CN110694606A - 一种以软模板剂制备多级孔共存的杂原子掺杂碳催化剂的普适性方法及其应用 - Google Patents

一种以软模板剂制备多级孔共存的杂原子掺杂碳催化剂的普适性方法及其应用 Download PDF

Info

Publication number
CN110694606A
CN110694606A CN201911038640.0A CN201911038640A CN110694606A CN 110694606 A CN110694606 A CN 110694606A CN 201911038640 A CN201911038640 A CN 201911038640A CN 110694606 A CN110694606 A CN 110694606A
Authority
CN
China
Prior art keywords
doped carbon
carbon catalyst
heteroatom
coexisting
soft template
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911038640.0A
Other languages
English (en)
Other versions
CN110694606B (zh
Inventor
高书燕
陈晨
邢志国
陈野
蒋凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Normal University
Original Assignee
Henan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Normal University filed Critical Henan Normal University
Priority to CN201911038640.0A priority Critical patent/CN110694606B/zh
Publication of CN110694606A publication Critical patent/CN110694606A/zh
Application granted granted Critical
Publication of CN110694606B publication Critical patent/CN110694606B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/618Surface area more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种以软模板剂制备多级孔共存的杂原子掺杂碳催化剂的普适性方法及其应用,属于多孔碳材料的合成技术领域。本发明的技术方案要点为:将生物质、软模板剂以及掺杂剂混合均匀得到物料A;将物料A在惰性气体保护下由室温经过60min升温至300℃保持120min,再以3℃/min的升温速率升温至800℃保持120min,自然降温至室温得到物料B;再用盐酸溶液将物料B洗涤后于105℃干燥12h得到多级孔共存的杂原子掺杂碳催化剂。本发明首先使用旋转圆盘测试合成的杂原子掺杂碳催化剂的电化学性能,筛选出发生两电子反应的电极材料,将其作为阴极材料应用到电芬顿降解体系中以高效降解有机污染物,减少了筛选电极材料的工作,且在使用过程中不会造成二次污染。

Description

一种以软模板剂制备多级孔共存的杂原子掺杂碳催化剂的普 适性方法及其应用
技术领域
本发明属于多孔碳材料的合成技术领域,具体涉及一种以软模板剂制备多级孔共存的杂原子掺杂碳催化剂的普适性方法及其应用。
背景技术
工业迅速发展在很大程度上提高人类生活水平的同时,也带来了日趋严重的水环境污染问题,人类的生存环境面临巨大威胁。工业废水中含有数量巨大、种类繁多的有机污染物,因其毒性高、降解难且危害大的特点,受到了越来越多科研人员的关注。工业废水不达标排放到水体,不仅造成了水体的污染,而且在生物体内富集,直接影响生态环境和人类健康。因此,如何快速、高效的实现有机污染物的降解是解决当前环境问题的首要任务。
在众多有机污染物处理方法中,电化学氧化法是最有望实现工业化应用的高效处理方法之一。电芬顿技术(EF)作为一种高效且环境友好的高级电化学氧化技术,因其降解有机污染物彻底且不产生二次污染物,近年来备受关注。在过去十年中,碳基材料如网状玻璃碳、PTFE-碳毡和碳纳米管等,因其化学稳定性、导电性和抗腐蚀性较好等优点,被广泛应用于EF过程中的阴极材料。然而,这类碳材料催化剂往往只能部分降解有机污染物,无法实现对工业废水的彻底处理。因此,探索更加高效的碳基催化材料,对于拓宽电芬顿体系在工业废水处理中的实际应用显得尤为重要。
在氧还原反应中,具有丰富缺陷位点的材料有利于EF反应的进行,其中除了丰富的微孔可以提供大量的活性位点,丰富的介孔则有利于催化剂层内的快速传质过程。研究者们通过一系列改性措施以提高阴极材料的催化氧还原活性。如Forti等(Appl. Cata. B:, 2019, 248, 95-107)选取偶氮苯与石墨-PTFE气体扩散电极发生氧化还原反应,从而实现对该电极的修饰改性,改进后该电极的氧还原电位变得更正,实现H2O2的产率为650mgL−1 h−1。Bonakdarpour研究团队(Electrochim. Acta, 2011, 56(25): 9074-9081.)通过将过渡金属与碳复合,从而有效提升了H2O2的产率,涉及到的过渡金属主要有铁、钴、镍、锌等,其中钴元素的掺杂实现最佳的H2O2合成速率(5μmol h−1)。Zhang等(Sep. Sci. Technol, 2008, 64(1), 116-123.)利用高压脉冲法制备出了含氮碳纳米管气体扩散电极,在EF过程中H2O2的生成速率为97.08mg L−1 h−1。上述涉及到的高分子聚合物的修饰、金属和非金属改性的方法,虽然在一定程度上提高了H2O2在EF过程中的产率,但较为繁琐且容易造成二次污染。通常为了有效提升碳基催化剂的催化性能,引入杂原子可以打破相邻碳原子的电子排布,导致电子的重新排布,进而影响氧还原性能。一般需要借助活化剂(KOH、NaOH、KHCO3、MgCl2或ZnCl2)制备多孔碳材料,但是,此类活化剂制备的碳材料不仅孔结构单一,后处理过程复杂,这极大地阻碍了碳基材料在电芬顿降解体系中的应用。与此同时,筛选电极材料的过程非常复杂,基于本课题组前期的研究工作,利用旋转圆盘电极装置测试制备催化剂材料的电化学性能,筛选出发生两电子氧还原的催化剂材料用于电芬顿降解体系,同时,设计一种能够实现制备多级孔共存的杂原子掺杂碳催化剂的制备方法。
发明内容
本发明解决的技术问题如下:其一、基于本课题组前期的研究工作,利用旋转圆盘电极测试电极材料的电化学性能,为筛选电极材料的应用提供理论指导,通过计算将发生两电子转移的电极材料用于电芬顿降解体系,而四电子转移的材料用于氧还原燃料电池,将盲目地尝试工作上升至理论指导,极大地简化了筛选电极材料的尝试工作;其二、通过该项研究工作的展开,提供了一种工艺简单、成本低廉且环境友好的以软模板剂制备多级孔共存的杂原子掺杂碳催化剂的普适性方法,该方法以廉价的生物质碳材料作为催化剂,采用C10H18K2N2O10作为软模板和掺杂剂对碳材料进行改性,首次以C10H18K2N2O10作为软模板,其在煅烧过程中分解为H2O、CO、CO2、NOx等气体,而掺杂剂经过高温热解释放出小分子气体作为制孔剂,在活化过程中,由于软模板剂和掺杂剂的分解温度不同,造成了分阶段活化,有利于形成多级孔隙结构,因此,实现了具有丰富多级孔隙结构碳材料的合成。相较于纯生物质,加入软模板剂C10H18K2N2O10和掺杂剂能够有效地调控碳材料的孔结构,使原本的单一孔结构调控为富含大/微/介孔的多级孔并存结构,这有助于提高催化材料电化学产生双氧水的性能,进而有效提升该催化材料在电芬顿降解体系中对有机污染物的降解能力;同时,本发明制备方法简单且易操作,更好地推进了电芬顿法降解有机污染物的工业化应用。
本发明为解决上述技术问题采用如下技术方案,一种以软模板剂制备多级孔共存的杂原子掺杂碳催化剂的普适性方法,其特征在于具体过程为:
步骤S1:将生物质、软模板剂C10H18K2N2O10和掺杂剂混合后研磨均匀得到物料A,其中生物质为崖豆藤,掺杂剂为次磷酸钠(NaH2PO2)、升华硫(S)或硼酸(H3BO3);
步骤S2:将物料A转移至镍舟中并置于管式炉中,在惰性气体氛围中先由室温经60min升温至330℃并保持120min,再以3℃/min的升温速率升温至800℃并保持120min,然后自然冷却至室温得到物料B;
步骤S3:将物料B用2M盐酸溶液洗涤2-3次后于105℃干燥12h得到目标产物多级孔共存的杂原子掺杂碳催化剂,该多级孔共存的杂原子掺杂碳催化剂的比表面积为445-1387m2/g,具有富含大/微/介孔的多级孔并存结构。
优选的,步骤S1中所述生物质、软模板剂C10H18K2N2O10和掺杂剂的投料质量比为1:2:0.5-10。
优选的,步骤S2中所述惰性气体为氮气或氩气中的一种或多种。
本发明所述的以软模板剂制备多级孔共存的杂原子掺杂碳催化剂的普适性方法,其特征在于具体步骤为:
步骤S1:将1g生物质崖豆藤、2g软模板剂C10H18K2N2O10和2g次磷酸钠置于玻璃研钵中研磨20min使其充分混合均匀得到物料A;
步骤S2:将物料A转移至镍舟中并置于管式炉中,在惰性气体氛围中先由室温经60min升温至330℃并保持120min,再以3℃/min的升温速率升温至800℃并保持120min,然后自然冷却至室温得到物料B;
步骤S3:将物料B用2M盐酸溶液洗涤2-3次后于105℃干燥12h得到目标产物电负性较大的磷掺杂碳催化剂,该磷掺杂碳催化剂首先通过旋转圆盘测试,计算出该磷掺杂催化剂在反应过程的电子转移数,继而把发生两电子转移的催化材料用作电芬顿降解体系的阴极催化剂,通过计算可知磷掺杂碳催化剂是个接近两电子的反应,能够作为电芬顿材料用于降解50mL浓度为10mg/L的亚甲基黄溶液,60min后降解效率为98%。
本发明所述的以软模板剂制备的多级孔共存的杂原子掺杂碳催化剂作为电芬顿降解体系的阴极催化剂用于降解亚甲基黄溶液。
本发明与现有技术相比具有以下有益效果:
1、本发明引入C10H18K2N2O10作为单一的软模板剂,C10H18K2N2O10固体作为软模板因其刻蚀作用可以产生微孔,而作为间接模板则可以使碳材料产生大量的介孔,本发明以C10H18K2N2O10作为软模板使材料具有丰富的多级孔结构,从而增加碳材料的比表面积和孔体积,进而暴露更多的活性位点,增强碳材料的催化降解活性,另外,本发明的制备方法具有方法简单及普适性强等优点;
2、本发明选用崖豆藤作为生物质,在碳前驱体的基础上原位引入杂原子,不仅提高碳材料的亲水性和导电性,而且暴露了更多的活性位点,进一步增强了所制备碳材料的电化学性能;
3、本发明制得的杂原子掺杂碳催化剂的比表面积为445-1387m2/g,并且在软模板剂C10H18K2N2O10的作用下调控碳材料,使其由原本的单一孔结构调控为含有大量的微孔和孔径较小的多级孔结构,将其作为阴极催化材料应用到电芬顿降解体系中,能够高效降解有机污染物,且在使用的过程中不会造成二次污染,对环境友好。
附图说明
图1是实施例4制备的磷掺杂碳催化剂的场发射扫描电镜图;
图2是实施例4制备的磷掺杂碳催化剂的能谱图;
图3是实施例1中生物质崖豆藤的热重曲线图;
图4是实施例4制备的磷掺杂碳催化剂的氮气吸脱附曲线图和孔径分布图;
图5是实施例4制备的磷掺杂碳催化剂的电子转移数图;
图6是实施例7制备的硫掺杂碳催化剂的电子转移数图;
图7是实施例8制备的硼掺杂碳催化剂的电子转移数图
图8是实施例1-6制备的碳催化剂降解亚甲基黄的时间曲线图。
具体实施方式
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例1
步骤S1:将1g生物质崖豆藤置于玻璃研钵中研磨20min得到物料A1;
步骤S2:将物料A1转移至镍舟中并置于管式炉中,在流速为100mL/min的氮气氛围中先由室温经60min升温至330℃并保持120min,再以3℃/min的升温速率升温至800℃并保持120min,然后自然冷却至室温得到物料B1;
步骤S3:将物料B1用2M盐酸溶液洗涤2-3次后于105℃干燥12h得到目标产物碳催化剂C1,该碳催化剂C1用作电芬顿降解体系的阴极催化剂降解50mL浓度为10mg/L的亚甲基黄溶液,60min后降解效率为65%,降解彻底所用时间为120min。
实施例2
步骤S1:将1g生物质崖豆藤和2g软模板剂C10H18K2N2O10置于玻璃研钵中研磨20min得到物料A1;
步骤S2:将物料A2转移至镍舟中并置于管式炉中,在流速为100mL/min的氮气氛围中先由室温经60min升温至330℃并保持120min,再以3℃/min的升温速率升温至800℃并保持120min,然后自然冷却至室温得到物料B2;
步骤S3:将物料B2用2M盐酸溶液洗涤2-3次后于105℃干燥12h得到目标产物碳催化剂C2,该碳催化剂C2用作电芬顿降解体系的阴极催化剂降解50mL浓度为10mg/L的亚甲基黄溶液,60min后降解效率为74%,降解彻底所用时间为95min。
实施例3
步骤S1:将1g生物质崖豆藤、2g软模板剂C10H18K2N2O10和0.5g掺杂剂次磷酸钠置于玻璃研钵中研磨20min使其充分混合均匀得到物料A3;
步骤S2:将物料A3转移至镍舟中并置于管式炉中,在流速为100mL/min的氮气氛围中先由室温经60min升温至330℃并保持120min,再以3℃/min的升温速率升温至800℃并保持120min,然后自然冷却至室温得到物料B3;
步骤S3:将物料B3用2M盐酸溶液洗涤2-3次后于105℃干燥12h得到目标产物电负性较大的磷掺杂碳催化剂C3,该磷掺杂碳催化剂C3用作电芬顿降解体系的阴极催化剂降解50mL浓度为10mg/L的亚甲基黄溶液,60min后降解效率为81%,降解彻底所用时间为75min。
实施例4
步骤S1:将1g生物质崖豆藤、2g软模板剂C10H18K2N2O10和1g掺杂剂次磷酸钠置于玻璃研钵中研磨20min使其充分混合均匀得到物料A4;
步骤S2:将物料A4转移至镍舟中并置于管式炉中,在流速为100mL/min的氮气氛围中先由室温经60min升温至330℃并保持120min,再以5℃/min的升温速率升温至800℃并保持120min,然后自然冷却至室温得到物料B4;
步骤S3:将物料B4用2M盐酸溶液洗涤2-3次后于105℃干燥12h得到目标产物电负性较大的磷掺杂碳催化剂C4,该磷掺杂碳催化剂C4用作电芬顿降解体系的阴极催化剂降解50mL浓度为10mg/L的亚甲基黄溶液,60min后降解效率为89%,降解彻底所用时间为69min。
实施例5
步骤S1:将1g生物质崖豆藤、2g软模板剂C10H18K2N2O10和2g掺杂剂次磷酸钠置于玻璃研钵中研磨10min使其充分混合均匀得到物料A5;
步骤S2:将物料A5转移至镍舟中并置于管式炉中,在流速为100mL/min的氮气氛围中先由室温经60min升温至330℃并保持120min,再以3℃/min的升温速率升温至800℃并保持120min,然后自然冷却至室温得到物料B5;
步骤S3:将物料B5用2M盐酸溶液洗涤2-3次后于105℃干燥12h得到目标产物电负性较大的磷掺杂碳催化剂C5,该磷掺杂碳催化剂C5用作电芬顿体系的阴极催化剂降解50mL浓度为10mg/L的亚甲基黄溶液,60min后降解效率为98%即实现亚甲基黄溶液的彻底降解。
实施例6
步骤S1:将1g生物质崖豆藤、2g软模板剂C10H18K2N2O10和3g掺杂剂次磷酸钠置于玻璃研钵中研磨20min使其充分混合均匀得到物料A6;
步骤S2:将物料A6转移至镍舟中并置于管式炉中,在流速为100mL/min的氮气氛围中先由室温经60min升温至330℃并保持120min,再以3℃/min的升温速率升温至800℃并保持120min,然后自然冷却至室温得到物料B6;
步骤S3:将物料B用2M盐酸溶液洗涤2-3次后于105℃干燥12h得到目标产物电负性较大的磷掺杂碳催化剂C6,该磷掺杂碳催化剂C6用作电芬顿降解体系的阴极催化剂降解50mL浓度为10mg/L的亚甲基黄溶液,60min后降解效率为78%,降解彻底所用时间为87min。
实施例7
步骤S1:将1g生物质崖豆藤、2g软模板剂C10H18K2N2O10和2g掺杂剂升华硫置于玻璃研钵中研磨20min使其充分混合均匀得到物料A7;
步骤S2:将物料A7转移至镍舟中并置于管式炉中,在流速为100mL/min的氮气氛围中先由室温经60min升温至330℃并保持120min,再以3℃/min的升温速率升温至800℃并保持120min,然后自然冷却至室温得到物料B7;
步骤S3:将物料B7用2M盐酸溶液洗涤2-3次后于105℃干燥12h得到目标产物电负性较大的硫掺杂碳催化剂C7,该硫掺杂碳催化剂C7用作电芬顿降解体系的阴极催化剂降解50mL浓度为10mg/L的亚甲基黄溶液,60min后降解效率为95%,降解彻底所用时间为70min。
实施例8
步骤S1:将1g生物质崖豆藤、2g软模板剂C10H18K2N2O10和2g掺杂剂硼酸置于玻璃研钵中研磨20min使其充分混合均匀得到物料A8;
步骤S2:将物料A8转移至镍舟中并置于管式炉中,在流速为100mL/min的氮气氛围中先由室温经60min升温至330℃并保持120min,再以3℃/min的升温速率升温至800℃并保持120min,然后自然冷却至室温得到物料B8;
步骤S3:将物料B8用2M盐酸溶液洗涤2-3次后于105℃干燥12h得到目标产物电负性较大的硼掺杂碳催化剂C8,该硼掺杂碳催化剂C8用作电芬顿降解体系的阴极催化剂降解50mL浓度为10mg/L的亚甲基黄溶液,60min后降解效率为97%,降解彻底所用时间为64min。
以上实施例描述了本发明的基本原理、主要特征及优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。

Claims (5)

1.一种以软模板剂制备多级孔共存的杂原子掺杂碳催化剂的普适性方法,其特征在于具体过程为:
步骤S1:将生物质、软模板剂C10H18K2N2O10和掺杂剂混合后研磨均匀得到物料A,其中生物质为崖豆藤,掺杂剂为次磷酸钠、升华硫或硼酸;
步骤S2:将物料A转移至镍舟中并置于管式炉中,在惰性气体氛围中先由室温经60min升温至330℃并保持120min,再以3℃/min的升温速率升温至800℃并保持120min,然后自然冷却至室温得到物料B;
步骤S3:将物料B用2M盐酸溶液洗涤2-3次后于105℃干燥12h得到目标产物多级孔共存的杂原子掺杂碳催化剂,该多级孔共存的杂原子掺杂碳催化剂的比表面积为445-1387m2/g,具有富含大/微/介孔的多级孔并存结构。
2.根据权利要求1所述的以软模板剂制备多级孔共存的杂原子掺杂碳催化剂的普适性方法,其特征在于:步骤S1中所述生物质、软模板剂C10H18K2N2O10和掺杂剂的投料质量比为1:2:0.5-10。
3.根据权利要求1所述的以软模板剂制备多级孔共存的杂原子掺杂碳催化剂的普适性方法,其特征在于:步骤S2中所述惰性气体为氮气或氩气中的一种或多种。
4.根据权利要求1所述的以软模板剂制备多级孔共存的杂原子掺杂碳催化剂的普适性方法,其特征在于具体步骤为:
步骤S1:将1g生物质崖豆藤、2g软模板剂C10H18K2N2O10和2g次磷酸钠置于玻璃研钵中研磨20min使其充分混合均匀得到物料A;
步骤S2:将物料A转移至镍舟中并置于管式炉中,在惰性气体氛围中先由室温经60min升温至330℃并保持120min,再以3℃/min的升温速率升温至800℃并保持120min,然后自然冷却至室温得到物料B;
步骤S3:将物料B用2M盐酸溶液洗涤2-3次后于105℃干燥12h得到目标产物电负性较大的磷掺杂碳催化剂,该磷掺杂碳催化剂首先通过旋转圆盘测试,计算出该磷掺杂催化剂在反应过程的电子转移数,继而把发生两电子转移的催化材料用作电芬顿降解体系的阴极催化剂,通过计算可知该反应的电子转移数接近于2,说明磷掺杂碳催化剂能够作为电芬顿材料用于降解50mL浓度为10mg/L的亚甲基黄溶液,60min后降解效率为98%。
5.根据权利要求1-4中任意一项所述的方法制备的多级孔共存的杂原子掺杂碳催化剂作为电芬顿降解体系的阴极催化剂用于降解亚甲基黄溶液。
CN201911038640.0A 2019-10-29 2019-10-29 一种以软模板剂制备多级孔共存的杂原子掺杂碳催化剂的普适性方法及其应用 Active CN110694606B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911038640.0A CN110694606B (zh) 2019-10-29 2019-10-29 一种以软模板剂制备多级孔共存的杂原子掺杂碳催化剂的普适性方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911038640.0A CN110694606B (zh) 2019-10-29 2019-10-29 一种以软模板剂制备多级孔共存的杂原子掺杂碳催化剂的普适性方法及其应用

Publications (2)

Publication Number Publication Date
CN110694606A true CN110694606A (zh) 2020-01-17
CN110694606B CN110694606B (zh) 2023-04-07

Family

ID=69202705

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911038640.0A Active CN110694606B (zh) 2019-10-29 2019-10-29 一种以软模板剂制备多级孔共存的杂原子掺杂碳催化剂的普适性方法及其应用

Country Status (1)

Country Link
CN (1) CN110694606B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111111721A (zh) * 2020-01-19 2020-05-08 西北师范大学 一种硼掺杂碳壳包裹CoNi纳米粒子复合材料的制备及应用
CN114956268A (zh) * 2022-05-16 2022-08-30 河南师范大学 一种氮硼双掺杂多孔碳基电极材料的制备方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2397439A1 (en) * 2010-06-17 2011-12-21 Ruhr-Universität Bochum Metal-free carbon catalyst for oxygen reduction reactions in alkaline electrolyte
CN102951637A (zh) * 2012-11-19 2013-03-06 大连理工大学 硼氮共掺杂壳聚糖基活性炭及其制备方法
KR20150092544A (ko) * 2014-02-05 2015-08-13 고려대학교 산학협력단 동물의 모발을 이용한 헤테로원소 함유 다공성 탄소 구조체, 이의 제조방법 및 이를 이용한 전극 소재
CN107399730A (zh) * 2017-08-22 2017-11-28 河南师范大学 一步碳化制备生物质基多孔碳材料的方法
US20180093893A1 (en) * 2015-04-02 2018-04-05 Case Western Reserve University Metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions
CN109731603A (zh) * 2019-01-23 2019-05-10 河南师范大学 一种以单一致孔剂制备孔尺寸可控的氮掺杂碳催化剂的普适性方法及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2397439A1 (en) * 2010-06-17 2011-12-21 Ruhr-Universität Bochum Metal-free carbon catalyst for oxygen reduction reactions in alkaline electrolyte
CN102951637A (zh) * 2012-11-19 2013-03-06 大连理工大学 硼氮共掺杂壳聚糖基活性炭及其制备方法
KR20150092544A (ko) * 2014-02-05 2015-08-13 고려대학교 산학협력단 동물의 모발을 이용한 헤테로원소 함유 다공성 탄소 구조체, 이의 제조방법 및 이를 이용한 전극 소재
US20180093893A1 (en) * 2015-04-02 2018-04-05 Case Western Reserve University Metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions
CN107399730A (zh) * 2017-08-22 2017-11-28 河南师范大学 一步碳化制备生物质基多孔碳材料的方法
CN109731603A (zh) * 2019-01-23 2019-05-10 河南师范大学 一种以单一致孔剂制备孔尺寸可控的氮掺杂碳催化剂的普适性方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘玉荣: "《碳材料在超级电容器中的应用》", 31 January 2013, 国防工业出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111111721A (zh) * 2020-01-19 2020-05-08 西北师范大学 一种硼掺杂碳壳包裹CoNi纳米粒子复合材料的制备及应用
CN111111721B (zh) * 2020-01-19 2022-04-26 西北师范大学 一种硼掺杂碳壳包裹CoNi纳米粒子复合材料的制备及应用
CN114956268A (zh) * 2022-05-16 2022-08-30 河南师范大学 一种氮硼双掺杂多孔碳基电极材料的制备方法及其应用

Also Published As

Publication number Publication date
CN110694606B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
CN105344369B (zh) 具有三维分级多孔结构的钴氮共掺杂炭基氧还原催化剂及其制备和应用
Wang et al. Enhancing oxygen reduction reaction by using metal-free nitrogen-doped carbon black as cathode catalysts in microbial fuel cells treating wastewater
Wang et al. Graphene-supported iron-based nanoparticles encapsulated in nitrogen-doped carbon as a synergistic catalyst for hydrogen evolution and oxygen reduction reactions
Yoon et al. Facile preparation of efficient electrocatalysts for oxygen reduction reaction: one-dimensional meso/macroporous cobalt and nitrogen Co-doped carbon nanofibers
WO2021232751A1 (zh) 一种多孔CoO/CoP纳米管及其制备方法和应用
CN112164807B (zh) 一种多孔氮硼共掺杂的碳基氧还原催化剂及其制备方法和应用
CN112652780B (zh) 一种Fe/Fe3C纳米颗粒负载多孔氮掺杂碳基氧还原催化剂的制备方法
Yang et al. Cobalt oxides nanoparticles supported on nitrogen-doped carbon nanotubes as high-efficiency cathode catalysts for microbial fuel cells
You et al. High porosity and surface area self-doped carbon derived from polyacrylonitrile as efficient electrocatalyst towards oxygen reduction
KR20190034897A (ko) M-N-C 계 전극촉매 및 그 제조방법과 Fe-N-C 계 전극촉매를 포함하는 연료전지
CN110694606B (zh) 一种以软模板剂制备多级孔共存的杂原子掺杂碳催化剂的普适性方法及其应用
CN111659439A (zh) 一种负载NiS/NiO异质结的氮掺杂碳纳米复合材料及其制备方法和用途
CN110756188A (zh) 一种三维碳网络负载FeCo双功能氧气催化剂的制备方法
Lu et al. Nitrogen-doped porous carbon fiber with enriched Fe2N sites: Synthesis and application as efficient electrocatalyst for oxygen reduction reaction in microbial fuel cells
Zhang et al. Melamine-assisted synthesis of paper mill sludge-based carbon nanotube/nanoporous carbon nanocomposite for enhanced electrocatalytic oxygen reduction activity
Zhuang et al. Enhancing oxygen reduction reaction in air-cathode microbial fuel cells treating wastewater with cobalt and nitrogen co-doped ordered mesoporous carbon as cathode catalysts
Yuan et al. Carbon dot hybrid porous carbon nanofibers as efficient electrocatalysts for the oxygen reduction reaction
CN113422078B (zh) 一种铁-氮活性位点的蜂窝状多孔碳材料及其制备方法和应用
CN110649276A (zh) 一种基于n2等离子刻蚀的立体式多孔氮掺杂碳纳米管电催化剂及其制备方法
CN113054209A (zh) 一种直接生长的碳纳米管基非贵金属燃料电池催化剂及其制备方法
CN115893370B (zh) 一种铁基氮掺杂多孔碳材料的普适性制备方法
CN111533106A (zh) 一种含钴铁双金属橄榄石相电催化剂及其制备方法、应用
CN114204055B (zh) 一种燃料电池用阴极催化剂及其制备方法和用途
Li et al. Fe7C3–Fe3N/FeNxCy Decorated Carbon Material as Highly Efficient Catalyst for Oxygen Reduction Reaction in Al-Air Batteries
CN110055556A (zh) 析氢反应催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant