CN110669988A - 一种用于核电换热器的铁素体不锈钢及其制备方法 - Google Patents

一种用于核电换热器的铁素体不锈钢及其制备方法 Download PDF

Info

Publication number
CN110669988A
CN110669988A CN201910930885.8A CN201910930885A CN110669988A CN 110669988 A CN110669988 A CN 110669988A CN 201910930885 A CN201910930885 A CN 201910930885A CN 110669988 A CN110669988 A CN 110669988A
Authority
CN
China
Prior art keywords
less
equal
percent
stainless steel
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910930885.8A
Other languages
English (en)
Inventor
张志霞
柯可力
毕洪运
欧响波
张波
许海刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Baoxin Stainless Steel Co Ltd
Original Assignee
Ningbo Baoxin Stainless Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Baoxin Stainless Steel Co Ltd filed Critical Ningbo Baoxin Stainless Steel Co Ltd
Priority to CN201910930885.8A priority Critical patent/CN110669988A/zh
Publication of CN110669988A publication Critical patent/CN110669988A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明涉及一种用于核电换热器的铁素体不锈钢,其特征在于:所述铁素体不锈钢各组分按重量百分比为:C<0.015%,Si0.3~0.5%,Mn0.3~0.5%,Cr为18~20%,N≤0.015%、P≤0.035%,S≤0.01%,Ti0.3~0.5%,Nb≤0.15%,Cu≤0.20%,Ni≤0.05%,Mo≤0.10%,Al≤0.03%,C+N≤0.020%,余量为Fe和不可避免杂质。还涉及一种铁素体不锈钢的制备方法。本发明铁素体不锈钢具有高耐腐蚀性能、高的抗氧化性及良好的高温强度。

Description

一种用于核电换热器的铁素体不锈钢及其制备方法
技术领域
本发明涉及一种铁素体不锈钢,具体涉及一种用于核电换热器的铁素体不锈钢及其制备方法,主要用于制作核电换热器用热交换管。
背景技术
换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器在核电、化工、石油、动力、食品及其它许多工业生产中占有重要地位。其中,在航天飞行器、半导体器件、核电常规岛核岛、风力发电机组、太阳能光伏发电、多晶硅生产等领域都需要大量的专业换热器。
目前国内换热器行业在节能增效、提高传热效率、减少传热面积、降低压降、提高装置热强度等方面的研究取得了显著成绩。各行业对换热器稳定的需求增长,我国换热器行业在未来一段时期内将持续稳定增长。预计未来5年,核电设备用不锈钢管将迎来很好的发展机遇。核电站用材中,需要大量的高性能钢管、管件等材料,涉及到的材料种类也非常多,如合金钢、不锈钢、锆合金、钛合金、镍基合金等。
核电厂大多沿海而建,回路使用大量的海水作为冷却介质。由于钛固有的性能,钛焊管凭借优异的耐腐蚀、抗冲刷、热导性、机械性能好等特点,特别适合用作海水或污染严重的淡水作为冷却介质的凝汽器用管。在百万千瓦级的核电机组凝汽器中,每台机组用到的钛管约为200t,但由于钛管加工制造难度大,主要是焊接成型、热处理工艺困难。国外厂家主要有美国和日本等制造企业生产,国内目前核电站凝汽器用钛管大多依赖进口,国内钛焊管市场缺口很大。高压给水加热器是回热系统中重要的给水加热设备,对机组二回路运行的经济性起到重要作用,换热器通常采用U形换热管,传热管材质为08X18H10T不锈钢(对应的中国牌号材料为0Cr18Ni10Ti),即目前现有的换热器U形管用不锈钢材质主要为奥氏体不锈钢和双相不锈钢,奥氏体不锈钢和双相不锈钢合金成本高。
铁素体不锈钢具有高强度、抗冲刷和磨损性能好,且价格较低,抗氯离子腐蚀性能好,用于作为核电常规岛换热器U形管件的替代选材,相对于奥氏体不锈钢而言,成本低廉,性价比高。如专利号为201410290317.3,授权公告号为CN104120356B的中国发明专利《一种管式换热器用铁素体不锈钢及其制造方法》,该铁素体不锈钢的化学重量百分比为:C≤0.015%,N≤0.020%,Si≤0.5%,Mn≤0.5%,P≤0.035%,S≤0.01%,Cr:22~24%,Mo:1.5~3.0%,10(C+N)≤(Nb+Ti)≤0.6%,Al:0.0050~0.050%,其余为Fe和不可避免的杂质;上述铁素体不锈钢中的Mo和Cr元素的含量高,铁素体不锈钢的耐蚀性和抗氧化性差,此外,C+N含量较高,容易发生偏聚或与其他原子结合,形成原子团簇或析出相,造成材料的力学性能的改变,恶化材料的耐晶间腐蚀性能,则本专利中的铁素体不锈钢的耐腐蚀性和抗氧化性较差。
发明内容
本发明所要解决的第一个技术问题是针对上述现有技术的现状,提供一种具有高抗氧化性、高的高温强度及高耐蚀性的用于核电换热器的铁素体不锈钢。
本发明所要解决的第二个技术问题是针对上述现有技术的现状,提供一种具有高抗氧化性、高的高温强度及高耐蚀性的铁素体不锈钢的制备方法。
本发明解决上述第一个技术问题所采用的技术方案为:一种用于核电换热器的铁素体不锈钢,其特征在于:所述铁素体不锈钢各组分按重量百分比为:C<0.015%,Si0.3~0.5%,Mn0.3~0.5%,Cr为18~20%,N≤0.015%、P≤0.035%,S≤0.01%,Ti0.3~0.5%,Nb≤0.15%,Cu≤0.20%,Ni≤0.05%,Mo≤0.10%,Al≤0.03%,C+N≤0.020%,余量为Fe和不可避免杂质。
本发明铁素体不锈钢合金成分的设计如下:
Mn的作用:锰含量过高会有损于抗氧化性能和降低蠕变极限,本发明中锰含量小于0.5%。
Si的作用:硅在铁素体不锈钢中抑制碳化物的析出,一定程度上增加钢的抗氧化能力,为避免高温脆性,本发明中硅含量≤0.5%。
P和S的作用:磷和硫在不锈钢中被视为有害元素,应尽量控制得越低越好。
Cr的作用:铬是不锈钢中最重要的合金元素,铬是耐热钢中抗高温氧化和抗高温腐蚀的主要合金元素之一,并提高钢的强度,同时铬形成Cr2O3致密的氧化膜,阻碍氧和金属离子的扩散,从而提高钢的抗氧化性,因此,本发明中铬含量在18~20%。
C的作用:碳固溶在钢中可以提高钢的强度,但碳化物析出后强度下降,热强性随碳含量增加而降低,耐蚀性也降低,因此碳含量控制在0.015%以下。
N的作用:氮在不锈钢中的溶解度有限,为了减少氮化物的形成,氮含量控制在0.015%以下。与应力腐蚀破裂相关的材料关键因素之一是碳化物沉淀的分布,晶界上碳化物沉淀越多则破裂抗力越高。因而,通过控制碳化物沉淀的分布可以消除应力腐蚀、晶间腐蚀破裂。此外,N含量也不宜太高,避免形成氮化物沉淀降低耐蚀性能。本发明中C和N含量不能太高。C、N含量太高,容易偏聚,或与其他原子结合,形成原子团簇或析出相,造成材料的力学性能的改变,恶化材料的耐晶间腐蚀性能。本发明中C+N≤0.020%。
Mo的作用:在铁素体不锈钢中可以提高不锈钢的耐蚀性和抗氧化性,兼顾经济性,本发明中钼含量控制在0.50%以下。
Nb的作用:铌在铁素体不锈钢中以析出物存在,提高钢的室温强度和高温强度。本发明中铌含量控制在0.15%以下。
Ti的作用:钛提高铁素体不锈钢的焊接性、耐蚀性能,本发明中钛含量控制在0.3~0.5%。
Al的作用:为了控制夹杂物的数量,Al含量的加入量控制在0.03%以下。
Cu和Ni的作用:铜和镍在钢中的控制越低越好。
优选地,在300℃时,该铁素体不锈钢的屈服强度>150MPa,抗拉强度≥380MPa。在该铁素体不锈钢使用中,要求较高的屈服强度和抗拉强度,以满足在一定温度环境中承受饱和蒸汽运行的要求,提高设备的安全性。
本发明解决上述第二个技术问题所采用的技术方案为:一种上述铁素体不锈钢的制备方法,其特征在于:依次包括以下步骤:
1)冶炼
将铁素体不锈钢各组分重量百分比为C<0.015%,Si0.3~0.5%,Mn0.3~0.5%,Cr为18~20%,N≤0.015%、P≤0.035%,S≤0.01%,Ti0.3~0.5%,Nb≤0.15%,Cu≤0.20%,Ni≤0.05%,Mo≤0.10%,Al≤0.03%,C+N≤0.020%,余量为Fe和不可避免杂质;按照上述成分通过电炉熔炼,再经过连铸获得板坯,板坯冷却后随炉加热,加热到1200±10℃后保温90min~100min进行热轧,热轧成厚度4~6mm的卷料,热卷料空冷;
2)冷轧
热轧卷料经过退火酸洗后进行冷轧加工,冷轧轧制压下率为60~80%;
3)退火
钢卷冷轧后退火,通过控制退火时间使晶粒度等级达到6-8级。
优选地,在步骤2)中,冷轧后的厚度为0.8mm~2.0mm。
进一步优选,在步骤2)中,冷轧后的厚度为1mm。
优选地,在步骤1)中,热轧至厚度为5mm的卷料。优选地,在步骤1)中,热轧的终扎温度控制在900℃以上。
优选地,在步骤3)中,退火温度970℃~1010℃。
改进的,在步骤3)所获得的退火件的表面粗糙度Ra为0.10μm~0.50μm。如此,保证了退火件表面的光亮程度。
与现有技术相比,本发明的铁素体不锈钢中Ni的添加可以改善钢的耐腐蚀、耐点蚀和缝隙腐蚀性能;C+N≤0.020%,能够有效控制碳化物沉淀的分布可以消除应力腐蚀、晶间腐蚀破裂;同时Mo的含量控制在0.50%以下,提高不锈钢的耐蚀性和抗氧化性;而铬含量在18~20%,提高钢的强度,同时铬形成Cr2O3致密的氧化膜,阻碍氧和金属离子的扩散,从而提高钢的抗氧化性,如此,本发明中的铁素体不锈钢中各个元素相互配合使得铁素体不锈钢具有高耐腐蚀性能、高的抗氧化性及良好的高温强度。
附图说明
图1为本发明实施例1的换热器的结构示意图。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
本发明实施例的用于核电换热器的铁素体不锈钢各组分按重量百分比为:C<0.015%,Si0.3~0.5%,Mn0.3~0.5%,Cr为18~20%,N≤0.015%、P≤0.035%,S≤0.01%,Ti0.3~0.5%,Nb≤0.15%,Cu≤0.20%,Ni≤0.05%,Mo≤0.10%,Al≤0.03%,C+N≤0.020%,余量为Fe和不可避免杂质。铁素体不锈钢的制备方法,依次包括以下步骤:
1)冶炼
将铁素体不锈钢各组分按照重量百分比通过电炉熔炼,再经过连铸获得板坯,板坯冷却后随炉加热,加热到1200±10℃后保温90min~100min进行热轧,热轧的终扎温度控制在900℃以上,热轧成厚度4~6mm的卷料,热卷料空冷,本实施例中,热轧至厚度为5.0mm;
2)冷轧
热轧卷料经过退火酸洗后进行冷轧加工,冷轧后进行固溶、随后进行水冷;冷轧轧制压下率为60~80%,冷轧后的厚度为0.8mm~2.0mm,本实施例中,冷轧至厚度为1.0mm;
3)退火
钢卷冷轧后退火,退火温度970℃~1010℃,通过控制退火时间使晶粒度等级达到6-8级,并保证所获得的退火件的表面粗糙度Ra为0.10μm~0.50μm;如此可以有效保证耐腐蚀性能。
通过上述制备方法得到6炉铁素体不锈钢,铁素体不锈钢实施例成分参见表1所示,其余量为Fe和不可避免杂质。
表1本发明实施例和对比例的化学成分对照(wt%)
Figure BDA0002220298890000051
如图1所示,为TP439铁素体不锈钢制成的换热器。
对最终退火后的样板进行常温和高温力学性能的测试。测试仪器为INSTRON5982,检验依据GB/T 4338-2006执行。测试温度为20和300℃。测得的高温强度列于表2中。
表2 TP439铁素体不锈钢实施例的常温和高温力学性能
Figure BDA0002220298890000052
通过表2可知:在300℃时,该铁素体不锈钢的屈服强度大于150MPa,抗拉强度≥380MPa,而本发明实施例在300℃时的高温强度比较高,可以达到用户的使用要求。此外,上述实施例中铁素体不锈钢的抗氧化性较好。
耐晶间腐蚀试验按ASTM A763进行,试样打磨至600#砂纸,倒边倒角,无水乙醇去除油脂;试验溶液制法:100gCuSO4·5H2O溶解到700ml蒸馏水中,加入100ml纯硫酸,加入蒸馏水稀释至1000ml;将试样放入试验溶液微沸腾16小时后,弯折180度。耐晶间腐蚀的试验结果见表3。
表3奥氏体耐热钢实施例的耐晶间腐蚀性能
Figure BDA0002220298890000061
通过表3可知:本发明实施例均未发生晶间腐蚀,表现出优良的耐晶间腐蚀性能。

Claims (9)

1.一种用于核电换热器的铁素体不锈钢,其特征在于:所述铁素体不锈钢各组分按重量百分比为:C<0.015%,Si0.3~0.5%,Mn0.3~0.5%,Cr18~20%,N≤0.015%、P≤0.035%,S≤0.01%,Ti0.3~0.5%,Nb≤0.15%,Cu≤0.20%,Ni≤0.05%,Mo≤0.10%,Al≤0.03%,C+N≤0.020%,余量为Fe和不可避免杂质。
2.根据权利要求1所述的用于核电换热器的铁素体不锈钢,其特征在于:在300℃时,该铁素体不锈钢的屈服强度>150MPa,抗拉强度≥380MPa。
3.一种权利要求1或2所述的铁素体不锈钢的制备方法,其特征在于:依次包括以下步骤:
1)冶炼
将铁素体不锈钢各组分重量百分比为C<0.015%,Si0.3~0.5%,Mn0.3~0.5%,Cr为18~20%,N≤0.015%、P≤0.035%,S≤0.01%,Ti0.3~0.5%,Nb≤0.15%,Cu≤0.20%,Ni≤0.05%,Mo≤0.10%,Al≤0.03%,C+N≤0.020%,余量为Fe和不可避免杂质;按照上述成分通过电炉熔炼,再经过连铸获得板坯,板坯冷却后随炉加热,加热到1200±10℃后保温90min~100min进行热轧,热轧成厚度4~6mm的卷料,热卷料空冷;
2)冷轧
热轧卷料经过退火酸洗后进行冷轧加工,冷轧轧制压下率为60~80%;
3)退火
钢卷冷轧后退火,通过控制退火时间使晶粒度等级达到6-8级。
4.根据权利要求3所述的制备方法,其特征在于:在步骤2)中,冷轧后的厚度为0.8mm~2.0mm。
5.根据权利要求4所述的制备方法,其特征在于:在步骤2)中,冷轧后的厚度为1mm。
6.根据权利要求3所述的制备方法,其特征在于:在步骤1)中,热轧至厚度为5mm的卷料。
7.根据权利要求3所述的制备方法,其特征在于:在步骤1)中,热轧的终扎温度控制在900℃以上。
8.根据权利要求3所述的制备方法,其特征在于:在步骤3)中,退火温度970℃~1010℃。
9.根据权利要求3所述的制备方法,其特征在于:在步骤3)所获得的退火件的表面粗糙度Ra为0.10μm~0.50μm。
CN201910930885.8A 2019-09-29 2019-09-29 一种用于核电换热器的铁素体不锈钢及其制备方法 Pending CN110669988A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910930885.8A CN110669988A (zh) 2019-09-29 2019-09-29 一种用于核电换热器的铁素体不锈钢及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910930885.8A CN110669988A (zh) 2019-09-29 2019-09-29 一种用于核电换热器的铁素体不锈钢及其制备方法

Publications (1)

Publication Number Publication Date
CN110669988A true CN110669988A (zh) 2020-01-10

Family

ID=69079970

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910930885.8A Pending CN110669988A (zh) 2019-09-29 2019-09-29 一种用于核电换热器的铁素体不锈钢及其制备方法

Country Status (1)

Country Link
CN (1) CN110669988A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114686751A (zh) * 2022-04-11 2022-07-01 甘肃酒钢集团宏兴钢铁股份有限公司 一种高铬铁素体不锈钢防脆断生产方法
CN115029625A (zh) * 2022-05-07 2022-09-09 宁波宝新不锈钢有限公司 一种燃料电池双极板用铁素体不锈钢及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07150244A (ja) * 1993-11-25 1995-06-13 Sumitomo Metal Ind Ltd 冷間加工用フェライトステンレス鋼の製造方法
EP1083237A2 (en) * 1999-09-09 2001-03-14 Kawasaki Steel Corporation Ferritic Cr-containing steel sheet having excellent ductility, formability, and anti-ridging properties, and method of producing the same
JP2002302741A (ja) * 2001-02-05 2002-10-18 Nippon Steel Corp 成形性に優れたフェライト系ステンレス鋼板及びその製造方法
CN101768702A (zh) * 2008-12-31 2010-07-07 宝山钢铁股份有限公司 高成形性耐酸性腐蚀汽车用中铬铁素体不锈钢及制造方法
CN101899625A (zh) * 2009-05-25 2010-12-01 宝山钢铁股份有限公司 一种铁素体不锈钢及其制造方法
CN101962740A (zh) * 2009-07-23 2011-02-02 宝山钢铁股份有限公司 汽车尾气排放系统用铁素体不锈钢及其制造方法
CN102041455A (zh) * 2009-10-23 2011-05-04 宝山钢铁股份有限公司 换热器焊管用不锈钢及其制造方法
CN109881082A (zh) * 2019-03-22 2019-06-14 宁波宝新不锈钢有限公司 一种汽车排气系统冷端用铁素体不锈钢及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07150244A (ja) * 1993-11-25 1995-06-13 Sumitomo Metal Ind Ltd 冷間加工用フェライトステンレス鋼の製造方法
EP1083237A2 (en) * 1999-09-09 2001-03-14 Kawasaki Steel Corporation Ferritic Cr-containing steel sheet having excellent ductility, formability, and anti-ridging properties, and method of producing the same
JP2002302741A (ja) * 2001-02-05 2002-10-18 Nippon Steel Corp 成形性に優れたフェライト系ステンレス鋼板及びその製造方法
CN101768702A (zh) * 2008-12-31 2010-07-07 宝山钢铁股份有限公司 高成形性耐酸性腐蚀汽车用中铬铁素体不锈钢及制造方法
CN101899625A (zh) * 2009-05-25 2010-12-01 宝山钢铁股份有限公司 一种铁素体不锈钢及其制造方法
CN101962740A (zh) * 2009-07-23 2011-02-02 宝山钢铁股份有限公司 汽车尾气排放系统用铁素体不锈钢及其制造方法
CN102041455A (zh) * 2009-10-23 2011-05-04 宝山钢铁股份有限公司 换热器焊管用不锈钢及其制造方法
CN109881082A (zh) * 2019-03-22 2019-06-14 宁波宝新不锈钢有限公司 一种汽车排气系统冷端用铁素体不锈钢及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114686751A (zh) * 2022-04-11 2022-07-01 甘肃酒钢集团宏兴钢铁股份有限公司 一种高铬铁素体不锈钢防脆断生产方法
CN115029625A (zh) * 2022-05-07 2022-09-09 宁波宝新不锈钢有限公司 一种燃料电池双极板用铁素体不锈钢及其制备方法

Similar Documents

Publication Publication Date Title
CN1942596B (zh) 奥氏体不锈钢、其制造方法以及使用其的结构件
CN111850421B (zh) 铁素体系不锈钢板及铁素体系不锈钢材的制造方法
CN103361564B (zh) 一种超级双相不锈钢无缝钢管及其制备方法
WO2011111646A1 (ja) 炭化水素燃焼排ガスから発生する凝縮水環境における耐食性に優れるフェライト系ステンレス鋼
CN110724872A (zh) 具有超低温冲击韧性的高锰奥氏体钢及其热轧板制造方法
CN105200330B (zh) 一种耐高温铁素体不锈钢及其制造方法
CN103352175A (zh) 一种控氮奥氏体不锈钢及其制造方法
CN103160753B (zh) 一种含Zr耐硫酸露点腐蚀钢板及其制造方法
WO2011059030A1 (ja) 耐アルカリ性に優れた二相ステンレス鋼
CN110669988A (zh) 一种用于核电换热器的铁素体不锈钢及其制备方法
CN110484836B (zh) 一种铪锆钛钼增强奥氏体不锈钢及其制备方法
CN109295387A (zh) 一种耐腐蚀性能良好的双相不锈钢板及其制造方法
JP3508667B2 (ja) 高温強度に優れた高Crフェライト系耐熱鋼およびその製造方法
JP2009007601A (ja) 集熱機器用フェライト系ステンレス鋼材
CN108950417A (zh) 一种水龙头专用不锈钢材料的加工工艺
JP2017020054A (ja) ステンレス鋼およびステンレス鋼管
JP4757686B2 (ja) 加工性、溶接性、耐すき間腐食性に優れた貯湯タンク用フェライト系ステンレス鋼
CN110607490B (zh) 一种铪锆钛增强奥氏体不锈钢及其制备方法
CN101928869B (zh) 镍铁铬钼合金
CN106256919A (zh) 具有抗冷凝液腐蚀性的低成本铁素体不锈钢及其制造方法
CN113684424B (zh) 一种nial强化型铁素体耐热钢及制备方法
CN113699465B (zh) 一种铁素体基高强耐蚀双相合金及制备方法
JPH04365838A (ja) 熱間加工性ならびに高温強度に優れたフェライト系耐熱鋼
CN109898015A (zh) 舰船用耐海水腐蚀hdr双相不锈钢的制造方法
JP2001152293A (ja) 高Crフェライト系耐熱鋼

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200110

RJ01 Rejection of invention patent application after publication