CN110678823B - 控制系统设计装置以及控制系统 - Google Patents

控制系统设计装置以及控制系统 Download PDF

Info

Publication number
CN110678823B
CN110678823B CN201780091334.6A CN201780091334A CN110678823B CN 110678823 B CN110678823 B CN 110678823B CN 201780091334 A CN201780091334 A CN 201780091334A CN 110678823 B CN110678823 B CN 110678823B
Authority
CN
China
Prior art keywords
temperature
vector
time
target value
series data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780091334.6A
Other languages
English (en)
Other versions
CN110678823A (zh
Inventor
矢野堅嗣
杉原義朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RKC Instrument Inc
Original Assignee
RKC Instrument Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RKC Instrument Inc filed Critical RKC Instrument Inc
Publication of CN110678823A publication Critical patent/CN110678823A/zh
Application granted granted Critical
Publication of CN110678823B publication Critical patent/CN110678823B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Control Of Temperature (AREA)
  • Feedback Control In General (AREA)

Abstract

修正量算出部(30)取得依次改变输入通道目标值时的、操作量时间序列数据和控制对象中多点温度时间序列数据。求出基于操作量和温度的时间序列数据而分别求出的排列了单位脉冲响应的时间序列数据的操作量影响度行列Cmv和温度影响度行列Ctemp。取得施加干扰时的操作量时间序列数据和多点温度时间序列数据,求出已知操作量向量Mref和已知温度向量Tref。将进行最小化的评价函数作为基于对控制对象中多点预测温度的平均温度的方差的函数,将限制条件设为操作量收敛在预先设定的范围,根据求出的数据来算出评价函数和限制条件的各个参数,在限制条件下算出对评价函数进行最小化的目标值的修正量向量θ。根据算出的修正量向量θ变更目标值,来对控制对象进行控制。

Description

控制系统设计装置以及控制系统
技术领域
本发明涉及控制系统设计装置以及控制系统,尤其涉及进行多点控制的控制系统设计装置以及控制系统。
背景技术
已知一种存在干扰的系统中的温度调整系统,需要利用多个传感器和热源(致动器)来进行多点控制。该温度调整系统例如利用于空调系统、溅射成型机等。在该系统中不仅需要多点分别快速地追随所对应的各个目标值,还要在到达目标值为止的过渡状态也将多点间的温度差控制到零。另外,在温度调节系统中,尽管存在想要控制的温度是由传感器等测定的热板温度的情况,但是也存在想要控制被热板加热的被加热物(也称为“工件”)的温度的情况。
针对该需求,例如专利文献1中提出了一种例如利用了预测控制的控制方法。在专利文献1的方法中,求出改变热板的各通道(channel)目标温度(SetPoint,SP)时工件温度的响应波形,根据该响应波形和搭载工件时工件温度的时间序列数据,来实现将搭载工件时目标温度的变更量作为未知数的工件温度预测。此外,此处的响应波形是利用PID控制器对包括反馈环的控制对象的阶段响应波形。基于该目标温度的变更量和工件温度之间的关系,利用遗传性算法(GA)等,来实现使得过渡状态的工件温度偏差(更具体而言,相对于工件平均温度的方差)变成最小这样的目标温度变更量。
另外,例如专利文献2中提出了,一种考虑了稳定状态下操作量饱和的使得工件温度偏差最小的方法。在专利文献2的方法中,改变热板各通道的目标温度(SetPoint,SP),根据稳定时工件温度(圆晶温度,WAF)和操作量(Manipulated Variable,MV)的变化量,来实现将稳定状态下目标温度的变更量设为未知数的工件温度预测和操作量预测。根据该稳定状态下目标温度的变更量和操作量、工件温度之间的关系,利用带限制优化方法等,来实现以操作量限制在可输出范围内为约束条件(限制条件),使得工件温度的偏差最小的目标温度变更量。
【专利文献1】日本特开2007-011982号公报
【专利文献2】日本特开2008-299697号公报
但是,在上述各方法中存在以下这样的课题。在单纯的多点PID控制法中,因为各通道独立地进行控制,所以无法控制过渡状态下工件温度的偏差。
在专利文献1所述的手法中,未考虑过允许的操作量。当基于求出的目标温度变更量来进行控制时,存在操作加热器的操作量超出可输出范围的上限或下限等,而偏离可输出范围的情况。因此,在实际系统中,存在无法实现遵照设计的工件温度的情况,无法必然使得过渡状态下工件温度的偏差变得最小。
在专利文献2所述的手法中,即便能够减小稳定状态下的工件温度的偏差,也无法使得过渡状态下工件温度的偏差变得最小。此外,对于控制温度以外的物理量的情况,也存在同样课题。
发明内容
本发明鉴于以上内容,其目的在于,提供一种一边考虑操作量饱和,一边在过渡状态减小各点控制量的差或偏差的控制系统设计装置以及控制系统。
本发明一个方式的控制系统设计装置是对多点控制系统设计预先设定的目标值的修正量的控制系统设计装置,(a)所述多点控制系统对控制对象中多点温度进行控制,按照根据所给与的修正量修正上述目标值而得到的修正目标值,来对控制对象进行控制,具备算出上述目标值的修正量的修正量算出部。(b)上述修正量算出部取得依次改变多个输入通道目标值时的、相对于各输入通道变化的操作量时间序列数据和控制对象中多点温度时间序列数据,(c)求出基于该操作量时间序列数据而求出的排列了操作量单位脉冲响应的时间序列数据的操作量影响度行列Cmv、和基于上述多点温度时间序列数据而求出的排列了温度单位脉冲响应的时间序列数据的温度影响度行列Ctemp。(d)上述修正量算出部取得操作量时间序列数据和上述多点温度时间序列数据,求出排列了操作量时间序列数据的已知操作量向量Mref和排列了多点温度时间序列数据的已知温度向量Tref。(e)上述修正量算出部将进行最小化的评价函数作为表示控制对象的上述多点预测温度的偏差的函数,在限制条件中包括操作量收敛在预先设定的范围,在上述限制条件下算出对上述评价函数进行最小化的目标值的修正量。
根据本发明,能够提供一种一边考虑操作量的饱和,一边在过渡状态中减小各点控制量的差或偏差的控制系统设计装置以及控制系统。
附图说明
图1是本实施方式的控制系统的框图。
图2是干扰响应设计处理的流程图。
图3是改变目标温度的具体例的说明图。
图4是温度影响度行列Ctemp的说明图。
图5是操作量影响度行列Cmv的说明图。
图6表示温度的输出通道数是5、操作量的输出通道数是3、预测的温度个数是91个(预测到0~90秒)的情况下的已知温度向量Tref和已知操作量向量Mref的构成例。
图7表示以目标温度修正图案施加的脉冲的个数为50、目标温度的输入通道数为3的情况下的修正量向量θ的构成例。
图8表示目标温度的修正量向量θ*和目标温度的修正图案SVcorrect(INi)(t)的说明图。
图9是目标值响应设计处理的流程图。
图10表示平均温度算出用的系数向量Kave_at90sec的说明图。
图11表示15秒以后的工件预测温度向量Tsteady的例子。
图12表示15秒以后的预测温度向量算出用的系数行列Ksteady的例子。
图13是表示本实施方式的控制系统的效果的图。
具体实施方式
以下,参照附图说明本发明的实施方式。在以下的实施方式中,说明控制温度的示例,但是也可以除了控制温度以外的物理量。
(系统构成)
图1是本实施方式的控制系统的框图。
控制系统1具备控制对象10、多点温度控制器20以及目标温度修正量算出部(控制系统设计装置)30。此外,也可以通过多点温度控制器20和目标温度修正量算出部30,来构成对控制对象10的控制装置或控制系统。
控制对象10例如具有根据来自多点温度控制器20的操作量而发热的热板和被热板加热的工件。在热板上,设有根据操作量而发热的多个加热器(致动器)。另外,在热板的多个位置设有对温度进行检测的传感器等测定部。在控制系统1中,可以对热板的多点温度进行控制,也可以对工件的多点温度进行控制。此外,不限于发热以及加热,也可以进行冷却。
多点温度控制器20控制控制对象10的预先设定的点的温度。多点温度控制器20例如针对每个通道,具有PID控制器21和加法器22。另外,多点温度控制器20还具有修正图案适用部23。PID控制器21针对对应的通道,调节对热板等致动器输出的操作量,使得控制对象10的控制量(PV)变成目标值(SV)。PID控制器21的控制参数能够以已知的方法求出。在此,假设处于已经求出了PID控制器21的控制参数,通过PID控制器21能够控制控制对象10的状态,来进行说明。
加法器22针对对应的通道,求出通过对目标值(SV)和从修正量算出部30输入的目标温度修正图案进行相加而修正的目标温度(修正目标温度),来输出给PID控制器21。修正图案适用部23针对每个通道,保持目标温度的修正量向量,按照预定条件,将基于修正量向量的修正图案输出给各通道的加法器22。在此,预定条件是指例如检测到干扰或检测到目标温度的变更等。
目标温度修正量算出部(以下,称为“修正量算出部”)30算出改变各通道目标温度的目标温度修正量向量。目标温度修正量向量用于规定沿着时间轴如何改变目标温度,作为要素例如包含脉冲的振幅作为时间序列数据。目标温度修正图案是通过根据目标温度修正量向量而产生的脉冲列来形成的波形。细节后述。
修正量算出部30算出用于检测干扰时修正目标温度的目标温度修正量向量和用于变更目标温度时修正目标温度的目标温度修正量向量中的任一方或双方。算出方法的细节后述。
修正量算出部30和多点温度控制器20可以是彼此独立的装置。例如,修正量算出部30由个人电脑构成。另外,修正量算出部30除了个人电脑以外,也可以由平板终端或专用装置构成。修正量算出部30具有CPU等处理部、存储时间序列数据的存储部、用于与多点温度控制器20收发数据的接口部。此外,修正量算出部30除了与多点温度控制器20以彼此独立的装置构成以外,还可以与多点温度控制器20一体构成。
(干扰响应设计)
图2是干扰响应设计处理的流程图。
首先在步骤S11中,修正量算出部30(例如处理部,以下同样)针对每个通道,使目标温度改变成预先设定的形状,取得各通道的温度和各通道的操作量的响应波形数据(S11)。例如,修正量算出部30取得改变多个输入通道中任意输入通道的目标温度时的、相对于该输入通道变化的操作量时间序列数据和控制对象中多点温度的时间序列数据。修正量算出部30依次变更改变目标温度的输入通道,针对全部输入通道得到操作量和温度的时间序列数据。得到的时间序列数据存储在修正量算出部30的存储部中。此外,步骤S11在PID控制器21稳定控制控制对象10的状态下开始。
利用更具体的示例来进行说明,修正量算出部30首先利用脉冲来改变输入通道1的目标温度。图3是改变目标温度的具体例的说明图。例如,修正量算出部30对积分器施加脉冲宽度Ts为1秒、脉冲振幅Apulse为1℃的脉冲,将积分器的输出给与加法器22。积分器能够设置在例如修正图案适用部22中。通过积分器的积分动作,例如相对于目标温度130℃,加法器22的输出花费1秒上升到131℃。此外,除了如此地改变目标温度以外,也可以改变成根据目标温度的变化而变化的操作量不饱和这样的、预先设定的适当形状。操作量不饱和这样形状,例如也可以是目标温度的变化不剧烈的形状。
在本说明书中,将改变输入通道i的目标温度时取得的温度响应数据(时间序列数据)记载为Tempinfluence(OUTj,INi)(t),将操作量响应数据(时间序列数据)记载为MVinfluence(OUTj,INi)(t)。在此,i是施加了脉冲的输入通道编号,例如能够以自然数表示。j是输出通道编号,例如能够以自然数表示。
在步骤S12中,修正量算出部30根据温度和操作量的响应波形数据,来构建影响度行列(S12)。
更具体地进行说明,修正量算出部30通过在步骤S11中测定出的温度响应波形数据Tempinfluence(OUTj,INi)(t)、脉冲施加前的初期温度Tempinit(OUTj)以及施加了的脉冲振幅APulse,利用以下公式,来算出温度单位脉冲响应Temppulse(OUTj,INi)(t)。
【数式1】
Figure BDA0002293037670000051
Figure BDA0002293037670000052
此外,在以下说明中,各记号表示以下的内容。
M:输入通道数
N:输出通道数
Ts:脉冲周期(脉冲宽度)
kmax:以目标温度修正图案施加的脉冲的个数
τ:预测的温度时间间隔
lmax:预测的温度数据个数。例如预测到0秒~τ×(lmax-1)秒。
图4是温度影响度行列Ctemp的说明图。温度影响度行列Ctemp是(lmax×N)行(kmax×M)列的实数常数行列。例如,将以单位脉冲响应的时间序列数据Temppulse(OUT1IN1)(t)作为要素的列向量配置在图4的矩形框所示的位置,单位脉冲响应的时间序列数据Temppulse(OUT1,IN1)(t)根据使输入通道1的目标温度如步骤S11那样变化时的输出通道1所对应的温度的响应数据而得到的。针对其他的输入通道以及输出通道也同样地配置。此外,在本实施方式中,步骤S11中脉冲为1,即仅输入图4中的第0个脉冲,但是使脉冲在时间方向错开,这使求出的单位脉冲响应的时间序列数据错开修正图案的脉冲周期即可。例如,在图4中,在受到第1个脉冲输入影响的位置,使在受到第0个脉冲输入影响的位置配置的列向量的各要素错开修正图案的脉冲周期即可。例如,在脉冲周期为1秒、预测温度的时间间隔也为1秒的情况下,使在受到第0个脉冲输入影响的位置配置的列向量的各要素向下错开,配置在受到第1个脉冲输入影响的位置即可。
另外,修正量算出部30通过在步骤S11中测定到的操作量响应MVinfluence(OUTj,INi)(t)、脉冲施加前的初期操作量MVinit(OUTj)以及施加了的脉冲振幅APulse,利用以下公式,来算出操作量单位脉冲响应MVpulse(OUTj,INi)(t)。
【数式2】
Figure BDA0002293037670000061
Figure BDA0002293037670000062
图5是操作量影响度行列Cmv的说明图。操作量的影响度行列Cmv是(lmax×M)行(kmax×M)列的实数常数行列。单位脉冲响应MVpulse(OUTj,INi)(t)的时间序列数据的配置方法与上述温度影响度行列同样。此外,求出的温度影响度行列以及操作量影响度行列能够存储在修正量算出部30的存储部中。
在步骤S13中,修正量算出部30针对每个通道,取得施加干扰时的温度时间序列数据Tempref(OUTj)(t)和操作量时间序列数据MVref(OUTj)(S13)。作为干扰(试验干扰),例如将工件载置在热板上,使工件和热板接触。工件的载置例如由操作员进行,也可以自动载置。此外,施加干扰时的温度时间序列数据和操作量时间序列数据能够存储在修正量算出部30的存储部中。
在此,当施加干扰时,也可以暂且减小目标温度之后施加干扰。由此,能够使得施加干扰时输出不饱和,在输出不饱和的状态下,能够得到上述温度时间序列数据和操作量时间序列数据。此外,也可以在之后增大目标温度,来返回到原来的目标温度。换而言之,也可以在暂且减小目标温度后慢慢地增大,以预先设定的图案来改变。
在步骤S14中,修正量算出部30将从工件载置到热板开始到控制量稳定为止的各时刻/各通道的目标温度(SV)的修正量ΔSV(修正量向量)作为未知数,基于在步骤S11以及S13中取得的时间序列数据,来构建过渡状态的温度和操作量的预测式(S14)。
具体地,修正量算出部30求出排列了施加了干扰时的多点温度时间序列数据Tempref(OUTj)(t)的已知温度向量Tref。另外,修正量算出部30求出排列了施加了干扰时的操作量时间序列数据MVref(OUTj)(t)的数据的已知操作量向量Mref。图6中表示,温度输出通道数为5、操作量输出通道数为3,预测的温度个数为91个(预测到0~90秒)的情况下的已知温度向量Tref和已知操作量向量Mref的构成例。已知温度向量Tref是持有预测的温度个数:91×温度的输出通道数:5的长度的实数常数所构成的列向量。已知操作量向量Mref是持有预测的温度的个数:91×操作量的输出通道数:3的长度的实数常数所构成的列向量。
另外,修正量算出部30定义,在要素中持有每个输入通道的目标温度修正量的时间序列数据的修正量向量(设计参数向量)。图7表示在目标温度修正图案施加的脉冲的个数为50、目标温度的输入通道数为3的情况下的修正量向量θ的构成例。
此外,能够以如下方式来定义预测温度向量Tforecast以及预测操作量向量Mforecast
【数式3】
Tforecast=Tref+Ctemp·θ
Mforecast=Mref+Cmv·θ
在上述数式中,当对温度的影响度行列Ctemp乘以目标温度修正量θ时,就可求出温度变动量的预测值。当对温度变动量的预测值和成为参考的干扰响应时的温度进行相加时,就能够求出预测温度Tforecast。对于操作量也是同样的。此外,预测温度向量Tforecast是持有预测的温度的个数:91×温度的输出通道数:5的长度,以为θ变量的列向量。预测操作量向量Mforecast是持有预测的温度的个数:91×操作量的输出通道数:3的长度,以θ为变量的列向量。
在步骤S15中,修正量算出部30例如把将过渡状态的操作量的预测值收敛在操作量的可输出范围内为限制条件(约束条件),进行对过渡状态的温度方差总和进行最小化的带限制优化计算,算出目标温度的修正量ΔSV(修正量向量θ)(S15)。操作量的可输出范围能够根据加热器等致动器的性能而预先设定。另外,此处的方差能够利用对多点预测温度的平均温度的方差。
具体地进行说明,以下面的公式表示评价函数以及限制条件。
【数式4】
评价函数:
Figure BDA0002293037670000081
制约条件:Ain·θ≤Aub
这是在上述限制条件下对评价函数进行最小化的带条件优化问题。说明评价函数。评价函数在例如对平均温度的方差σ2的总和,温度的输出通道是5个(N=5)的情况下,能够以下面的公式来表示。
【数式5】
Figure BDA0002293037670000082
这是以输出通道数来除去(预测温度-预测平均温度)的平方。在此,预测平均温度向量Tave是持有进行预测的温度的个数:91×温度的输出通道数:5的长度的列向量。预测平均温度向量Tave能够以下面公式表示。此外,Kave表示预测的温度个数为91个、温度的输出通道数是5个的示例。
【数式6】
Tave=Kave·Tforecast
Figure BDA0002293037670000083
Figure BDA0002293037670000084
评价函数F(θ)能够以下这样展开。
【数式7】
Figure BDA0002293037670000085
Figure BDA0002293037670000086
Figure BDA0002293037670000087
因此,评价函数F(θ)能够以以下这样表示。
【数式8】
Figure BDA0002293037670000091
其中,
Figure BDA0002293037670000092
下面,说明限制条件。操作量相对于可输出范围,总是为0%~100%的值。限制条件当利用预测操作量向量Mforecast来进行表示时,能够以下这样表示。
【数式9】
e(91×3)·0≤Mforecast≤e(91×3)·1
en=[1 … 1]T
上述限制条件的式能够以以下这样展开。
【数式10】
e(91×3)·0≤Mforecast≤e(91×3)·1
e(91×3)·0≤Mref+Cmv·θ≤e(91×3)·1
Figure BDA0002293037670000093
上式在以下这样,能够表示限制条件。
【数式11】
Ain·θ≤Aub (3)
其中,
Figure BDA0002293037670000101
修正量算出部30根据温度影响度行列Ctemp和已知温度向量Tref来算出上述评价函数的参数Q、p以及r。更具体地,修正量算出部30根据温度影响度行列Ctemp和已知温度向量Tref以上述式(2)算出以上述式(1)表示评价函数F(θ)时的参数Q、p以及r。进一步地,修正量算出部30根据操作量影响度行列Cmv和已知操作量向量Mref以上述式(4)算出以上述式(3)表示限制条件时的参数Ain以及Aub。从而,修正量算出部30解开在上述限制条件下对评价函数进行最小化的带条件优化问题。该带条件优化问题是凸二次计划问题,例如能够通过利用二次计划法等已知方法来解开。由此,修正量算出部30能够求出最佳的目标温度修正量θ*。
在步骤S16中,修正量算出部30将目标温度的修正量向量θ*例如输出给多点温度控制器20的修正图案适用部23(S16)。修正图案适用部23存储目标温度的修正量向量θ*。
通过以上处理,能够求出被施加了干扰的情况下所适用的修正量向量。
下面,说明利用了目标温度的修正图案的控制。
求出的目标温度的修正量向量θ*表示输入针对各输入通道的积分器的脉冲列的振幅。在积分器中对各脉冲相加,而从积分器输出目标温度的修正图案。从积分器输出的修正图案(波形)在加法器22中与目标温度(SV)相加,并输出给PID控制器21。
图8表示目标温度的修正量向量θ*和目标温度的修正图案SVcorrect(INi)(t)的说明图。针对输入通道1进行说明,将具有h1(0)*~h1(49)*的振幅的50个脉冲输出到与输入通道1对应的积分器。在该例子中,各脉冲的脉冲宽度是1秒,各脉冲上升沿的间隔也是1秒。即,与紧挨着之前的脉冲以及紧挨着之后的脉冲不隔开间隙地输出。在积分器中,得到振幅增减与各个脉冲振幅对应的量的波形。对于其他输入通道也是同样。
例如通过检测干扰,对积分器输出上述脉冲列,从积分器对加法器22输出目标温度的修正图案。由此,当施加干扰时,能够适用目标温度的修正图案,来控制控制对象10。此外,干扰的检测可以由修正图案适用部23检测,也可以由其他模块检测,并通知给修正图案适用部23。
这样,当在热板上载置工件时,以根据修正图案调整的目标温度来进行PID控制,能够实现一边将过渡状态的操作量收敛在可输出范围内,一边减小温度偏差的控制。
(目标值响应设计1)
下面,说明目标值响应的设计和控制。在本实施方式中,能够取代上述干扰响应设计来进行目标值响应设计。
图9是目标值响应设计处理的流程图。步骤S21~S24与上述干扰响应设计的处理同一或类似。
在步骤S21中,修正量算出部30(例如处理部,以下同样)针对每个通道把目标温度改变到预先设定的形状,取得各通道的温度和各通道的操作量的响应波形数据(S21)。在步骤S22中,修正量算出部30根据温度和操作量的响应波形数据,来构建影响度行列(S22)。步骤S21以及S22因为与干扰响应设计的步骤S11以及S12同样,所以省略详细说明。
在步骤S23中,修正量算出部30针对每个通道取得在目标温度变更前使温度稳定时的、温度时间序列数据Tempref(OUTj)(t)和操作量时间序列数据MVref(OUTj)(S23)。步骤S23除了使施加干扰的状态还是在目标温度变更前温度稳定了的状态这一点不同之外,与干扰响应设计的步骤S13同样,因此省略详细说明。
在步骤S24中,修正量算出部30以从目标温度变更开始到控制量稳定为止的各时刻/各通道的目标温度(SV)的修正量ΔSV为未知数,基于在步骤S21以及S23取得的时间序列数据,来构建过渡状态下的温度和操作量的预测式(S24)。
具体地,修正量算出部30求出在目标温度变更前温度稳定时的、排列了多点温度时间序列数据Tempref(OUTj)(t)的已知温度向量Tref。另外,修正量算出部30求出在目标温度变更前温度稳定时的、排列了操作量时间序列数据MVref(OUTj)(t)的数据的已知操作量向量Mref。修正量算出部30定义在要素中持有目标温度修正量的修正量向量(设计参数向量)。此外,对于各向量的求出方法,与干扰响应设计同样。另外,预测温度向量Tforecast以及预测操作量向量Mforecast也能够与干扰响应设计同样地定义。
在步骤S25中,修正量算出部30例如把将过渡状态操作量的预测值收敛在操作量的可输出范围内等为限制条件,进行使过渡状态的温度的方差总和最小化的带限制优化计算,算出目标温度的变更量ΔSV(修正量向量θ)(S25)。操作量的可输出范围能够根据加热器等致动器的性能而预先设定。另外,此处的方差能够利用对多点预测温度的平均温度的方差。
在此,作为限制条件,能够规定与操作量的饱和有关的第1限制条件、与最终温度有关的第2限制条件以及与建立时间有关的第3限制条件。此外,也可以排除与建立时间有关的第3限制条件。例如,作为第1限制条件,规定将其收敛在操作量的可输出范围内。另外,作为第2限制条件,规定预先设定的时间多点的平均温度成为目标值或修正目标值。作为第3限制条件,规定多点平均温度在希望的建立时间变成目标值或修正目标值。
更具体地进行说明,以下面公式表示评价函数以及限制条件。
【数式12】
评价函数:
Figure BDA0002293037670000121
制约条件:Ain·θ≤Aub
Aeq·θ=beq
这是在上述限制条件下对评价函数进行最小化的带条件优化问题。对于评价函数,因为与上述干扰响应设计的评价函数同样,因此省略详细说明。
下面,说明限制条件。与操作量有关的第1限制条件与上述干扰响应设计的限制条件同样。与最终温度有关的第2限制条件是用于将要控制的各点温度稳定到变更后的目标温度的条件。例如,将变更后的目标温度是120℃,如上述那样进行从0秒到90秒的预测的情况为例来进行说明。例如,使得90秒时刻的各点平均温度变成变更后的目标温度120℃。第2限制条件当利用预测温度向量Tforecast来表示时,能够以以下这样来表示。
【数式13】
Figure BDA0002293037670000122
在此,Kave_at90sec是用于从预测温度向量Tforecast提取90秒时刻的要素的系数向量。图10表示平均温度算出用的系数向量Kave_at90sec的说明图。
上述第2限制条件的式能够以以下这样展开。
【数式14】
Kave_at90sec·Tforecast=120
Kave_at90sec·(Tref+Ctemp·θ)=120
Kave_at90sec·Ctemp·θ=120-Kave_at90sec·Tref
能够使上式如以下这样,表示第2限制条件表。
【数式15】
Aeq·θ=beq
其中,
Aeq=Kave_at90sec·Ctemp
beq=120-Kave_at90sec·Tref
此外,120是变更后的目标温度的示例,能够适当地采用目标温度变更后的最终目标值或修正目标值SVlast。另外,也可以利用在90秒时刻以外想定为稳定状态的适当的时刻t3,平均温度算出用的系数向量能够适当设定,从预测温度向量Tforecast提取想要时刻的要素。作为想定为稳定状态的适当时刻,例如能够采用设计的建立时间以后的任意时刻。
与建立时间有关的第3限制条件是用于在要控制的各点温度所指定的建立时间稳定成目标温度的条件。例如,变更后的目标温度是120℃,到稳定为止的目标时间(建立时间的设计值)为15秒,判断为稳定的条件是各点温度在预定时间以上从120℃收敛在误差为0.1℃以内为示例来进行说明。到稳定为止的时间(建立时间)和判断为稳定的条件能够根据适用的装置和控制对象来适当设定。
在该示例中,15秒以后的各点(例如,工件上的各点)的预测温度从120℃收敛在误差0.1℃以内即可,因此利用预测温度向量Tforecast来提取15秒以后的工件预测温度向量Tsteady。图11表示15秒以后的工件预测温度向量Tsteady的示例。图12表示15秒以后的预测温度向量算出用的系数行列Ksteady的示例。系数行列Ksteady在该示例中是(76×5)行(91×5)列的实数常数行列。图中的零行列0(m,n)是全部要素为0的m行n列的行列。第3限制条件当利用15秒以后的工件预测温度向量Tsteady来表示时,能够如以下这样表示。
【数式16】
e(76×5)·119.9≤Tsteady≤e(76×5)·120.1
另外,上述第3限制条件的数式能够如以下这样展开。
【数式17】
e(76×5)·119.9≤Tsteady≤e(76×5)·120.1
e(76×5)·119.9≤Ksteady·Tforecast≤e(76×5)·120.1
e(76×5)·119.9≤Ksteady·(Tref+Ctemp·θ)≤e(76×5)·120.1
Figure BDA0002293037670000141
即,第1限制条件~第3限制条件如以下这样。
【数式18】
对于操作量的饱和(第1制约条件)
Figure BDA0002293037670000142
最终温度(第2制约条件)
Aeq·θ=beq
建立条件(第3制约条件)
Figure BDA0002293037670000143
当总结以上第1限制条件~第3限制条件时,以以下这样表示。
【数式19】
Figure BDA0002293037670000144
Figure BDA0002293037670000145
修正量算出部30根据温度影响度行列Ctemp和已知温度向量Tref算出上述评价函数的参数Q、p以及r。具体地,修正量算出部30根据温度影响度行列Ctemp和已知温度向量Tref在干扰响应设计说明中表示的上述式(2)算出以干扰响应设计说明中表示的上述式(1)表示评价函数F(θ)时的参数Q、p以及r。进一步地,修正量算出部30根据操作量影响度行列Cmv、温度影响度行列Ctemp、已知操作量向量Mref以及已知温度向量Tref根据上述式(6)算出以上述式(5)表示限制条件时的参数Ain、Aub、Aeq以及beq
从而,修正量算出部30在上述限制条件下解开对评价函数进行最小化的带条件优化问题。该带条件优化问题是凸二次计划问题,例如能够利用二次计划法等已知方法来解开。由此,修正量算出部30能够求出最优的目标温度修正量θ*。
在步骤S26中,修正量算出部30将算出的修正量向量θ*例如输出给多点温度控制器20的修正图案适用部23(S26)。
在修正图案适用部23中,例如当变更目标温度时(或检测到目标温度的变更时),将以算出的修正量向量θ*的各要素作为振幅的脉冲输出给积分器,从积分器对加法器输出目标温度的修正图案。基于算出的修正量向量θ*的目标温度的修正图案的构成等与上述干扰响应设计同样。
这样,当变更目标温度时,以通过修正图案调整的目标温度进行PID控制,能够实现一边将过渡状态的操作量收纳在可输出范围内,一边减小温度偏差的控制。
(目标值响应设计2)
下面,说明目标值响应设计的另一个示例。可以如下述这样设置上述目标值响应设计1的评价函数以及限制条件。其他处理与上述目标值响应设计1同样。
在本设计例中,作为评价函数,采用要控制的各点温度的距离平均温度的最大温差幅度d,对其进行最小化。距离平均温度的最大温差幅度是指控制对象中多点各预测温度与多点平均温度的差幅(差的绝对值)的最大值。换而言之,对平均温度的各点温度的偏差进行最小化。
作为限制条件,除了与操作量的饱和有关的第1限制条件、与最终温度有关的第2限制条件以及与建立时间有关的第3限制条件,还规定与距离平均温度的温差有关的第4限制条件。此外,还可以排除与建立时间有关的第3限制条件。例如,第1限制条件~第3限制条件与目标值响应设计1同样。作为第4限制条件,规定距离进行要控制的各点平均温度的温差En是±d℃以内。
更具体地说明,以下面公式表示评价函数以及限制条件。
【数式20】
评价函数:F(φ)=cT·φ
制约条件:Ain·φ≤Aub
Aeq·φ=beq
说明评价函数,预先将距离要控制的各点平均温度的最大温差幅度作为d℃(d为0以上)。另外,将设计参数作为以修正量向量θ和最大温差幅度d构成的向量
Figure BDA0002293037670000163
如以下这样表示评价函数。
【数式21】
Figure BDA0002293037670000161
F(φ)=cT·φ
其中,
Figure BDA0002293037670000162
说明下面限制条件。与操作量有关的第1限制条件、与最终温度有关的第2限制条件、与建立时间有关的第3限制条件与上述目标值响应设计1中对应的限制条件同样。以下说明第4限制条件。距离要控制的各点平均温度的预测温差向量En是具有要预测的数据数91×输出通道数5的长度的列向量,能够以以下这样表示。
【数式22】
En=Tforecast-Tave
=(I(91×5)-Kave)·Tforecast
=Ten·(Tref+Ctemp·θ)
其中,
Ten=(I(91×5)-Kave)
此外,Kave与在干扰响应设计中说明过的相同。距离要控制的各点平均温度的温差En在±d℃以内的第4限制条件能够以以下那样表示。
【数式23】
e(91×5)·(-d)≤En≤e(91×5)·d
另外,上述第4限制条件的数式能够以以下这样展开。
【数式24】
e(91×5)·(-d)≤En≤e(91×5)·d
e(91×5)·(-d)≤Ten·(Tref+Ctemp·θ)≤e(91×5)·d
由此,
Figure BDA0002293037670000171
Figure BDA0002293037670000172
总结以上第1限制条件~第4限制条件,如以下这样。
【数式25】
Figure BDA0002293037670000173
Figure BDA0002293037670000174
因此,能够以如下这样表示第1限制条件~第4限制条件。
【数式26】
Figure BDA0002293037670000175
其中,
Figure BDA0002293037670000181
修正量算出部30根据操作量影响度行列Cmv、温度影响度行列Ctemp、已知操作量向量Mref以及已知温度向量Tref以上述式(8)算出以上述式(7)表示限制条件时的参数Ain、Aub、Aeq以及beq。之后,修正量算出部30通过解开优化问题,能够求出最优的目标温度修正量θ*。该优化问题是线性计划问题,能够利用已知的方法来解开。
(效果)
图13是表示本实施方式的控制系统(干扰响应设计时)的效果的图。图13(a)表示修正图案适用前的响应波形(w11~w15),图13(b)表示适用修正图案的情况的响应波形(w21~w25)。图13(c)表示适用修正图案的情况的操作量的变化(ch1~ch3)。在图13(a)以及图13(b)中,纵轴表示工件的各点温度平均值和各点温差(℃),横轴表示从将工件载置到热板开始的经过时间(秒)。在图13(c)中,纵轴以将各通道的操作量最大输出作为100的比例(%)来进行表示,横轴表示从将工件置載到热板开始的经过时间。
图13(a)与例如在上述步骤S13中得到的波形相当,图13(b)与表示适用了基于在上述步骤S15中求出的目标温度修正量向量的修正图案时的波形相当。
从图13(a)以及图13(b)可知,当适用在本实施方式得到的修正图案时,能够抑制在各点的温度偏差。另外,如图13(c)所示,操作量在0~100%之间变化,图13(b)所示那样的响应不仅能够模拟,还能够在实际的系统中得到。
(变形例)
此外,在上述实施方式中分别说明了干扰响应设计和目标值响应设计,也可以将各设计的一部分适用于其他设计。例如,可以将目标值响应设计的限制条件的一部分适用于干扰响应设计。另外,在上述实施方式中,说明了取代干扰响应设计以及控制而进行目标值响应设计以及控制的示例,但是可以组合二者。例如,也可以构成为,当适用通过目标值响应设计求出的修正量向量(修正图案)来控制控制对象10时,加上通过干扰响应设计求出的修正量向量(修正图案)。该情况下,该干扰响应设计可以在适用通过目标值响应设计求出的修正量向量(修正图案)的控制处于稳定状态时执行。
在上述示例中,以温度为例进行了说明,但是也可以控制温度以外的物理量。该情况下,上述目标温度与目标值对应,热板与适当的致动器对应。另外,还能够适用于具有热板和工件的构成以外的构成。
上述处理也能够作为处理部执行的控制系统设计方法来实现。另外,能够通过包括用于使处理部执行上述处理命令的程序或程序介质、存储该程序的计算机能够读取的记录介质以及永久记录介质等来实现。
(构成例)
在上述实施方式中列举具体数式为例来进行了说明,但是本实施方式的装置以及系统可以以以下这样的方式构成。
[构成例1]
一种控制系统设计装置,对多点控制系统设计预先设定的目标值的修正量,上述多点控制系统对控制对象中多点温度进行控制,按照根据所给与的修正量修正上述目标值而得到的修正目标值,来对控制对象进行控制,其中,
具备算出上述目标值的修正量的修正量算出部,
上述修正量算出部:
取得依次改变多个输入通道的目标值时的、相对于各输入通道变化的操作量时间序列数据和控制对象中多点温度时间序列数据,
求出基于该操作量时间序列数据而求出的排列了操作量的单位脉冲响应的时间序列数据的操作量影响度行列Cmv、和基于上述多点温度时间序列数据而求出的排列了温度单位脉冲响应的时间序列数据的温度影响度行列Ctemp
取得施加试验干扰时的操作量时间序列数据和上述多点温度时间序列数据,
求出排列了施加试验干扰时的操作量时间序列数据的已知操作量向量Mref和排列了施加试验干扰时的多点温度时间序列数据的已知温度向量Tref
将进行最小化的评价函数作为基于对控制对象的上述多点预测温度的平均温度的方差的函数,根据温度影响度行列Ctemp和已知温度向量Tref算出该评价函数的参数,
将限制条件作为操作量收敛在预先设定的范围,根据操作量影响度行列Cmv和已知操作量向量Mref算出该限制条件的参数,
在上述限制条件下,算出对上述评价函数进行最小化的目标值修正量。
[构成例2]
在构成例1的控制系统设计装置中,上述修正量算出部:
根据温度影响度行列Ctemp和已知温度向量Tref以下面公式(F2)算出以下面公式(F1)表示上述评价函数F(θ)时的参数Q、p以及r,
根据操作量影响度行列Cmv和已知操作量向量Mref以下面公式(F4)算出以下面公式(F3)表示上述限制条件时的参数Ain以及Aub
通过以预先设定的手法解开以上述评价函数和上述限制条件表示的凸二次计划问题,来算出目标值的修正量向量θ。
【数式27】
Figure BDA0002293037670000201
其中,
Figure BDA0002293037670000202
Ain·θ≤Aub (F3)
其中,
Figure BDA0002293037670000203
Ilmax:(lmax×lmax)的单位行列
e0:是lmax×输入通道数的向量,各要素1的向量
lmax:对1输入通道进行预测的温度的时间序列数据数
θ:表示修正量的向量
N:输出通道数
[构成例3]
在构成例1或2的控制系统设计装置中,当施加试验干扰时,暂且减小目标温度,之后施加试验干扰。
[构成例4]
一种控制系统设计装置,对多点控制系统设计预先设定的目标值的修正量,上述多点控制系统对控制对象中多点温度进行控制,按照根据所给与的修正量修正上述目标值而得到的修正目标值,来对控制对象进行控制,其中,
具备算出上述目标值的修正量的修正量算出部,
上述修正量算出部:
取得依次改变多个输入通道目标值时的、相对于各输入通道变化的操作量时间序列数据和控制对象中多点温度时间序列数据,
求出基于该操作量时间序列数据而求出的排列了操作量单位脉冲响应的时间序列数据的操作量的影响度行列Cmv、和基于上述多点温度时间序列数据而求出的排列了温度单位脉冲响应的时间序列数据的温度的影响度行列Ctemp
取得给与并控制预定目标值的稳定状态下的操作量时间序列数据和上述多点温度时间序列数据,
求出排列了该稳定状态下的操作量时间序列数据的已知操作量向量Mref和排列了该稳定状态下的上述多点温度时间序列数据的已知温度向量Tref
将进行最小化的评价函数作为基于对控制对象的上述多点预测温度的平均温度的方差的函数,根据温度的影响度行列Ctemp和已知温度向量Tref算出该评价函数的参数,
将第1限制条件设为操作量收敛在预先设定的范围,根据操作量影响度行列Cmv和已知操作量向量Mref算出该第1限制条件的参数,
将第2限制条件设为预先设定的时间的上述多点平均温度成为目标值或修正目标值,根据温度影响度行列Ctemp和已知温度向量Tref算出该第2限制条件的参数,
在上述第1限制条件以及第2限制条件下,算出对上述评价函数进行最小化的目标值的修正量。
[构成例5]
在构成例4的控制系统设计装置,上述修正量算出部:
将第3限制条件设为上述多点平均温度在想要的建立时间成为目标值或修正目标值,根据温度的影响度行列Ctemp和已知温度向量Tref算出该第3限制条件的参数,
在上述第1限制条件至第3限制条件下,算出对上述评价函数进行最小化的目标值的上述修正量向量θ。
[构成例6]
在构成例4或5的控制系统设计装置,上述修正量算出部:
根据温度影响度行列Ctemp和已知温度向量Tref以下面公式(F2)算出以下面公式(F1)表示上述评价函数F(θ)时的参数Q、p以及r,
根据操作量影响度行列Cmv、温度影响度行列Ctemp、已知操作量向量Mref以及已知温度向量Tref以下面公式(F6)算出以下面公式(F5)表示上述限制条件时的参数Ain、Aub、Aeq以及beq
通过以预先设定的手法解开以上述评价函数和上述限制条件表示的凸二次计划问题,来算出目标值的修正量向量θ。
【数式28】
Figure BDA0002293037670000221
其中,
Figure BDA0002293037670000222
Figure BDA0002293037670000223
其中,
Figure BDA0002293037670000231
Kt1_to_t2:用于提取从时刻t1到t2的要素的系数行列
SVp:稳判断定的目标值的上限值
SVn:判断稳定的目标值的下限值
e1:是lmax×输入通道数的向量,各要素为1的向量
lmax:对1输入通道预测的温度的时间序列数据数
e3:是(lmax-z)×输出通道数的向量,各要素为1的向量
z:与到建立时间为止的数据数相当的数
θ:表示修正量的向量
N:输出通道数
0(x,y):在0满足对应的行以及列的x行y列的行列或向量
SVlast:目标温度变更后的最终的目标值或修正目标值
Kt3:用于提取时刻t3的要素的系数向量
[构成例7]
一种控制系统设计装置,对多点控制系统设计预先设定的目标值的修正量,上述多点控制系统对控制对象中多点温度进行控制,按照根据所给与的修正量修正上述目标值而得到的修正目标值,来对控制对象进行控制,其中,
上述修正量算出部:
取得依次改变多个输入通道目标值时的、相对于各输入通道变化的操作量时间序列数据和控制对象中多点温度时间序列数据,
求出基于该操作量时间序列数据而求出的排列了操作量单位脉冲响应的时间序列数据的操作量影响度行列Cmv和基于上述多点温度时间序列数据而求出的排列了温度单位脉冲响应的时间序列数据的温度影响度行列Ctemp
取得给与并控制预定目标值的稳定状态下的操作量时间序列数据和上述多点温度时间序列数据,
求出排列了该稳定状态下的操作量时间序列数据的已知操作量向量Mref和排列了该稳定状态下的上述多点温度时间序列数据的已知温度向量Tref
将进行最小化的评价函数设为控制对象的上述多点各预测温度和上述多点平均温度的差幅的最大值d,
将第1限制条件设为操作量收敛在预先设定的范围,根据操作量影响度行列Cmv和已知操作量向量Mref算出该第1限制条件的参数,
将第2限制条件设为预先设定时间的上述多点的平均温度变成目标值或修正目标值,根据温度影响度行列Ctemp和已知温度向量Tref算出该第2限制条件的参数,
将第4限制条件设为控制对象的上述多点的各预测温度和上述多点的平均温度的差En成为相对于上述差幅的最大值d变成d以上+d以下,根据温度影响度行列Ctemp和已知温度向量Tref算出该第4限制条件的参数,
在上述第1限制条件、第2限制条件以及第4限制条件下,算出对上述评价函数进行最小化的目标值的修正量。
[构成例8]
在构成例7的控制系统设计装置中,上述修正量算出部:
将第3限制条件设为上述多点的平均温度在想要的建立时间成为目标值,根据温度的影响度行列Ctemp和已知温度向量Tref算出该第3限制条件的参数,
在上述第1限制条件至第4限制条件下,算出对上述评价函数进行最小化的目标值的上述修正量向量θ。
[构成例9]
构成例8所述的控制系统设计装置基于构成例7或8的控制系统设计装置中,上述修正量算出部:
根据操作量影响度行列Cmv、温度影响度行列Ctemp、已知操作量向量Mref以及已知温度向量Tref以下面公式(F8)算出以下面公式(F7)表示上述限制条件时的参数Ain、Aub、Aeq以及beq
通过以预先设定的手法解开以上述评价函数和上述限制条件表示的线性计划问题,来算出目标值的修正量向量θ。
【数式29】
F(φ)=cT·φ
其中,
Figure BDA0002293037670000251
Figure BDA0002293037670000252
其中,
Figure BDA0002293037670000261
SVp:判断稳定的目标值的上限值
SVn:判断稳定的目标值的下限值
e1:是lmax×输入通道数的向量,各要素为1的向量
lmax:对1输入通道预测的温度的时间序列数据数
e3:是(lmax-z)×输出通道数的向量,各要素为1的向量
z:与到建立时间为止的数据数相当的数
e4:是lmax×输出通道数的向量,各要素为1的向量
θ:表示修正量的向量
N:输出通道数
0(x,y):在0满足对应的行以及列的x行y列的行列或向量
Ilmax:(lmax×lmax)的单位行列
SVlast:目标温度变更后的最终的目标值或修正目标值
Kt3:用于提取时刻t3的要素的系数向量
[构成例10]
一种控制系统,具备:控制器,其控制控制对象中多点温度,按照根据所给与的修正量修正预先设定的目标值而得到的修正目标值,来对控制对象进行控制;构成例1至3中任一项所述的控制系统设计装置;修正图案适用部,其在检测干扰时输出基于以上述控制系统设计装置算出的修正量的修正图案;以及加法器,其加上预先设定的上述目标值和来自上述修正图案适用部的修正图案,求出上述修正目标值并给与上述控制器。
[构成例11]一种控制系统,具备:
控制器,其对控制对象中多点温度进行控制,按照根据所给与的修正量修正预先设定的目标值而得到的修正目标值,来对控制对象进行控制;
根据构成例4至9中任一项所述的控制系统设计装置;
修正图案适用部,其在检测到目标温度的变更时或变更目标温度时输出基于以上述控制系统设计装置算出的修正量的修正图案;以及
加法器,其加上预先设定的上述目标值和来自上述修正图案适用部的修正图案,求出上述修正目标值并给与上述控制器。
【产业上的利用可能性】
本发明能够利用于进行多点控制的系统。
【符号说明】
1控制系统;10控制对象;20多点温度控制器;21PID控制器;22加法器;23修正图案适用部;30修正量算出部。

Claims (11)

1.一种控制系统设计装置,对多点控制系统设计预先设定的目标值的修正量,所述多点控制系统对控制对象中多点温度进行控制,按照根据所给与的修正量修正所述目标值而得到的修正目标值,来对控制对象进行控制,其中,
具备算出所述目标值的修正量的修正量算出部,
所述修正量算出部:
取得依次改变多个输入通道目标值时的、相对于各输入通道变化的操作量时间序列数据和控制对象中多点温度时间序列数据,
求出基于该操作量时间序列数据而求出的排列了操作量单位脉冲响应的时间序列数据的操作量影响度行列Cmv、和基于所述多点温度时间序列数据而求出的排列了温度单位脉冲响应的时间序列数据的温度影响度行列Ctemp
取得施加试验干扰时的操作量时间序列数据和所述多点温度时间序列数据,
求出排列了施加试验干扰时的操作量时间序列数据的已知操作量向量Mref和排列了施加试验干扰时的多点温度时间序列数据的已知温度向量Tref
将进行最小化的评价函数作为基于对控制对象的所述多点的预测温度的平均温度的方差的函数,根据温度影响度行列Ctemp和已知温度向量Tref算出该评价函数的参数,
将限制条件设为操作量收敛在预先设定的范围,根据操作量影响度行列Cmv和已知操作量向量Mref算出该限制条件的参数,
在所述限制条件下,算出对所述评价函数进行最小化的目标值修正量。
2.根据权利要求1所述的控制系统设计装置,其中,
所述修正量算出部:
根据温度影响度行列Ctemp和已知温度向量Tref以下面公式(2)算出以下面公式(1)表示所述评价函数F(θ)时的参数Q、p以及r,
根据操作量影响度行列Cmv和已知操作量向量Mref以下面公式(4)算出以下面公式(3)表示所述限制条件时的参数Ain以及Aub
通过以预先设定的手法解开以所述评价函数和所述限制条件表示的凸二次计划问题,来算出目标值修正量向量θ,
【数式1】
Figure FDA0002959252450000021
其中,
Figure FDA0002959252450000022
Ain·θ≤Aub (3)
其中,
Figure FDA0002959252450000023
Ilmax:(lmax×lmax)的单位行列
e0:是lmax×输入通道数的向量,各要素为1的向量
lmax:对1输入通道进行预测的温度时间序列数据数
θ:表示修正量的向量
N:输出通道数。
3.根据权利要求1所述的控制系统设计装置,其中,
当施加试验干扰时,暂且降低目标温度,之后施加试验干扰。
4.一种控制系统设计装置,对多点控制系统设计预先设定的目标值的修正量,所述多点控制系统对控制对象中多点温度进行控制,按照根据所给与的修正量修正所述目标值而得到的修正目标值,来对控制对象进行控制,其中,
具备算出所述目标值的修正量的修正量算出部,
所述修正量算出部:
取得依次改变多个输入通道目标值时的、相对于各输入通道变化的操作量时间序列数据和控制对象中多点温度时间序列数据,
求出基于该操作量时间序列数据而求出的排列了操作量单位脉冲响应的时间序列数据的操作量影响度行列Cmv、和基于所述多点温度时间序列数据而求出的排列了温度单位脉冲响应的时间序列数据的温度影响度行列Ctemp
取得给与并控制预定目标值的稳定状态下的操作量时间序列数据和所述多点温度时间序列数据,
求出排列了该稳定状态下的操作量时间序列数据的已知操作量向量Mref和排列了该稳定状态下的所述多点温度时间序列数据的已知温度向量Tref
将进行最小化的评价函数作为基于对控制对象的所述多点的预测温度的平均温度的方差的函数,根据温度影响度行列Ctemp和已知温度向量Tref算出该评价函数的参数,
将第1限制条件设为操作量收敛在预先设定的范围,根据操作量影响度行列Cmv和已知操作量向量Mref算出该第1限制条件的参数,
将第2限制条件设为预先设定的时间的所述多点的平均温度成为目标值或修正目标值,根据温度影响度行列Ctemp和已知温度向量Tref算出该第2限制条件的参数,
在所述第1限制条件以及第2限制条件下,算出对所述评价函数进行最小化的目标值的修正量。
5.根据权利要求4所述的控制系统设计装置,其中,
所述修正量算出部:
将第3限制条件设为所述多点的平均温度在想要的建立时间成为目标值或修正目标值,根据温度影响度行列Ctemp和已知温度向量Tref算出该第3限制条件的参数,
在所述第1限制条件至第3限制条件下,算出对所述评价函数进行最小化的目标值的所述修正量向量θ。
6.根据权利要求5所述的控制系统设计装置,其中,
所述修正量算出部:
根据温度影响度行列Ctemp和已知温度向量Tref以下面公式(2)算出以下面公式(1)表示所述评价函数F(θ)时的参数Q、p以及r,
以操作量影响度行列Cmv、温度影响度行列Ctemp、已知操作量向量Mref以及已知温度向量Tref以下面公式(6)算出以下面公式(5)表示所述限制条件时的参数Ain、Aub、Aeq以及beq
通过以预先设定的手法解开以所述评价函数和所述限制条件表示的凸二次计划问题,来算出目标值的修正量向量θ,
【数式2】
Figure FDA0002959252450000041
其中,
Figure FDA0002959252450000051
Figure FDA0002959252450000052
其中,
Figure FDA0002959252450000053
Kt1_to_t2:用于提取从时刻t1到t2的要素的系数行列
SVp:判断稳定的目标值的上限值
SVn:判断稳定的目标值的下限值
e1:是lmax×输入通道数的向量,各要素为1的向量
lmax:对1输入通道预测的温度的时间序列数据数
e3:是(lmax-z)×输出通道数的向量,各要素为1的向量
z:与到建立时间为止的数据数相当的数
θ:表示修正量的向量
N:输出通道数
0(x,y):在0满足对应的行以及列的x行y列的行列或向量
SVlast:目标温度变更后的最终目标值或修正目标值
Kt3:用于提取时刻t3的要素的系数向量。
7.一种控制系统设计装置,对多点控制系统设计预先设定的目标值的修正量,所述多点控制系统对控制对象中多点温度进行控制,按照根据所给与的修正量修正所述目标值而得到的修正目标值,来对控制对象进行控制,其中,
具备算出所述目标值的修正量的修正量算出部,
所述修正量算出部:
取得依次改变多个输入通道目标值时的、相对于各输入通道变化的操作量时间序列数据和控制对象中多点温度时间序列数据,
求出基于该操作量时间序列数据而求出的排列了操作量单位脉冲响应的时间序列数据的操作量影响度行列Cmv、和基于所述多点温度时间序列数据而求出的排列了温度单位脉冲响应的时间序列数据的温度影响度行列Ctemp
取得给与并控制预定目标值的稳定状态下的操作量时间序列数据和所述多点温度时间序列数据,
求出排列了该稳定状态下的操作量时间序列数据的已知操作量向量Mref和排列了该稳定状态下的所述多点温度时间序列数据的已知温度向量Tref
将进行最小化评价函数设为控制对象的所述多点的各预测温度和所述多点的平均温度的差幅的最大值d,
将第1限制条件设为操作量收敛在预先设定的范围,根据操作量影响度行列Cmv和已知操作量向量Mref算出该第1限制条件的参数,
将第2限制条件设为预先设定时间的所述多点的平均温度成为目标值或修正目标值,根据温度影响度行列Ctemp和已知温度向量Tref算出该第2限制条件的参数,
将第4限制条件设为控制对象的所述多点的各预测温度与所述多点的平均温度的差En成为相对于所述差幅的最大值d在-d以上+d以下,根据温度影响度行列Ctemp和已知温度向量Tref算出该第4限制条件的参数,
在所述第1限制条件、第2限制条件以及第4限制条件下,算出对所述评价函数进行最小化的目标值的修正量。
8.根据权利要求7所述的控制系统设计装置,其中,
所述修正量算出部:
将第3限制条件设为所述多点的平均温度在想要的建立时间成为目标值,根据温度影响度行列Ctemp和已知温度向量Tref算出该第3限制条件的参数,
在所述第1限制条件至第4限制条件下,算出对所述评价函数进行最小化的目标值的所述修正量向量θ。
9.根据权利要求8所述的控制系统设计装置,其中,
所述修正量算出部:
根据操作量影响度行列Cmv、温度影响度行列Ctemp、已知操作量向量Mref以及已知温度向量Tref以下面公式(8)算出以下面公式(7)表示所述限制条件时的参数Ain、Aub、Aeq以及beq
通过以预先设定的手法解开以所述评价函数和所述限制条件表示的线性计划问题,来算出目标值的修正量向量θ,
【数式3】
F(φ)=cT·φ
其中,
Figure FDA0002959252450000081
Figure FDA0002959252450000082
Figure FDA0002959252450000083
SVp:判断稳定的目标值的上限值
SVn:判断稳定的目标值的下限值
e1:是lmax×输入通道数的向量,各要素为1的向量
lmax:对1输入通道预测的温度的时间序列数据数
e3:是(lmax-z)×输出通道数的向量,各要素为1的向量
z:与到建立时间为止的数据数相当的数
e4:是lmax×输出通道数的向量,各要素为1的向量
θ:表示修正量的向量
N:输出通道数
0(x,y):在0满足对应的行以及列的x行y列的行列或向量
Ilmax:(lmax×lmax)的单位行列
SVlast:目标温度变更后的最终目标值或修正目标值
Kt3:用于提取时刻t3的要素的系数向量。
10.一种控制系统,具备:
控制器,其控制控制对象中多点温度,按照以所给与的修正量修正预先设定目标值而得到的修正目标值,来对控制对象进行控制;
根据权利要求1至3中任一项所述的控制系统设计装置;
修正图案适用部,其在检测到干扰时输出基于以所述控制系统设计装置算出的修正量的修正图案;以及
加法器,其将预先设定的所述目标值和来自所述修正图案适用部的修正图案相加,求出所述修正目标值并给与所述控制器。
11.一种控制系统,具备:
控制器,其控制控制对象中多点温度,按照以所给与的修正量修正预先设定的目标值而得到的修正目标值,来对控制对象进行控制;
根据权利要求4至9中任一项所述的控制系统设计装置;
修正图案适用部,其在检测到目标温度的变更时或变更目标温度时输出基于以所述控制系统设计装置算出的修正量的修正图案;以及
加法器,其将预先设定的所述目标值和来自所述修正图案适用部的修正图案相加,求出所述修正目标值并给与所述控制器。
CN201780091334.6A 2017-05-29 2017-05-29 控制系统设计装置以及控制系统 Active CN110678823B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/019974 WO2018220690A1 (ja) 2017-05-29 2017-05-29 制御系設計装置及び制御システム

Publications (2)

Publication Number Publication Date
CN110678823A CN110678823A (zh) 2020-01-10
CN110678823B true CN110678823B (zh) 2021-06-25

Family

ID=64455236

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780091334.6A Active CN110678823B (zh) 2017-05-29 2017-05-29 控制系统设计装置以及控制系统

Country Status (4)

Country Link
JP (1) JP6985623B2 (zh)
KR (1) KR102404877B1 (zh)
CN (1) CN110678823B (zh)
WO (1) WO2018220690A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113419584B (zh) * 2021-07-21 2022-05-20 中国人民解放军63798部队 一种基于模型预测控制的火箭整流罩内环境快速恢复方法
CN117111478B (zh) * 2023-10-20 2024-03-01 山东暖谷新能源环保科技有限公司 一种暖风炉的进气隔热控制系统及方法
CN117130415B (zh) * 2023-10-27 2024-01-02 四川信特农牧科技有限公司 仓储管理方法及系统
CN117236084B (zh) * 2023-11-16 2024-02-06 青岛永强木工机械有限公司 一种木工机械加工生产智能管理方法及系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510676A (ja) * 1999-09-23 2003-03-18 ケイアイシー サーマル プロファイリング インコーポレイテッド コンベヤ式熱プロセッサ内の部品の温度レスポンスを制御する方法及び装置
CN101162396A (zh) * 2007-09-11 2008-04-16 中控科技集团有限公司 温度控制方法及温度控制系统
CN101751051A (zh) * 2008-12-05 2010-06-23 中国科学院沈阳自动化研究所 基于约束史密斯广义预测控制的水泥分解炉温度控制方法
CN102654750A (zh) * 2011-02-16 2012-09-05 阿自倍尔株式会社 控制装置以及控制方法
CN103389749A (zh) * 2013-07-01 2013-11-13 浙江大学 一种温度控制系统
JP2016082709A (ja) * 2014-10-16 2016-05-16 日産自動車株式会社 誘導電動機の制御装置
CN105807812A (zh) * 2014-12-30 2016-07-27 中核控制系统工程有限公司 Pid温度控制方法及温度控制模块
US9435708B1 (en) * 2015-06-16 2016-09-06 Magcanica, Inc. Devices and methods to enhance accuracy of magnetoelastic torque sensors
CN205721435U (zh) * 2016-06-25 2016-11-23 淮阴师范学院 一种恒温温度控制系统
CN106529185A (zh) * 2016-11-24 2017-03-22 西安科技大学 一种古建筑位移的组合预测方法及系统
CN106548696A (zh) * 2016-10-21 2017-03-29 中国海洋石油总公司 一种模拟温室气体发生装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3219245B2 (ja) * 1998-08-13 2001-10-15 株式会社日立国際電気 温度制御シミュレーション方法及び温度制御シミュレーション装置
JP2000068466A (ja) * 1999-07-01 2000-03-03 Seiko Epson Corp 半導体記憶装置
JP3834216B2 (ja) * 2000-09-29 2006-10-18 株式会社日立国際電気 温度制御方法
JP2006113724A (ja) * 2004-10-13 2006-04-27 Omron Corp 制御方法、温度制御方法、温度調節器、熱処理装置、プログラムおよび記録媒体
JP4839702B2 (ja) 2005-07-04 2011-12-21 オムロン株式会社 温度制御方法、調整装置、温度調節器、プログラム、記録媒体および熱処理装置
JP2008299697A (ja) 2007-06-01 2008-12-11 Omron Corp 制御方法、温度制御方法、補正装置、温度調節器、およびプログラム
JP5189921B2 (ja) * 2008-08-02 2013-04-24 レノボ・シンガポール・プライベート・リミテッド コンピュータの放熱システム
WO2014043313A1 (en) * 2012-09-13 2014-03-20 Siemens Corporation Social learning softthermostat for commercial buildings

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510676A (ja) * 1999-09-23 2003-03-18 ケイアイシー サーマル プロファイリング インコーポレイテッド コンベヤ式熱プロセッサ内の部品の温度レスポンスを制御する方法及び装置
CN101162396A (zh) * 2007-09-11 2008-04-16 中控科技集团有限公司 温度控制方法及温度控制系统
CN101751051A (zh) * 2008-12-05 2010-06-23 中国科学院沈阳自动化研究所 基于约束史密斯广义预测控制的水泥分解炉温度控制方法
CN102654750A (zh) * 2011-02-16 2012-09-05 阿自倍尔株式会社 控制装置以及控制方法
CN103389749A (zh) * 2013-07-01 2013-11-13 浙江大学 一种温度控制系统
JP2016082709A (ja) * 2014-10-16 2016-05-16 日産自動車株式会社 誘導電動機の制御装置
CN105807812A (zh) * 2014-12-30 2016-07-27 中核控制系统工程有限公司 Pid温度控制方法及温度控制模块
US9435708B1 (en) * 2015-06-16 2016-09-06 Magcanica, Inc. Devices and methods to enhance accuracy of magnetoelastic torque sensors
CN205721435U (zh) * 2016-06-25 2016-11-23 淮阴师范学院 一种恒温温度控制系统
CN106548696A (zh) * 2016-10-21 2017-03-29 中国海洋石油总公司 一种模拟温室气体发生装置
CN106529185A (zh) * 2016-11-24 2017-03-22 西安科技大学 一种古建筑位移的组合预测方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
光栅刻划机系统辨识及温度影响研究;汪静姝;《中国博士学位论文全文数据库 工程科技Ⅱ辑》;中国学术期刊(光盘版)电子杂志社;20131015(第10期);C030-15 *

Also Published As

Publication number Publication date
WO2018220690A1 (ja) 2018-12-06
JPWO2018220690A1 (ja) 2020-03-26
KR20200010482A (ko) 2020-01-30
JP6985623B2 (ja) 2021-12-22
CN110678823A (zh) 2020-01-10
KR102404877B1 (ko) 2022-06-07

Similar Documents

Publication Publication Date Title
CN110678823B (zh) 控制系统设计装置以及控制系统
KR100707097B1 (ko) 온도 제어 방법 및 온도 조절기
KR101420920B1 (ko) 제어 장치 및 방법
JP4553266B2 (ja) 熱処理装置、制御定数の自動調整方法及び記憶媒体
JP4551515B2 (ja) 半導体製造装置およびその温度制御方法
JP4978001B2 (ja) 温度制御方法、温度制御装置および熱処理装置
WO2016084369A1 (ja) 温度制御方法、及び、温度制御装置
WO2016042589A1 (ja) 制御装置
JP5484859B2 (ja) 温度制御装置および温度制御方法
JP6405133B2 (ja) 半導体ウェーハの温度制御装置、半導体ウェーハの温度制御方法
CN109964180B (zh) 用于确定调节装置的参数的装置和方法
Macias et al. Fractional order calculus for modeling and fractional PID control of the heating process
JP2008299697A (ja) 制御方法、温度制御方法、補正装置、温度調節器、およびプログラム
KR102551390B1 (ko) 제어 장치, 제어 방법 및 제어 프로그램
KR100375488B1 (ko) 급속 열처리 장치에서 최적 학습 제어 기법을 이용한 웨이퍼의 온도 균일성 제어 방법
JP2010218007A (ja) 外乱推定装置、制御対象モデル推定装置、フィードフォワード量推定装置および制御装置
JP6735585B2 (ja) 半導体ウェーハの温度制御装置、および半導体ウェーハの温度制御方法
TWI823295B (zh) 溫度控制裝置以及溫度控制方法
CN113544598B (zh) 控制装置、控制方法以及记录介质
Sommer et al. Auto-tuning of multivariable PI/PID controllers using iterative feedback tuning: design examples
JP6965516B2 (ja) 制御装置、制御方法、制御プログラム
JPWO2016142991A1 (ja) 温度制御システム及び温度制御方法
JP5251267B2 (ja) 制御装置
JP4382632B2 (ja) 制御装置
JP5113199B2 (ja) 半導体製造装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant