CN110694606A - 一种以软模板剂制备多级孔共存的杂原子掺杂碳催化剂的普适性方法及其应用 - Google Patents
一种以软模板剂制备多级孔共存的杂原子掺杂碳催化剂的普适性方法及其应用 Download PDFInfo
- Publication number
- CN110694606A CN110694606A CN201911038640.0A CN201911038640A CN110694606A CN 110694606 A CN110694606 A CN 110694606A CN 201911038640 A CN201911038640 A CN 201911038640A CN 110694606 A CN110694606 A CN 110694606A
- Authority
- CN
- China
- Prior art keywords
- doped carbon
- carbon catalyst
- heteroatom
- coexisting
- soft template
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 70
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 54
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 52
- 239000003795 chemical substances by application Substances 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims abstract description 28
- 239000011148 porous material Substances 0.000 title claims abstract description 24
- 239000000463 material Substances 0.000 claims abstract description 78
- 230000015556 catabolic process Effects 0.000 claims abstract description 40
- 238000006731 degradation reaction Methods 0.000 claims abstract description 40
- 238000010438 heat treatment Methods 0.000 claims abstract description 39
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000002028 Biomass Substances 0.000 claims abstract description 21
- 239000002019 doping agent Substances 0.000 claims abstract description 19
- 238000001816 cooling Methods 0.000 claims abstract description 13
- 238000001035 drying Methods 0.000 claims abstract description 13
- 238000005406 washing Methods 0.000 claims abstract description 13
- 239000011261 inert gas Substances 0.000 claims abstract description 7
- 238000006243 chemical reaction Methods 0.000 claims abstract description 6
- 239000002149 hierarchical pore Substances 0.000 claims abstract description 5
- 238000002156 mixing Methods 0.000 claims abstract description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 50
- 229910052759 nickel Inorganic materials 0.000 claims description 25
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 claims description 14
- 239000011521 glass Substances 0.000 claims description 10
- 239000004570 mortar (masonry) Substances 0.000 claims description 10
- 241001448862 Croton Species 0.000 claims description 9
- 230000003197 catalytic effect Effects 0.000 claims description 9
- 230000027756 respiratory electron transport chain Effects 0.000 claims description 9
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 claims description 7
- 229910001379 sodium hypophosphite Inorganic materials 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 230000000593 degrading effect Effects 0.000 claims description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- 239000012298 atmosphere Substances 0.000 claims description 4
- 238000000227 grinding Methods 0.000 claims description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 3
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 3
- 239000004327 boric acid Substances 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 241000521581 Millettia Species 0.000 claims description 2
- 229910052786 argon Inorganic materials 0.000 claims description 2
- 238000004364 calculation method Methods 0.000 claims description 2
- 241001098027 Callerya speciosa Species 0.000 claims 1
- 229910019142 PO4 Inorganic materials 0.000 claims 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims 1
- 239000010452 phosphate Substances 0.000 claims 1
- 239000003575 carbonaceous material Substances 0.000 abstract description 18
- 239000002957 persistent organic pollutant Substances 0.000 abstract description 9
- 230000008569 process Effects 0.000 abstract description 9
- 239000007772 electrode material Substances 0.000 abstract description 8
- 238000012216 screening Methods 0.000 abstract description 4
- 238000003786 synthesis reaction Methods 0.000 abstract description 4
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 239000010406 cathode material Substances 0.000 abstract description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 238000006722 reduction reaction Methods 0.000 description 5
- 239000010842 industrial wastewater Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 241000282414 Homo sapiens Species 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000006056 electrooxidation reaction Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 241001098038 Callerya cinerea Species 0.000 description 1
- 241000906054 Loropetalum Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000010757 Reduction Activity Effects 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000001994 activation Methods 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- DMLAVOWQYNRWNQ-UHFFFAOYSA-N azobenzene Chemical compound C1=CC=CC=C1N=NC1=CC=CC=C1 DMLAVOWQYNRWNQ-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000007833 carbon precursor Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000000349 field-emission scanning electron micrograph Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 231100000086 high toxicity Toxicity 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L magnesium chloride Substances [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/18—Carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/02—Sulfur, selenium or tellurium; Compounds thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/33—Electric or magnetic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/615—100-500 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/617—500-1000 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/618—Surface area more than 1000 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0018—Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/467—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
- C02F1/4672—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/722—Oxidation by peroxides
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/725—Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/38—Organic compounds containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/02—Specific form of oxidant
- C02F2305/026—Fenton's reagent
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Catalysts (AREA)
Abstract
本发明公开了一种以软模板剂制备多级孔共存的杂原子掺杂碳催化剂的普适性方法及其应用,属于多孔碳材料的合成技术领域。本发明的技术方案要点为:将生物质、软模板剂以及掺杂剂混合均匀得到物料A;将物料A在惰性气体保护下由室温经过60min升温至300℃保持120min,再以3℃/min的升温速率升温至800℃保持120min,自然降温至室温得到物料B;再用盐酸溶液将物料B洗涤后于105℃干燥12h得到多级孔共存的杂原子掺杂碳催化剂。本发明首先使用旋转圆盘测试合成的杂原子掺杂碳催化剂的电化学性能,筛选出发生两电子反应的电极材料,将其作为阴极材料应用到电芬顿降解体系中以高效降解有机污染物,减少了筛选电极材料的工作,且在使用过程中不会造成二次污染。
Description
技术领域
本发明属于多孔碳材料的合成技术领域,具体涉及一种以软模板剂制备多级孔共存的杂原子掺杂碳催化剂的普适性方法及其应用。
背景技术
工业迅速发展在很大程度上提高人类生活水平的同时,也带来了日趋严重的水环境污染问题,人类的生存环境面临巨大威胁。工业废水中含有数量巨大、种类繁多的有机污染物,因其毒性高、降解难且危害大的特点,受到了越来越多科研人员的关注。工业废水不达标排放到水体,不仅造成了水体的污染,而且在生物体内富集,直接影响生态环境和人类健康。因此,如何快速、高效的实现有机污染物的降解是解决当前环境问题的首要任务。
在众多有机污染物处理方法中,电化学氧化法是最有望实现工业化应用的高效处理方法之一。电芬顿技术(EF)作为一种高效且环境友好的高级电化学氧化技术,因其降解有机污染物彻底且不产生二次污染物,近年来备受关注。在过去十年中,碳基材料如网状玻璃碳、PTFE-碳毡和碳纳米管等,因其化学稳定性、导电性和抗腐蚀性较好等优点,被广泛应用于EF过程中的阴极材料。然而,这类碳材料催化剂往往只能部分降解有机污染物,无法实现对工业废水的彻底处理。因此,探索更加高效的碳基催化材料,对于拓宽电芬顿体系在工业废水处理中的实际应用显得尤为重要。
在氧还原反应中,具有丰富缺陷位点的材料有利于EF反应的进行,其中除了丰富的微孔可以提供大量的活性位点,丰富的介孔则有利于催化剂层内的快速传质过程。研究者们通过一系列改性措施以提高阴极材料的催化氧还原活性。如Forti等(Appl. Cata. B:, 2019, 248, 95-107)选取偶氮苯与石墨-PTFE气体扩散电极发生氧化还原反应,从而实现对该电极的修饰改性,改进后该电极的氧还原电位变得更正,实现H2O2的产率为650mgL−1 h−1。Bonakdarpour研究团队(Electrochim. Acta, 2011, 56(25): 9074-9081.)通过将过渡金属与碳复合,从而有效提升了H2O2的产率,涉及到的过渡金属主要有铁、钴、镍、锌等,其中钴元素的掺杂实现最佳的H2O2合成速率(5μmol h−1)。Zhang等(Sep. Sci. Technol, 2008, 64(1), 116-123.)利用高压脉冲法制备出了含氮碳纳米管气体扩散电极,在EF过程中H2O2的生成速率为97.08mg L−1 h−1。上述涉及到的高分子聚合物的修饰、金属和非金属改性的方法,虽然在一定程度上提高了H2O2在EF过程中的产率,但较为繁琐且容易造成二次污染。通常为了有效提升碳基催化剂的催化性能,引入杂原子可以打破相邻碳原子的电子排布,导致电子的重新排布,进而影响氧还原性能。一般需要借助活化剂(KOH、NaOH、KHCO3、MgCl2或ZnCl2)制备多孔碳材料,但是,此类活化剂制备的碳材料不仅孔结构单一,后处理过程复杂,这极大地阻碍了碳基材料在电芬顿降解体系中的应用。与此同时,筛选电极材料的过程非常复杂,基于本课题组前期的研究工作,利用旋转圆盘电极装置测试制备催化剂材料的电化学性能,筛选出发生两电子氧还原的催化剂材料用于电芬顿降解体系,同时,设计一种能够实现制备多级孔共存的杂原子掺杂碳催化剂的制备方法。
发明内容
本发明解决的技术问题如下:其一、基于本课题组前期的研究工作,利用旋转圆盘电极测试电极材料的电化学性能,为筛选电极材料的应用提供理论指导,通过计算将发生两电子转移的电极材料用于电芬顿降解体系,而四电子转移的材料用于氧还原燃料电池,将盲目地尝试工作上升至理论指导,极大地简化了筛选电极材料的尝试工作;其二、通过该项研究工作的展开,提供了一种工艺简单、成本低廉且环境友好的以软模板剂制备多级孔共存的杂原子掺杂碳催化剂的普适性方法,该方法以廉价的生物质碳材料作为催化剂,采用C10H18K2N2O10作为软模板和掺杂剂对碳材料进行改性,首次以C10H18K2N2O10作为软模板,其在煅烧过程中分解为H2O、CO、CO2、NOx等气体,而掺杂剂经过高温热解释放出小分子气体作为制孔剂,在活化过程中,由于软模板剂和掺杂剂的分解温度不同,造成了分阶段活化,有利于形成多级孔隙结构,因此,实现了具有丰富多级孔隙结构碳材料的合成。相较于纯生物质,加入软模板剂C10H18K2N2O10和掺杂剂能够有效地调控碳材料的孔结构,使原本的单一孔结构调控为富含大/微/介孔的多级孔并存结构,这有助于提高催化材料电化学产生双氧水的性能,进而有效提升该催化材料在电芬顿降解体系中对有机污染物的降解能力;同时,本发明制备方法简单且易操作,更好地推进了电芬顿法降解有机污染物的工业化应用。
本发明为解决上述技术问题采用如下技术方案,一种以软模板剂制备多级孔共存的杂原子掺杂碳催化剂的普适性方法,其特征在于具体过程为:
步骤S1:将生物质、软模板剂C10H18K2N2O10和掺杂剂混合后研磨均匀得到物料A,其中生物质为崖豆藤,掺杂剂为次磷酸钠(NaH2PO2)、升华硫(S)或硼酸(H3BO3);
步骤S2:将物料A转移至镍舟中并置于管式炉中,在惰性气体氛围中先由室温经60min升温至330℃并保持120min,再以3℃/min的升温速率升温至800℃并保持120min,然后自然冷却至室温得到物料B;
步骤S3:将物料B用2M盐酸溶液洗涤2-3次后于105℃干燥12h得到目标产物多级孔共存的杂原子掺杂碳催化剂,该多级孔共存的杂原子掺杂碳催化剂的比表面积为445-1387m2/g,具有富含大/微/介孔的多级孔并存结构。
优选的,步骤S1中所述生物质、软模板剂C10H18K2N2O10和掺杂剂的投料质量比为1:2:0.5-10。
优选的,步骤S2中所述惰性气体为氮气或氩气中的一种或多种。
本发明所述的以软模板剂制备多级孔共存的杂原子掺杂碳催化剂的普适性方法,其特征在于具体步骤为:
步骤S1:将1g生物质崖豆藤、2g软模板剂C10H18K2N2O10和2g次磷酸钠置于玻璃研钵中研磨20min使其充分混合均匀得到物料A;
步骤S2:将物料A转移至镍舟中并置于管式炉中,在惰性气体氛围中先由室温经60min升温至330℃并保持120min,再以3℃/min的升温速率升温至800℃并保持120min,然后自然冷却至室温得到物料B;
步骤S3:将物料B用2M盐酸溶液洗涤2-3次后于105℃干燥12h得到目标产物电负性较大的磷掺杂碳催化剂,该磷掺杂碳催化剂首先通过旋转圆盘测试,计算出该磷掺杂催化剂在反应过程的电子转移数,继而把发生两电子转移的催化材料用作电芬顿降解体系的阴极催化剂,通过计算可知磷掺杂碳催化剂是个接近两电子的反应,能够作为电芬顿材料用于降解50mL浓度为10mg/L的亚甲基黄溶液,60min后降解效率为98%。
本发明所述的以软模板剂制备的多级孔共存的杂原子掺杂碳催化剂作为电芬顿降解体系的阴极催化剂用于降解亚甲基黄溶液。
本发明与现有技术相比具有以下有益效果:
1、本发明引入C10H18K2N2O10作为单一的软模板剂,C10H18K2N2O10固体作为软模板因其刻蚀作用可以产生微孔,而作为间接模板则可以使碳材料产生大量的介孔,本发明以C10H18K2N2O10作为软模板使材料具有丰富的多级孔结构,从而增加碳材料的比表面积和孔体积,进而暴露更多的活性位点,增强碳材料的催化降解活性,另外,本发明的制备方法具有方法简单及普适性强等优点;
2、本发明选用崖豆藤作为生物质,在碳前驱体的基础上原位引入杂原子,不仅提高碳材料的亲水性和导电性,而且暴露了更多的活性位点,进一步增强了所制备碳材料的电化学性能;
3、本发明制得的杂原子掺杂碳催化剂的比表面积为445-1387m2/g,并且在软模板剂C10H18K2N2O10的作用下调控碳材料,使其由原本的单一孔结构调控为含有大量的微孔和孔径较小的多级孔结构,将其作为阴极催化材料应用到电芬顿降解体系中,能够高效降解有机污染物,且在使用的过程中不会造成二次污染,对环境友好。
附图说明
图1是实施例4制备的磷掺杂碳催化剂的场发射扫描电镜图;
图2是实施例4制备的磷掺杂碳催化剂的能谱图;
图3是实施例1中生物质崖豆藤的热重曲线图;
图4是实施例4制备的磷掺杂碳催化剂的氮气吸脱附曲线图和孔径分布图;
图5是实施例4制备的磷掺杂碳催化剂的电子转移数图;
图6是实施例7制备的硫掺杂碳催化剂的电子转移数图;
图7是实施例8制备的硼掺杂碳催化剂的电子转移数图
图8是实施例1-6制备的碳催化剂降解亚甲基黄的时间曲线图。
具体实施方式
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例1
步骤S1:将1g生物质崖豆藤置于玻璃研钵中研磨20min得到物料A1;
步骤S2:将物料A1转移至镍舟中并置于管式炉中,在流速为100mL/min的氮气氛围中先由室温经60min升温至330℃并保持120min,再以3℃/min的升温速率升温至800℃并保持120min,然后自然冷却至室温得到物料B1;
步骤S3:将物料B1用2M盐酸溶液洗涤2-3次后于105℃干燥12h得到目标产物碳催化剂C1,该碳催化剂C1用作电芬顿降解体系的阴极催化剂降解50mL浓度为10mg/L的亚甲基黄溶液,60min后降解效率为65%,降解彻底所用时间为120min。
实施例2
步骤S1:将1g生物质崖豆藤和2g软模板剂C10H18K2N2O10置于玻璃研钵中研磨20min得到物料A1;
步骤S2:将物料A2转移至镍舟中并置于管式炉中,在流速为100mL/min的氮气氛围中先由室温经60min升温至330℃并保持120min,再以3℃/min的升温速率升温至800℃并保持120min,然后自然冷却至室温得到物料B2;
步骤S3:将物料B2用2M盐酸溶液洗涤2-3次后于105℃干燥12h得到目标产物碳催化剂C2,该碳催化剂C2用作电芬顿降解体系的阴极催化剂降解50mL浓度为10mg/L的亚甲基黄溶液,60min后降解效率为74%,降解彻底所用时间为95min。
实施例3
步骤S1:将1g生物质崖豆藤、2g软模板剂C10H18K2N2O10和0.5g掺杂剂次磷酸钠置于玻璃研钵中研磨20min使其充分混合均匀得到物料A3;
步骤S2:将物料A3转移至镍舟中并置于管式炉中,在流速为100mL/min的氮气氛围中先由室温经60min升温至330℃并保持120min,再以3℃/min的升温速率升温至800℃并保持120min,然后自然冷却至室温得到物料B3;
步骤S3:将物料B3用2M盐酸溶液洗涤2-3次后于105℃干燥12h得到目标产物电负性较大的磷掺杂碳催化剂C3,该磷掺杂碳催化剂C3用作电芬顿降解体系的阴极催化剂降解50mL浓度为10mg/L的亚甲基黄溶液,60min后降解效率为81%,降解彻底所用时间为75min。
实施例4
步骤S1:将1g生物质崖豆藤、2g软模板剂C10H18K2N2O10和1g掺杂剂次磷酸钠置于玻璃研钵中研磨20min使其充分混合均匀得到物料A4;
步骤S2:将物料A4转移至镍舟中并置于管式炉中,在流速为100mL/min的氮气氛围中先由室温经60min升温至330℃并保持120min,再以5℃/min的升温速率升温至800℃并保持120min,然后自然冷却至室温得到物料B4;
步骤S3:将物料B4用2M盐酸溶液洗涤2-3次后于105℃干燥12h得到目标产物电负性较大的磷掺杂碳催化剂C4,该磷掺杂碳催化剂C4用作电芬顿降解体系的阴极催化剂降解50mL浓度为10mg/L的亚甲基黄溶液,60min后降解效率为89%,降解彻底所用时间为69min。
实施例5
步骤S1:将1g生物质崖豆藤、2g软模板剂C10H18K2N2O10和2g掺杂剂次磷酸钠置于玻璃研钵中研磨10min使其充分混合均匀得到物料A5;
步骤S2:将物料A5转移至镍舟中并置于管式炉中,在流速为100mL/min的氮气氛围中先由室温经60min升温至330℃并保持120min,再以3℃/min的升温速率升温至800℃并保持120min,然后自然冷却至室温得到物料B5;
步骤S3:将物料B5用2M盐酸溶液洗涤2-3次后于105℃干燥12h得到目标产物电负性较大的磷掺杂碳催化剂C5,该磷掺杂碳催化剂C5用作电芬顿体系的阴极催化剂降解50mL浓度为10mg/L的亚甲基黄溶液,60min后降解效率为98%即实现亚甲基黄溶液的彻底降解。
实施例6
步骤S1:将1g生物质崖豆藤、2g软模板剂C10H18K2N2O10和3g掺杂剂次磷酸钠置于玻璃研钵中研磨20min使其充分混合均匀得到物料A6;
步骤S2:将物料A6转移至镍舟中并置于管式炉中,在流速为100mL/min的氮气氛围中先由室温经60min升温至330℃并保持120min,再以3℃/min的升温速率升温至800℃并保持120min,然后自然冷却至室温得到物料B6;
步骤S3:将物料B用2M盐酸溶液洗涤2-3次后于105℃干燥12h得到目标产物电负性较大的磷掺杂碳催化剂C6,该磷掺杂碳催化剂C6用作电芬顿降解体系的阴极催化剂降解50mL浓度为10mg/L的亚甲基黄溶液,60min后降解效率为78%,降解彻底所用时间为87min。
实施例7
步骤S1:将1g生物质崖豆藤、2g软模板剂C10H18K2N2O10和2g掺杂剂升华硫置于玻璃研钵中研磨20min使其充分混合均匀得到物料A7;
步骤S2:将物料A7转移至镍舟中并置于管式炉中,在流速为100mL/min的氮气氛围中先由室温经60min升温至330℃并保持120min,再以3℃/min的升温速率升温至800℃并保持120min,然后自然冷却至室温得到物料B7;
步骤S3:将物料B7用2M盐酸溶液洗涤2-3次后于105℃干燥12h得到目标产物电负性较大的硫掺杂碳催化剂C7,该硫掺杂碳催化剂C7用作电芬顿降解体系的阴极催化剂降解50mL浓度为10mg/L的亚甲基黄溶液,60min后降解效率为95%,降解彻底所用时间为70min。
实施例8
步骤S1:将1g生物质崖豆藤、2g软模板剂C10H18K2N2O10和2g掺杂剂硼酸置于玻璃研钵中研磨20min使其充分混合均匀得到物料A8;
步骤S2:将物料A8转移至镍舟中并置于管式炉中,在流速为100mL/min的氮气氛围中先由室温经60min升温至330℃并保持120min,再以3℃/min的升温速率升温至800℃并保持120min,然后自然冷却至室温得到物料B8;
步骤S3:将物料B8用2M盐酸溶液洗涤2-3次后于105℃干燥12h得到目标产物电负性较大的硼掺杂碳催化剂C8,该硼掺杂碳催化剂C8用作电芬顿降解体系的阴极催化剂降解50mL浓度为10mg/L的亚甲基黄溶液,60min后降解效率为97%,降解彻底所用时间为64min。
以上实施例描述了本发明的基本原理、主要特征及优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。
Claims (5)
1.一种以软模板剂制备多级孔共存的杂原子掺杂碳催化剂的普适性方法,其特征在于具体过程为:
步骤S1:将生物质、软模板剂C10H18K2N2O10和掺杂剂混合后研磨均匀得到物料A,其中生物质为崖豆藤,掺杂剂为次磷酸钠、升华硫或硼酸;
步骤S2:将物料A转移至镍舟中并置于管式炉中,在惰性气体氛围中先由室温经60min升温至330℃并保持120min,再以3℃/min的升温速率升温至800℃并保持120min,然后自然冷却至室温得到物料B;
步骤S3:将物料B用2M盐酸溶液洗涤2-3次后于105℃干燥12h得到目标产物多级孔共存的杂原子掺杂碳催化剂,该多级孔共存的杂原子掺杂碳催化剂的比表面积为445-1387m2/g,具有富含大/微/介孔的多级孔并存结构。
2.根据权利要求1所述的以软模板剂制备多级孔共存的杂原子掺杂碳催化剂的普适性方法,其特征在于:步骤S1中所述生物质、软模板剂C10H18K2N2O10和掺杂剂的投料质量比为1:2:0.5-10。
3.根据权利要求1所述的以软模板剂制备多级孔共存的杂原子掺杂碳催化剂的普适性方法,其特征在于:步骤S2中所述惰性气体为氮气或氩气中的一种或多种。
4.根据权利要求1所述的以软模板剂制备多级孔共存的杂原子掺杂碳催化剂的普适性方法,其特征在于具体步骤为:
步骤S1:将1g生物质崖豆藤、2g软模板剂C10H18K2N2O10和2g次磷酸钠置于玻璃研钵中研磨20min使其充分混合均匀得到物料A;
步骤S2:将物料A转移至镍舟中并置于管式炉中,在惰性气体氛围中先由室温经60min升温至330℃并保持120min,再以3℃/min的升温速率升温至800℃并保持120min,然后自然冷却至室温得到物料B;
步骤S3:将物料B用2M盐酸溶液洗涤2-3次后于105℃干燥12h得到目标产物电负性较大的磷掺杂碳催化剂,该磷掺杂碳催化剂首先通过旋转圆盘测试,计算出该磷掺杂催化剂在反应过程的电子转移数,继而把发生两电子转移的催化材料用作电芬顿降解体系的阴极催化剂,通过计算可知该反应的电子转移数接近于2,说明磷掺杂碳催化剂能够作为电芬顿材料用于降解50mL浓度为10mg/L的亚甲基黄溶液,60min后降解效率为98%。
5.根据权利要求1-4中任意一项所述的方法制备的多级孔共存的杂原子掺杂碳催化剂作为电芬顿降解体系的阴极催化剂用于降解亚甲基黄溶液。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911038640.0A CN110694606B (zh) | 2019-10-29 | 2019-10-29 | 一种以软模板剂制备多级孔共存的杂原子掺杂碳催化剂的普适性方法及其应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911038640.0A CN110694606B (zh) | 2019-10-29 | 2019-10-29 | 一种以软模板剂制备多级孔共存的杂原子掺杂碳催化剂的普适性方法及其应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110694606A true CN110694606A (zh) | 2020-01-17 |
CN110694606B CN110694606B (zh) | 2023-04-07 |
Family
ID=69202705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911038640.0A Active CN110694606B (zh) | 2019-10-29 | 2019-10-29 | 一种以软模板剂制备多级孔共存的杂原子掺杂碳催化剂的普适性方法及其应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110694606B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111111721A (zh) * | 2020-01-19 | 2020-05-08 | 西北师范大学 | 一种硼掺杂碳壳包裹CoNi纳米粒子复合材料的制备及应用 |
CN114956268A (zh) * | 2022-05-16 | 2022-08-30 | 河南师范大学 | 一种氮硼双掺杂多孔碳基电极材料的制备方法及其应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2397439A1 (en) * | 2010-06-17 | 2011-12-21 | Ruhr-Universität Bochum | Metal-free carbon catalyst for oxygen reduction reactions in alkaline electrolyte |
CN102951637A (zh) * | 2012-11-19 | 2013-03-06 | 大连理工大学 | 硼氮共掺杂壳聚糖基活性炭及其制备方法 |
KR20150092544A (ko) * | 2014-02-05 | 2015-08-13 | 고려대학교 산학협력단 | 동물의 모발을 이용한 헤테로원소 함유 다공성 탄소 구조체, 이의 제조방법 및 이를 이용한 전극 소재 |
CN107399730A (zh) * | 2017-08-22 | 2017-11-28 | 河南师范大学 | 一步碳化制备生物质基多孔碳材料的方法 |
US20180093893A1 (en) * | 2015-04-02 | 2018-04-05 | Case Western Reserve University | Metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions |
CN109731603A (zh) * | 2019-01-23 | 2019-05-10 | 河南师范大学 | 一种以单一致孔剂制备孔尺寸可控的氮掺杂碳催化剂的普适性方法及其应用 |
-
2019
- 2019-10-29 CN CN201911038640.0A patent/CN110694606B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2397439A1 (en) * | 2010-06-17 | 2011-12-21 | Ruhr-Universität Bochum | Metal-free carbon catalyst for oxygen reduction reactions in alkaline electrolyte |
CN102951637A (zh) * | 2012-11-19 | 2013-03-06 | 大连理工大学 | 硼氮共掺杂壳聚糖基活性炭及其制备方法 |
KR20150092544A (ko) * | 2014-02-05 | 2015-08-13 | 고려대학교 산학협력단 | 동물의 모발을 이용한 헤테로원소 함유 다공성 탄소 구조체, 이의 제조방법 및 이를 이용한 전극 소재 |
US20180093893A1 (en) * | 2015-04-02 | 2018-04-05 | Case Western Reserve University | Metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions |
CN107399730A (zh) * | 2017-08-22 | 2017-11-28 | 河南师范大学 | 一步碳化制备生物质基多孔碳材料的方法 |
CN109731603A (zh) * | 2019-01-23 | 2019-05-10 | 河南师范大学 | 一种以单一致孔剂制备孔尺寸可控的氮掺杂碳催化剂的普适性方法及其应用 |
Non-Patent Citations (1)
Title |
---|
刘玉荣: "《碳材料在超级电容器中的应用》", 31 January 2013, 国防工业出版社 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111111721A (zh) * | 2020-01-19 | 2020-05-08 | 西北师范大学 | 一种硼掺杂碳壳包裹CoNi纳米粒子复合材料的制备及应用 |
CN111111721B (zh) * | 2020-01-19 | 2022-04-26 | 西北师范大学 | 一种硼掺杂碳壳包裹CoNi纳米粒子复合材料的制备及应用 |
CN114956268A (zh) * | 2022-05-16 | 2022-08-30 | 河南师范大学 | 一种氮硼双掺杂多孔碳基电极材料的制备方法及其应用 |
Also Published As
Publication number | Publication date |
---|---|
CN110694606B (zh) | 2023-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105344369B (zh) | 具有三维分级多孔结构的钴氮共掺杂炭基氧还原催化剂及其制备和应用 | |
Wang et al. | Enhancing oxygen reduction reaction by using metal-free nitrogen-doped carbon black as cathode catalysts in microbial fuel cells treating wastewater | |
Wang et al. | Graphene-supported iron-based nanoparticles encapsulated in nitrogen-doped carbon as a synergistic catalyst for hydrogen evolution and oxygen reduction reactions | |
Yoon et al. | Facile preparation of efficient electrocatalysts for oxygen reduction reaction: one-dimensional meso/macroporous cobalt and nitrogen Co-doped carbon nanofibers | |
WO2021232751A1 (zh) | 一种多孔CoO/CoP纳米管及其制备方法和应用 | |
CN112164807B (zh) | 一种多孔氮硼共掺杂的碳基氧还原催化剂及其制备方法和应用 | |
CN112652780B (zh) | 一种Fe/Fe3C纳米颗粒负载多孔氮掺杂碳基氧还原催化剂的制备方法 | |
Yang et al. | Cobalt oxides nanoparticles supported on nitrogen-doped carbon nanotubes as high-efficiency cathode catalysts for microbial fuel cells | |
You et al. | High porosity and surface area self-doped carbon derived from polyacrylonitrile as efficient electrocatalyst towards oxygen reduction | |
KR20190034897A (ko) | M-N-C 계 전극촉매 및 그 제조방법과 Fe-N-C 계 전극촉매를 포함하는 연료전지 | |
CN110694606B (zh) | 一种以软模板剂制备多级孔共存的杂原子掺杂碳催化剂的普适性方法及其应用 | |
CN111659439A (zh) | 一种负载NiS/NiO异质结的氮掺杂碳纳米复合材料及其制备方法和用途 | |
CN110756188A (zh) | 一种三维碳网络负载FeCo双功能氧气催化剂的制备方法 | |
Lu et al. | Nitrogen-doped porous carbon fiber with enriched Fe2N sites: Synthesis and application as efficient electrocatalyst for oxygen reduction reaction in microbial fuel cells | |
Zhang et al. | Melamine-assisted synthesis of paper mill sludge-based carbon nanotube/nanoporous carbon nanocomposite for enhanced electrocatalytic oxygen reduction activity | |
Zhuang et al. | Enhancing oxygen reduction reaction in air-cathode microbial fuel cells treating wastewater with cobalt and nitrogen co-doped ordered mesoporous carbon as cathode catalysts | |
Yuan et al. | Carbon dot hybrid porous carbon nanofibers as efficient electrocatalysts for the oxygen reduction reaction | |
CN113422078B (zh) | 一种铁-氮活性位点的蜂窝状多孔碳材料及其制备方法和应用 | |
CN110649276A (zh) | 一种基于n2等离子刻蚀的立体式多孔氮掺杂碳纳米管电催化剂及其制备方法 | |
CN113054209A (zh) | 一种直接生长的碳纳米管基非贵金属燃料电池催化剂及其制备方法 | |
CN115893370B (zh) | 一种铁基氮掺杂多孔碳材料的普适性制备方法 | |
CN111533106A (zh) | 一种含钴铁双金属橄榄石相电催化剂及其制备方法、应用 | |
CN114204055B (zh) | 一种燃料电池用阴极催化剂及其制备方法和用途 | |
Li et al. | Fe7C3–Fe3N/FeNxCy Decorated Carbon Material as Highly Efficient Catalyst for Oxygen Reduction Reaction in Al-Air Batteries | |
CN110055556A (zh) | 析氢反应催化剂及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |