CN110687207A - 一种基于频域处理的亚波长级分辨力超声成像方法 - Google Patents

一种基于频域处理的亚波长级分辨力超声成像方法 Download PDF

Info

Publication number
CN110687207A
CN110687207A CN201911108469.6A CN201911108469A CN110687207A CN 110687207 A CN110687207 A CN 110687207A CN 201911108469 A CN201911108469 A CN 201911108469A CN 110687207 A CN110687207 A CN 110687207A
Authority
CN
China
Prior art keywords
ultrasonic
imaging
full
matrix data
autoregressive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911108469.6A
Other languages
English (en)
Other versions
CN110687207B (zh
Inventor
金士杰
林莉
史思琪
孙旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201911108469.6A priority Critical patent/CN110687207B/zh
Publication of CN110687207A publication Critical patent/CN110687207A/zh
Application granted granted Critical
Publication of CN110687207B publication Critical patent/CN110687207B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/069Defect imaging, localisation and sizing using, e.g. time of flight diffraction [TOFD], synthetic aperture focusing technique [SAFT], Amplituden-Laufzeit-Ortskurven [ALOK] technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种基于频域处理的亚波长级分辨力超声成像方法,属于无损检测技术领域。该方法采用相控阵超声检测仪、计算机和相控阵超声探头组成的超声检测系统。针对亚波长级间距缺陷超声成像问题,使用相控阵超声检测仪采集全矩阵数据,利用低阶、宽有效频带自回归谱外推方法对采集的全矩阵数据进行处理,压缩超声波时域脉冲宽度,分离混叠信号。选取多种自回归阶数和有效频带组合实施外推处理和全聚焦成像加权,实现亚波长级超声成像分辨力。该方法成像分辨力高、鲁棒性强,具有较高的工程应用价值。

Description

一种基于频域处理的亚波长级分辨力超声成像方法
技术领域
本发明涉及一种基于频域处理的亚波长级分辨力超声成像方法,其属于无损检测技术领域。
背景技术
相控阵超声检测技术通过灵活控制声束时空特性,有效提高检测成像质量,声束聚焦区域成像分辨力约为2~3个波长,但存在空间成像分辨力不均的问题。基于全矩阵数据的全聚焦方法能够实现待检区域逐点聚焦,成像分辨力具有空间一致性,如采用64阵元相控阵探头实施成像时,分辨力可达到1个波长。当缺陷间距进一步缩小时,受超声波脉冲宽度制约,相邻缺陷回波信号发生混叠,成像后无法准确辨别缺陷数量和相对位置。因此,将超声成像分辨力从波长级提升至亚波长级十分必要。
提升超声成像分辨力可以通过增加探头频率和增大阵元数量来实现,但超声波频率越高,在材料中传播能量衰减越大,有效检测深度越小;增加阵元数量对检测设备性能和成本的要求提高,不利于实际应用。近年来发展的相控阵超声成像后处理技术通过添加时域或频域信号处理方法,对采集的数据进行离线计算,缺陷表征能力增强。在时域方面,利用相位相干性构建表征相位分布的相干因子,降低全聚焦重建图像中相位散乱的噪声幅值,-6dB阈值下的成像分辨力较全聚焦方法提升约0.2λ(λ表示超声波长)。在频域方面,基于多重信号分类的时间反转成像算法适用于信噪比高于20dB时的相邻缺陷检测,检测分辨力最高可达0.5λ,但随着噪声增强,方法鲁棒性降低。将维纳滤波与自回归谱外推方法相结合,采用维纳滤波对全矩阵数据进行解卷积,并选择通用的高自回归阶数(k=20)、窄有效频带(频谱最大幅值下降6dB对应窗口)参数对解卷积后的全矩阵数据实施自回归谱外推处理和全聚焦成像,在实现噪声抑制的同时,可分离中心距约1λ的相邻缺陷,但无法获得亚波长级成像分辨力。
发明内容
本发明提供一种基于频域处理的亚波长级分辨力超声成像方法。其目的是针对亚波长级间距缺陷超声成像问题,利用低阶、宽有效频带自回归谱外推方法对采集的全矩阵数据进行处理,压缩超声波时域脉冲宽度,分离混叠信号,并选取多种自回归阶数和有效频带组合实施外推处理和全聚焦成像加权,实现亚波长级超声成像分辨力。
本发明采用的技术方案是:一种基于频域处理的亚波长级分辨力超声成像方法,其特征是:使用包括全矩阵数据的相控阵超声检测仪、计算机和相控阵超声探头检测系统,使用相控阵超声检测仪采集全矩阵数据,选择多种低自回归阶数和宽有效频带组合参数对全矩阵数据进行自回归谱外推处理,并实施全聚焦成像加权,达到亚波长级超声成像分辨力,所述方法采用如下步骤:
(1)相控阵超声检测参数确定
根据被检样品材料、几何尺寸及待检测范围选取合适的检测参数,主要包括相控阵超声探头中心频率、阵元数量和采样频率;
(2)全矩阵数据采集
采用步骤(1)中确定的检测参数,控制相控阵超声检测仪对待检区域进行全矩阵数据采集;定义相控阵超声探头阵元数量为N,N个阵元依次发射超声波信号,且每个超声波信号都被N个阵元接收并储存,完整的全矩阵数据包括N2个时域信号;
(3)低阶、宽有效频带自回归谱外推处理
对全矩阵数据中N2个时域信号进行缺陷信号截取,对阵元i发射、阵元j接收信号,设截波后信号为yij(t),对其做傅里叶变换,得到频谱Y(ω):
Y(ω)=FFT(yij(t)) (1)
式中,t为时间,ω为频率;
选择低自回归阶数(如k=2,3)和宽有效频带(如频谱最大幅值下降10-20dB对应频带)对全矩阵数据进行自回归谱外推处理;保留有效频带并外推的过程在提高超声分辨力的同时去除有效频带外的噪声,抑制噪声干扰;基于前向预测公式(2)和后向预测公式(3)插补有效频带以外的数据,同时,将归一化频谱Y(ω)最大幅值下降εdB时对应的窗口定义为有效频带Y[p,q](ω),宽度为[p,q];
Figure BDA0002272016730000031
Figure BDA0002272016730000032
式中,
Figure BDA0002272016730000033
为前向预测频带,
Figure BDA0002272016730000034
为后向预测频带,k为自回归阶数,am为自回归系数,
Figure BDA0002272016730000035
为am的共轭复数,b、f和m均为正整数;
此时,处理后总频谱
Figure BDA0002272016730000036
为:
Figure BDA0002272016730000037
Figure BDA0002272016730000038
做逆傅里叶变换即得压缩后的时域信号
Figure BDA00022720167300000310
(4)全聚焦成像
建立二维笛卡尔坐标系,X轴为平行于样品表面的阵列方向,Z轴垂直于样品表面并指向内部;将每个阵元简化为一个点,用(xi,0)来表示阵元i的位置坐标;
在成像区域划分网格,设任意聚焦点Q坐标(xref,zref),根据各阵元到Q点的声程计算延时法则,所有经过Q点信号的积分响应总幅值I(xref,zref)为:
Figure BDA0002272016730000041
式中,tij(xref,zref)表示超声波经过Q点的延迟时间
式中,CL表示样品纵波声速;
同理依次得到每一个聚焦点的幅值,即完成被测区域的全聚焦成像;
(5)全聚焦成像加权
考虑到实际检测时缺陷数量及相对位置未知,采用多组参数加权处理提高方法鲁棒性;选择n种自回归阶数及有效频带的组合对全矩阵数据进行外推处理,并利用式(8)对处理后的数据进行全聚焦成像加权,实现亚波长级超声成像分辨力;
式中,kl为第l次外推处理时的自回归阶数,εl为第l次外推处理时的最大幅值下降值,l为正整数。
本发明的有益效果是:这种基于频域处理的亚波长级分辨力超声成像方法,选择多种低自回归阶数和宽有效频带组合参数对全矩阵数据进行自回归谱外推处理,进而实施全聚焦成像加权,将超声成像分辨力从波长级提升至亚波长级。多组参数加权处理提高了方法鲁棒性,具有较高工程应用价值。
附图说明
下面结合附图和实例对本发明做进一步说明。
图1是本发明采用的超声检测系统示意图。
图2是加工相邻圆孔缺陷的碳钢对比试块图纸。
图3是采用通用参数(k=20,ε=6dB)对全矩阵数据进行自回归谱外推处理和全聚焦成像的结果。
图4是分别采用四种低阶、宽有效频带(k=2,ε=14dB;k=2,ε=10dB;k=3,ε=14dB;k=3,ε=10dB)组合对全矩阵数据进行自回归谱外推处理和全聚焦成像的结果。
图5是将四种低阶、宽有效频带组合外推处理后的全矩阵数据进行全聚焦成像加权的结果。
具体实施方式
基于频域处理的亚波长级分辨力超声成像方法,采用的超声检测系统如图1所示,包括相控阵超声检测仪和相控阵超声线阵探头。具体检测及处理步骤如下:
(1)试验对象如图2所示,碳钢试块长度100mm,高度50mm,材料纵波声速为5900m/s。试块中加工了直径约1.3mm,中心深度分别33.7mm(上端深度33.05mm)和35.0mm(上端深度34.35mm)的两个圆孔,孔中心距为1.8mm(2.25MHz检测频率下约为0.7λ)。
(2)如图3所示,采用中心频率2.25MHz的相控阵超声线阵探头实施检测,采样频率100MHz,并利用相控阵超声检测仪采集全矩阵数据。
(3)采用通用的高阶、宽有效频带(k=20,ε=6dB)对全矩阵数据进行自回归谱外推处理和全聚焦成像,结果如图3所示,-6dB阈值下无法确定缺陷个数和相对位置。
(3)分别取四组低阶、宽有效频带(k=2,ε=14dB;k=2,ε=10dB;k=3,ε=14dB;k=3,ε=10dB)参数对全矩阵数据进行自回归谱外推处理和全聚焦成像,结果如图4所示。
(4)利用式(8)对步骤(3)采用中四组外推参数处理后的全矩阵数据进行全聚焦成像加权,结果如图5所示。经测量,圆孔上端深度分别为32.71mm和34.32mm,中心距1.75mm。
综上可知,缺陷深度定位误差最大不超过0.34mm,相对误差不超过1.1%,中心距误差仅0.05mm,相对误差2.8%。该方法实现了亚波长级超声成像分辨力,满足工程需求。

Claims (1)

1.一种基于频域处理的亚波长级分辨力超声成像方法,其特征是:使用包括全矩阵数据的相控阵超声检测仪、计算机和相控阵超声探头检测系统,使用相控阵超声检测仪采集全矩阵数据,选择多种低自回归阶数和宽有效频带组合参数对全矩阵数据进行自回归谱外推处理,并实施全聚焦成像加权,达到亚波长级超声成像分辨力,所述方法采用如下步骤:
(1)相控阵超声检测参数确定
根据被检样品材料、几何尺寸及待检测范围选取合适的检测参数,主要包括相控阵超声探头中心频率、阵元数量和采样频率;
(2)全矩阵数据采集
采用步骤(1)中确定的检测参数,控制相控阵超声检测仪对待检区域进行全矩阵数据采集;定义相控阵超声探头阵元数量为N,N个阵元依次发射超声波信号,且每个超声波信号都被N个阵元接收并储存,完整的全矩阵数据包括N2个时域信号;
(3)低阶、宽有效频带自回归谱外推处理
对全矩阵数据中N2个时域信号进行缺陷信号截取,对阵元i发射、阵元j接收信号,设截波后信号为yij(t),对其做傅里叶变换,得到频谱Y(ω):
Y(ω)=FFT(yij(t)) (1)
式中,t为时间,ω为频率;
选择低自回归阶数和宽有效频带对全矩阵数据进行自回归谱外推处理;保留有效频带并外推的过程在提高超声分辨力的同时去除有效频带外的噪声,抑制噪声干扰;基于前向预测公式(2)和后向预测公式(3)插补有效频带以外的数据,同时,将归一化频谱Y(ω)最大幅值下降εdB时对应的窗口定义为有效频带Y[p,q](ω),宽度为[p,q];
Figure FDA0002272016720000021
Figure FDA0002272016720000022
式中,
Figure FDA0002272016720000023
为前向预测频带,
Figure FDA0002272016720000024
为后向预测频带,k为自回归阶数,am为自回归系数,
Figure FDA0002272016720000025
为am的共轭复数,b、f和m均为正整数;
此时,处理后总频谱
Figure FDA0002272016720000026
为:
Figure FDA0002272016720000027
Figure FDA0002272016720000028
做逆傅里叶变换即得压缩后的时域信号
Figure FDA0002272016720000029
Figure FDA00022720167200000210
(4)全聚焦成像
建立二维笛卡尔坐标系,X轴为平行于样品表面的阵列方向,Z轴垂直于样品表面并指向内部;将每个阵元简化为一个点,用(xi,0)来表示阵元i的位置坐标;
在成像区域划分网格,设任意聚焦点Q坐标(xref,zref),根据各阵元到Q点的声程计算延时法则,所有经过Q点信号的积分响应总幅值I(xref,zref)为:
Figure FDA00022720167200000211
式中,tij(xref,zref)表示超声波经过Q点的延迟时间
Figure FDA00022720167200000212
式中,CL表示样品纵波声速;
同理依次得到每一个聚焦点的幅值,即完成被测区域的全聚焦成像;
(5)全聚焦成像加权
考虑到实际检测时缺陷数量及相对位置未知,采用多组参数加权处理提高方法鲁棒性;选择n种自回归阶数及有效频带的组合对全矩阵数据进行外推处理,并利用式(8)对处理后的数据进行全聚焦成像加权,实现亚波长级超声成像分辨力;
Figure FDA0002272016720000031
式中,kl为第l次外推处理时的自回归阶数,εl为第l次外推处理时的最大幅值下降值,l为正整数。
CN201911108469.6A 2019-11-13 2019-11-13 一种基于频域处理的亚波长级分辨力超声成像方法 Active CN110687207B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911108469.6A CN110687207B (zh) 2019-11-13 2019-11-13 一种基于频域处理的亚波长级分辨力超声成像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911108469.6A CN110687207B (zh) 2019-11-13 2019-11-13 一种基于频域处理的亚波长级分辨力超声成像方法

Publications (2)

Publication Number Publication Date
CN110687207A true CN110687207A (zh) 2020-01-14
CN110687207B CN110687207B (zh) 2021-06-01

Family

ID=69116600

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911108469.6A Active CN110687207B (zh) 2019-11-13 2019-11-13 一种基于频域处理的亚波长级分辨力超声成像方法

Country Status (1)

Country Link
CN (1) CN110687207B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111307945A (zh) * 2020-04-09 2020-06-19 上海工程技术大学 一种基于超声阵列检测无砟轨道近表面缺陷的成像方法及装置
CN112684005A (zh) * 2020-12-10 2021-04-20 苏州热工研究院有限公司 基于二维矩阵换能器的全聚焦检测方法
CN113552217A (zh) * 2021-07-16 2021-10-26 大连理工大学 一种基于双自发自收相控阵探头的未知缺陷轮廓重建方法
CN115575496A (zh) * 2022-09-30 2023-01-06 大连理工大学 一种基于反距离权重的高分辨力超声频域全聚焦方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104897777A (zh) * 2015-06-17 2015-09-09 中国核工业二三建设有限公司 基于Burg算法的自回归谱外推技术提高TOFD检测纵向分辨率的方法
US20170284972A1 (en) * 2016-03-31 2017-10-05 Olympus Scientific Solutions Americas Inc. Total focusing method adaptively corrected by using plane wave
CN108693253A (zh) * 2018-05-02 2018-10-23 南昌航空大学 一种快速相控阵超声全聚焦成像技术
WO2019086856A1 (en) * 2017-11-03 2019-05-09 Sensumco Limited Systems and methods for combining and analysing human states
CN109741412A (zh) * 2018-12-28 2019-05-10 北京工业大学 一种基于非局部自回归模型的压缩感知核磁成像重建方法
CN109900805A (zh) * 2019-04-08 2019-06-18 大连理工大学 基于频域稀疏反演的tofd盲区内缺陷定量检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104897777A (zh) * 2015-06-17 2015-09-09 中国核工业二三建设有限公司 基于Burg算法的自回归谱外推技术提高TOFD检测纵向分辨率的方法
US20170284972A1 (en) * 2016-03-31 2017-10-05 Olympus Scientific Solutions Americas Inc. Total focusing method adaptively corrected by using plane wave
WO2019086856A1 (en) * 2017-11-03 2019-05-09 Sensumco Limited Systems and methods for combining and analysing human states
CN108693253A (zh) * 2018-05-02 2018-10-23 南昌航空大学 一种快速相控阵超声全聚焦成像技术
CN109741412A (zh) * 2018-12-28 2019-05-10 北京工业大学 一种基于非局部自回归模型的压缩感知核磁成像重建方法
CN109900805A (zh) * 2019-04-08 2019-06-18 大连理工大学 基于频域稀疏反演的tofd盲区内缺陷定量检测方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LI LIN 等: "Dijkstra’s algorithm-based ray tracing method for total focusing method imaging of CFRP laminates", 《COMPOSITE STRUCTURES》 *
张平 等: "合成孔径雷达自回归线性预测带宽外推超分辨率成像算法", 《中南大学学报(自然科学版)》 *
王阳 等: "考虑余高的焊缝内部缺陷全聚焦超声成像检测", 《材料保护》 *
陈尧 等: "基于相位相干性的厚壁焊缝TOFD成像检测研究", 《机械工程学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111307945A (zh) * 2020-04-09 2020-06-19 上海工程技术大学 一种基于超声阵列检测无砟轨道近表面缺陷的成像方法及装置
CN112684005A (zh) * 2020-12-10 2021-04-20 苏州热工研究院有限公司 基于二维矩阵换能器的全聚焦检测方法
CN113552217A (zh) * 2021-07-16 2021-10-26 大连理工大学 一种基于双自发自收相控阵探头的未知缺陷轮廓重建方法
CN113552217B (zh) * 2021-07-16 2022-05-10 大连理工大学 一种基于双自发自收相控阵探头的未知缺陷轮廓重建方法
CN115575496A (zh) * 2022-09-30 2023-01-06 大连理工大学 一种基于反距离权重的高分辨力超声频域全聚焦方法

Also Published As

Publication number Publication date
CN110687207B (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
CN110687207B (zh) 一种基于频域处理的亚波长级分辨力超声成像方法
EP2833791B1 (en) Methods for improving ultrasound image quality by applying weighting factors
JP6258314B2 (ja) 超音波探査によって収集された信号を処理する方法、対応するプログラムおよび超音波探査装置
CN110501423B (zh) 一种基于频域分段的高分辨率最小方差超声成像方法
CN109765521B (zh) 一种基于子阵划分的波束域成像方法
CN111239246B (zh) 一种分步筛选有效信号的曲面结构缺陷全聚焦成像方法
Shin et al. Spatial prediction filtering of acoustic clutter and random noise in medical ultrasound imaging
CN108983208B (zh) 一种基于近场稀疏成像外推的目标rcs测量方法
CN109513123B (zh) 一种基于半球阵的高分辨三维被动空化成像方法
KR101643304B1 (ko) 비선형 필터를 이용한 초음파 영상의 부엽 저감장치
CN114923984A (zh) 基于反向传播神经网络的亚波长分辨力阵列超声成像方法
CN109491009B (zh) 一种光纤组合阵及基于光纤组合阵的栅瓣抑制方法
CN109061626B (zh) 一种步进频相参处理检测低信杂比动目标的方法
Teng et al. An optimized total focusing method based on delay-multiply-and-sum for nondestructive testing
CN115587291B (zh) 一种基于裂纹超声散射矩阵的去噪表征方法及系统
CN113188797A (zh) 一种基于传声器阵列的轴承故障诊断方法
CN113625286A (zh) 基于相干特征的强稳健性截断相干系数超声波束形成方法
CN117607876B (zh) 一种被动声纳多波束窄带信号检测方法及系统
Luo et al. Singular value decomposition-based generalized side lobe canceller beamforming method for ultrasound imaging
Moreau et al. Efficient imaging techniques using an ultrasonic array
CN112649787B (zh) 一种基于低频圆环阵的目标方位估计方法
Hisatsu et al. Low-complexity generalized coherence factor estimated from binarized signals in ultrasound beamforming
Velichko et al. Quantitave characterisation of complex defects using two-dimensional ultrasonic arrays
Izadi et al. Weighted Capon beamformer combined with coded excitation in ultrasound imaging
CN116405072B (zh) 空域反转阵列导向最小方差波束形成方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant