.45,127.88,127.38,117.06,114.63,55.64,29.68;HR-MS(MALDI)m/z:[M]+计算值C48H36N4O4Zn 796.2028,实际值796.2025。
实施例3
1a和2c做反应物,其余同实施例1,得到产物4c,产率42%。
1H NMR(600MHz,CDCl3):δ(ppm)9.33(d,J=4.6Hz,4H),8.89(d,J=4.7Hz,4H),8.05(d,J=7.6Hz,4H),7.53(d,J=7.6Hz,4H),6.97(d,J=8.6Hz,2H),6.84(d,J=2.9Hz,2H),6.69(dd,J=2.8,2.8Hz,2H),2.70(s,6H),2.18(s,6H),2.08(s,6H);13C NMR(150MHz,CDCl3):δ(ppm)164.31,149.84,146.80,139.25,137.93,137.19,134.35,132.88,132.54,130.36,129.45,127.94,127.37,121.24,117.70,113.67,21.48,19.99,18.84;HR-MS(MALDI)m/z:[M]+计算值C50H40N4O2Zn 792.2443,实际值792.2440。
实施例4
1a和2d做反应物,其余同实施例1,得到产物4d,产率43%。
1H NMR(600MHz,CDCl3):δ(ppm)9.37(d,J=4.6Hz,4H),8.90(d,J=5.6Hz,4H),8.05(d,J=7.7Hz,4H),7.53(d,J=7.6Hz,4H),7.24(d,4H),6.95(d,J=9Hz,4H),2.69(s,6H),1.27(s,18H);13C NMR(150MHz,CDCl3):δ(ppm)163.75,149.89,148.39,146.77,144.05,139.25,137.20,134.31,132.56,128.00,127.36,126.31,115.82,34.12,31.48,21.48;HR-MS(MALDI)m/z:[M]+计算值C54H48N4O2Zn 848.3069,实际值848.3066。
实施例5
1a和2e做反应物,其余同实施例1,得到产物4e,产率39%。
1H NMR(600MHz,CDCl3):δ(ppm)9.37(d,J=4.7Hz,4H),8.90(d,J=4.6Hz,4H),8.09(d,J=7.7Hz,4H),7.55(d,J=7.6Hz,4H),7.11(s,2H),7.01(d,J=1.7Hz,4H),2.70(s,6H),1.14(s,36H);13C NMR(150MHz,CDCl3):δ(ppm)165.62,152.36,149.78,146.90,139.36,137.14,134.50,134.43,133.04,132.34,128.12,127.40,121.12,115.63,111.24,34.93,31.32,21.49;HR-MS(MALDI)m/z:[M]+计算值C62H64N4O2Zn 960.4321,实际值960.4318。
实施例6
1a和2f做反应物,其余同实施例1,得到产物4f,产率50%。
1H NMR(600MHz,DMSO):δ(ppm)9.17(m,4H),8.72(m,4H),8.00(d,J=12Hz,4H),7.56(d,J=7.4Hz,4H),7.46(d,J=8.2Hz,4H),6.91(d,J=8.3Hz,4H),2.48(s,6H);13C NMR(150MHz,DMSO):δ(ppm)165.19,149.68,145.95,139.46,137.25,134.58,133.01,132.94,131.88,127.96,127.82,121.34,118.81,113.66,21.50;HR-MS(MALDI)m/z:[M]+计算值C46H30Br2N4O2Zn 892.0027,实际值892.0025。
实施例7
1a和2g做反应物,其余同实施例1,得到产物4g,产率20%。
1H NMR(600MHz,CDCl3):δ(ppm)9.33(d,J=4.6Hz,4H),8.90(d,J=4.6Hz,4H),8.05(d,J=7.4Hz,4H),7.53(d,J=7.4Hz,4H),7.25(m,4H),7.01(m,6H),2.69(s,6H);13CNMR(150MHz,CDCl3):δ(ppm)165.76,149.95,146.64,139.17,137.25,134.33,132.68,132.56,129.58,127.89,127.39,121.50,121.43,116.50,21.48;HR-MS(MALDI)m/z:[M]+理论值C46H32N4O2Zn 736.1817,实际值736.1814。
实施例8
1a和2h做反应物,其余同实施例1,得到产物4h,产率72%。
1H NMR(600MHz,CDCl3):δ(ppm)9.38(d,J=4.6Hz,4H),8.90(d,J=4.6Hz,4H),8.06(d,J=7.6Hz,4H),7.53(d,J=7.6Hz,4H),7.24(d,J=8.4Hz,2H),6.96(m,2H),6.46(m,2H),6.19(d,J=8.3Hz,2H),4.34(s,6H),2.69(s,6H);13C NMR(150MHz,CDCl3):δ(ppm)155.80,149.97,148.32,146.68,139.24,137.18,134.37,133.12,132.65,127.93,127.35,121.91,121.29,120.80,117.67,112.15,56.46,21.48;HR-MS(MALDI)m/z:[M]+计算值C48H36N4O4Zn 796.2028,实际值796.2025。
实施例9
1a和2i做反应物,其余同实施例1,得到产物4i,产率30%。
1H NMR(600MHz,CDCl3):δ(ppm)9.27(d,J=4.5Hz,4H),8.89(d,J=4.6Hz,4H),8.05(d,J=7.8Hz,4H),7.53(d,J=7.6Hz,4H),7.29(s,2H),6.50(d,J=8.1Hz,2H),5.93(d,J=8.5Hz,2H),3.05(s,6H),2.70(s,6H),2.25(s,6H);13C NMR(150MHz,CDCl3):δ(ppm)162.83,149.83,146.76,139.26,137.18,134.36,133.25,132.59,131.68,130.31,127.76,127.38,127.10,125.21,121.23,115.93,21.50,20.47,16.86;HR-MS(MALDI)m/z:[M]+计算值C50H40N4O2Zn 792.2443,实际值792.2442。
实施例10
1b和2a做反应物,其余同实施例1,得到产物4j,产率20%。
1H NMR(600MHz,CDCl3):δ(ppm)9.38(d,J=4.5Hz,4H),8.80(d,J=4.6Hz,4H),8.30(d,J=7.7Hz,4H),8.00(d,J=7.9Hz,4H),7.05(d,J=8.5Hz,4H),6.91(d,J=8.6Hz,4H),2.29(s,6H);13C NMR(150MHz,CDCl3):δ(ppm)164.09,149.22,147.10,134.43,132.22,130.98,130.08,128.59,123.63,123.60,116.27,29.68;HR-MS(MALDI)m/z:[M]+计算值C48H30F6N4O2Zn 872.1564,实际值872.1563。
实施例11
1b和2b做反应物,其余同实施例1,得到产物4k,产率20%。
1H NMR(600MHz,CDCl3):δ(ppm)9.36(d,J=4.6Hz,4H),8.79(d,J=4.6Hz,4H),8.29(d,J=7.7Hz,4H),8.01(d,J=7.9Hz,4H),6.94(d,J=9.3Hz,4H),6.74(d,J=9.3Hz,4H),3.68(s,6H);13C NMR(150MHz,CDCl3):δ(ppm)160.56,154.21,149.18,147.15,145.89,134.42,133.59,132.20,128.58,123.62,119.50,117.11,114.70,55.64;HR-MS(MALDI)m/z:[M]+计算值C48H30F6N4O4Zn904.1463,实际值904.1462。
实施例12
1c和2a做反应物,其余同实施例1,得到产物4l,产率20%。
1H NMR(600MHz,CDCl3):δ(ppm)9.32(d,J=4.6Hz,4H),8.90(d,J=4.5Hz,4H),8.05(d,J=8.0Hz,4H),7.24(d,J=8.2Hz,4H),7.03(d,J=8.5Hz,4H),6.90(d,J=8.5Hz,4H),4.23(m,4H),2.28(s,6H),1.94(m,4H),1.64(m,4H),1.09(m,6H);13C NMR(150MHz,CDCl3):δ(ppm)164.03,158.87,150.09,146.68,135.39,134.32,132.59,130.73,130.00,127.86,121.09,116.23,112.68,67.98,31.54,20.49,19.42,14.00;HR-MS(MALDI)m/z:[M]+计算值C54H48N4O4Zn 880.2967,实际值880.2965。
实施例13
1c和2b做反应物,其余同实施例1,得到产物4m,产率91%。
1H NMR(600MHz,CDCl3):δ(ppm)9.28(d,J=4.1Hz,4H),8.88(d,J=3.8Hz,4H),8.03(d,J=6.1Hz,4H),7.23(d,J=6.4Hz,4H),6.90(d,J=8.2Hz,4H),6.65(d,J=7.6Hz,4H),4.23(s,4H),3.58(s,6H),1.94(m,4H),1.63(m,4H),1.09(m,6H);13C NMR(150MHz,CDCl3):δ(ppm)160.50,158.84,153.90,150.02,146.69,135.39,134.36,132.97,132.51,127.80,121.03,116.99,114.61,112.68,67.99,55.59,31.54,19.42,14.00;HR-MS(MALDI)m/z:[M]+计算值C54H48N4O6Zn 912.2865,实际值912.2865。
实施例14
1d和2b做反应物,其余同实施例1,得到产物4n,产率32%。
1H NMR(600MHz,CDCl3):δ(ppm)9.17(d,J=4.9Hz,4H),8.72(d,J=4.9Hz,4H),7.85(d,J=7.7Hz,4H),7.46(d,J=7.6Hz,4H),6.80(d,J=9.3Hz,4H),6.72(d,J=9.2Hz,4H),3.70(s,6H),2.64(s,6H);13C NMR(150MHz,CDCl3):δ(ppm)158.73,154.27,142.69,139.84,137.53,133.55,132.65,131.95,128.03,127.64,119.47,116.99,114.57,111.86,55.63,21.46;HR-MS(MALDI)m/z:[M]+计算值C48H36N4NiO4 790.2090,实际值790.2085。
实施例15
1e和2b做反应物,其余同实施例1,得到产物4o,产率70%。
该铜金属配位的卟啉衍生物在核磁共振中会发生共磁效应,导致其核磁谱图无法提供。HR-MS(MALDI)m/z:[M]+计算值C48H36CuN4O4 795.2033,实际值795.2030。
实施例16
1a和2j做反应物,其余同实施例1,得到产物4p,产率19%。
1H NMR(600MHz,CDCl3):δ(ppm)9.35(d,J=4.5Hz,4H),8.90(d,J=4.6Hz,4H),8.07(m,6H),7.05(m,4H),6.44(m,2H),2.70(s,6H),1.30(s,18H);13C NMR(150MHz,CDCl3):δ(ppm)153.30,149.85,146.74,139.27,137.18,134.39,132.81,132.52,128.88,127.96,127.37,121.28,118.58,113.82,113.64,34.83,31.33,21.48;HR-MS(MALDI)m/z:[M]+计算值C54H48N4O2Zn 848.3069,实际值848.3066。
实施例17
取100mL的圆底烧瓶,将称量好的5,15-二对甲基苯基锌卟啉(0.05mmol)、2,6-二甲氧基苯酚(0.15mmol),DDQ(0.20mmol)溶解在50mL二氯甲烷中,室温下搅拌过夜直至卟啉原料消失。将反应体系旋干去除溶剂得粗品,柱层析分离纯化,得到产品5a,收率80%。
1H NMR(600MHz,CDCl3):δ(ppm)9.02(d,J=4.5Hz,4H),8.98(d,J=4.5,4H),8.09(d,J=7.4Hz,4H),7.55(d,J=7.4Hz,4H),7.47(s,4H),5.84(s,2H),3.98(s,12H),2.72(s,6H);13C NMR(150MHz,CDCl3):δ(ppm)150.39,150.32,145.16,139.72,137.18,134.29,134.23,133.95,132.02,131.84,127.31,121.29,120.89,112.12,56.50,29.69,21.53;HR-MS(MALDI)m/z:[M]+计算值C50H40N4O6Zn 856.2239,实际值856.2235。
实施例18
1a和2l做反应物,其余同实施例17,得到产物5b,产率13%。
1H NMR(600MHz,CDCl3):δ(ppm)8.99(d,J=4.6,4H),8.96(d,J=4.5,4H),8.14(m,2H),8.10(d,J=7.7Hz,4H),7.90(d,J=7.7Hz,2H),7.54(d,J=7.7Hz,4H),7.04(d,J=7.9Hz,2H),5.17(s,2H),2.71(s,6H),1.55(s,18H);13C NMR(150MHz,CDCl3):δ(ppm)153.76,150.53,150.19,139.92,137.01,135.07,134.29,133.97,132.97,131.95,131.83,127.23,121.37,120.98,114.80,34.78,29.89,21.53;HR-MS(MALDI)m/z:[M]+计算值C54H48N4O2Zn 848.3069,实际值848.3066。
实施例19
1a和3a做反应物,其余同实施例17,得到产物6a,产率92%。
1H NMR(600MHz,CDCl3):δ(ppm)8.91(d,J=4.6,4H),8.73(d,J=4.4Hz,4H),8.25(d,J=9.1Hz,2H),8.08(d,J=8.2Hz,1H),8.05(d,J=7.8,4H),8.03(d,J=7.7Hz,1H),7.64(m,2H),7.51(m,4H),7.32(m,2H),6.99(m,2H),6.77(d,J=8.6,1H),6.73(d,8.8Hz,1H),5.12(s,1H),5.06(s,1H),2.67(s,6H);13C NMR(150MHz,CDCl3):δ(ppm)151.07,151.06,150.90,147.53,139.16,137.33,134.37,134.32,134.27,133.41,131.35,130.71,127.67,127.35,126.78,126.76,126.59,126.56,21.50;HR-MS(MALDI)m/z:[M]+计算值C54H36N4O2Zn 836.2130,实际值836.2126。
实施例20
1a和3b做反应物,其余同实施例17,得到产物6b(包含两个同分异构体),产率98%。
6b-isomer1 as a purple solid.25mg,50%yield;1H NMR(600MHz,CDCl3):δ(ppm)8.93(d,J=4.5,4H),8.69(d,J=4.5Hz,4H),8.21(m,2H),8.16(m,2H),8.08(m,2H),8.03(m,2H),7.64(m,2H),7.52(m,4H),7.05(m,2H),6.59(m,2H),5.17(m,2H),2.68(m,6H);13C NMR(150MHz,CDCl3):δ(ppm)154.24,151.10,150.70,139.04,137.41,136.23,134.34,134.31,133.56,131.12,129.81,129.74,129.61,129.54,128.43,127.37,121.83,121.61,118.48,117.13,109.91,21.47;HR-MS(MALDI)m/z:[M]+计算值C54H34Br2N4O2Zn 992.0340,实际值992.0338。
6b-isomer2 as a purple solid.24mg,48%yield;1H NMR(600MHz,CDCl3):δ(ppm)8.93(d,J=4.5,4H),8.69(d,J=4.5Hz,4H),8.21(m,2H),8.16(m,2H),8.08(m,2H),8.03(m,2H),7.64(m,2H),7.52(m,4H),7.05(m,2H),6.59(m,2H),5.17(m,2H),2.68(s,6H);13C NMR(150MHz,CDCl3):δ(ppm)154.24,151.10,150.70,139.04,137.41,136.23,134.34,134.31,133.56,131.12,129.81,129.74,129.61,129.54,128.43,127.37,121.83,121.61,118.48,117.13,109.91,21.47;HR-MS(MALDI)m/z:[M]+计算值C54H34Br2N4O2Zn 992.0340,实际值992.0338。
实施例21
1a和3c做反应物,其余同实施例17,得到产物6c(包含两个同分异构体),产率86%。
6c-isomer1 as a purple solid.19mg,43%yield;1H NMR(600MHz,CDCl3):δ(ppm)8.92(d,J=4.6,4H),8.74(d,J=4.5Hz,4H),8.15(d,J=9.1Hz,2H),8.07(d,J=7.7Hz,4H),7.61(d,J=9.0,2H),7.52(d,J=7.6Hz,4H),7.38(m,2H),6.70(m,4H),4.90(s,2H),3.91(s,6H),2.67(s,6H);13C NMR(150MHz,CDCl3):δ(ppm)155.67,152.62,151.04,150.86,139.19,137.29,134.32,133.35,133.16,131.33,129.29,128.23,127.33,121.65,121.60,118.97,117.67,110.79,105.99,55.33,21.46;HR-MS(MALDI)m/z:[M]+计算值C56H40N4O4Zn 896.2341,实际值896.2338。
6c-isomer2 as a purple solid.19mg,43%yield;1H NMR(600MHz,CDCl3):δ(ppm)8.92(d,J=4.6,4H),8.74(d,J=4.5Hz,4H),8.15(d,J=9.1Hz,2H),8.09(m,1H),8.07(m,2H),8.04(m,1H),7.62(m,1H),7.61(m,1H),7.52(m,4H),7.38(m,2H),6.69(m,2H),6.67(m,2H),4.94(m,1H),4.90(m,1H),3.92(s,6H),2.67(s,6H);13C NMR(150MHz,CDCl3):δ(ppm)155.68,151.05,150.86,139.17,137.30,134.32,134.27,133.38,131.34,129.31,129.27,127.34,121.62,118.97,117.68,110.83,110.80,109.99,105.99,55.35,21.47;HR-MS(MALDI)m/z:[M]+计算值C56H40N4O4Zn 896.2341,实际值896.2338。
Claims (5)
1.一种meso-O取代卟啉衍生物的制备方法,其特征在于,有以下步骤:
1)将0.05mmol卟啉类化合物1和0.25mmol苯酚类化合物2溶于50mL1,2-二氯乙烷中,90℃下加入50mol%Sc(OTf)3和0.1mmol的2,3-二氯-5,6-二氰对苯醌(DDQ),搅拌3小时,直至卟啉类原料反应完全;
2)将反应体系旋干,去除溶剂,得粗品;
柱层析分离纯化,得到卟啉10位,20位同时氧化产物4,其反应式为:
反应式中DDQ为2,3-二氯-5,6-二氰对苯醌,DCE为二氯乙烷,Ar为对位取代芳基;
所述卟啉类化合物1中的M为Zn,Cu,Ni金属;R1为C1-C6的烷基、氢、溴、甲氧基;
所述对位取代芳基为对甲基苯基,对正丁氧基苯基,对三氟甲基苯基。
2.根据权利要求1所述的方法,其特征在于,所述C1-C6的烷基为4-甲基,3,4-二甲基,4-叔丁基,3-叔丁基,3,5-二叔丁基,2,4-二甲基。
3.根据权利要求1所述的方法,其特征在于,所述甲氧基为4-甲氧基,2-甲氧基。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911167069.2A CN110698487B (zh) | 2019-11-25 | 2019-11-25 | DDQ介导的卟啉meso位碳氧和碳碳偶联的卟啉衍生物的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911167069.2A CN110698487B (zh) | 2019-11-25 | 2019-11-25 | DDQ介导的卟啉meso位碳氧和碳碳偶联的卟啉衍生物的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110698487A CN110698487A (zh) | 2020-01-17 |
CN110698487B true CN110698487B (zh) | 2021-05-07 |
Family
ID=69206774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911167069.2A Active CN110698487B (zh) | 2019-11-25 | 2019-11-25 | DDQ介导的卟啉meso位碳氧和碳碳偶联的卟啉衍生物的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110698487B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7287615B2 (ja) | 2020-03-04 | 2023-06-06 | エルジー・ケム・リミテッド | 化合物およびこれを含む光学フィルム |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110092988A (ko) * | 2010-02-11 | 2011-08-18 | 연세대학교 산학협력단 | 높은 효율의 단일항 산소 생성 금속치환 포르피린 유도체 및 이의 제조방법 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6951935B2 (en) * | 2002-03-28 | 2005-10-04 | University Of Tennessee Research Foundation | Heteroatom-substituted porphyrins and methods for synthesis of same |
US20060030718A1 (en) * | 2002-03-28 | 2006-02-09 | University Of Tennessee Research Foundation | Cobalt-based catalysts for the cyclization of alkenes |
-
2019
- 2019-11-25 CN CN201911167069.2A patent/CN110698487B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110092988A (ko) * | 2010-02-11 | 2011-08-18 | 연세대학교 산학협력단 | 높은 효율의 단일항 산소 생성 금속치환 포르피린 유도체 및 이의 제조방법 |
Non-Patent Citations (1)
Title |
---|
Practical and Efficient Synthesis of Various meso-Functionalized Porphyrins via Simple Ligand-Free Nickel-Catalyzed C-O, C-N,and C-C Cross-Coupling Reactions;Chao Liu等;《J. Org. Chem》;20070310;第2732-2736页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110698487A (zh) | 2020-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110028403B (zh) | 一种合成丁二酸类化合物的方法 | |
Jain et al. | A novel mesoporous silica-grafted organocatalyst for the Michael addition reaction, synthesized via the click method | |
Vardhan et al. | Single‐Pore versus Dual‐Pore Bipyridine‐Based Covalent–Organic Frameworks: An Insight into the Heterogeneous Catalytic Activity for Selective C H Functionalization | |
Vardhan et al. | Iridium complex immobilization on covalent organic framework for effective C—H borylation | |
Xu et al. | Baeyer–villiger oxidation of cyclobutanones with 10-methylacridinium as an efficient organocatalyst | |
CN110845428A (zh) | 一种3-酰基喹喔啉酮化合物的光催化制备方法 | |
CN110698487B (zh) | DDQ介导的卟啉meso位碳氧和碳碳偶联的卟啉衍生物的制备方法 | |
CN110590820B (zh) | 手性有机硼化合物的制备方法 | |
Sarmah et al. | Intercalation of copper salt to montmorillonite K‐10 and its application as a reusable catalyst for Chan–Lam cross‐coupling reaction | |
Bora et al. | Novel CuCl2-cryptand-[2.2. Benzo] complex: A base free and oxidant free catalyst for Ipso-Hydroxylation of aryl/heteroaryl-boronic acids in water at room temperature | |
Xu et al. | CuSO4 nanoparticles loaded on carboxymethylcellulose/polyaniline composites: A highly efficient catalyst with enhanced catalytic activity in the synthesis of propargylamines, benzofurans, and 1, 2, 3‐triazoles | |
Teli et al. | Unlocking diversity: from simple to cutting-edge synthetic methodologies of bis (indolyl) methanes | |
CN110386854A (zh) | 一种可见光催化的芳基炔烃的制备方法 | |
CN113831318A (zh) | 一种胡椒乙胺的合成方法 | |
CN109912579B (zh) | 一种2,2-二取代四氢呋喃衍生物的制备方法 | |
Liu et al. | Incorporation of carbazole and boron-containing dye into conjugated microporous polymers with significant aerobic oxidative photocatalysis | |
CN110903242B (zh) | 罗沙司他中间体的制备方法 | |
KR102628273B1 (ko) | 아세트아미드 작용기를 포함하는 테트라하이드로퀴놀린 유도체 제조방법 및 이를 이용하여 제조된 테트라하이드로퀴놀린 유도체 | |
CN112592280B (zh) | 一种消旋沙丁胺醇的制备方法 | |
Takeya et al. | Semiconductor-mediated oxidative dimerization of 1-naphthols with dioxygen and O-demethylation of the enol-ethers by SnO2 without dioxygen | |
Wan et al. | Building Porous Ni (Salen)‐Based Catalysts from Waste Styrofoam via Autocatalytic Coupling Chemistry for Heterogeneous Oxidation with Molecular Oxygen | |
CN109096146B (zh) | 阿那曲唑关键中间体的合成方法 | |
CN115872876B (zh) | 一种酚邻位c-h键胺甲基化化合物的制备方法 | |
Tu et al. | Synthesis of fluorescein-containing polymeric heterogeneous photocatalyst and its applications | |
CN114853655B (zh) | 一种在吡咯苝湾区引入溴原子的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |