CN115029625A - 一种燃料电池双极板用铁素体不锈钢及其制备方法 - Google Patents

一种燃料电池双极板用铁素体不锈钢及其制备方法 Download PDF

Info

Publication number
CN115029625A
CN115029625A CN202210492911.5A CN202210492911A CN115029625A CN 115029625 A CN115029625 A CN 115029625A CN 202210492911 A CN202210492911 A CN 202210492911A CN 115029625 A CN115029625 A CN 115029625A
Authority
CN
China
Prior art keywords
stainless steel
fuel cell
equal
less
cell bipolar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210492911.5A
Other languages
English (en)
Inventor
张志霞
毕洪运
戴科栋
徐锋
黄俊霞
洪流
任晟
李实�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Baoxin Stainless Steel Co Ltd
Original Assignee
Ningbo Baoxin Stainless Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Baoxin Stainless Steel Co Ltd filed Critical Ningbo Baoxin Stainless Steel Co Ltd
Priority to CN202210492911.5A priority Critical patent/CN115029625A/zh
Publication of CN115029625A publication Critical patent/CN115029625A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/081Iron or steel solutions containing H2SO4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种燃料电池双极板用铁素体不锈钢,其特征在于:该不锈钢的质量百分比组成为C≤0.015%,Si:0.15~0.40%,Mn:0.15~0.40%,Cr:27~33%,Ni≤0.6%,Mo:0.5~3.0%,N<0.025%,P<0.04%,S<0.01%,Nb:0.15~0.5%,Ti:0.05~0.2%,Al:0.001~0.03%,Cu:0.1~1.0%,V:0.01~0.10%,W:0.005~2.0%,Sn:0.001~0.15%,余量为Fe和不可避免杂质。通过在铁素体不锈钢中添加Sn、W,改善不锈钢表面钝化膜的导电性,控制钝化膜的厚度,降低表面接触电阻,提高氢燃料电池的功率和使用效率,最终实现该不锈钢的电流密度≤1.0μA/cm2,接触电阻≤15mΩ。

Description

一种燃料电池双极板用铁素体不锈钢及其制备方法
技术领域
本发明属于不锈钢技术领域,具体涉及一种燃料电池双极板用不锈钢及其制备方法。
背景技术
能源是国家生存和发展的基础,在国民经济中占有重要的战略地位。发展新能源,是解决能源危机的一个重要手段。氢气是未来清洁能源,氢能的应用场景很广。氢燃料 电池是一种主要通过空气或其他氧化剂进行氧化还原反应,把燃料中的化学能转换成电 能的发电装置。最常见的燃料为氢气,其他燃料来源来自于任何的能分解出氢气的碳氢 化合物,例如天然气、醇、和甲烷等。氢燃料电池用在交通运输领域,是目前最主要的 应用场景。氢燃料电池优点在于透过稳定供应氧和燃料来源,即可持续不间断的提供稳 定电力,氢燃料电池动力强劲、续航能力强,而且没有污染。氢燃料电池汽车的全生命 周期排放,即包含汽车制造、电池制造、燃料(汽油、氢)或能源(发电)制备、汽车 行驶全部环节的排放,不仅低于燃油车,也比纯电车更低。
氢燃料电池电堆又是动力系统中的核心。电堆由多个部分组成。其中双极板,是电堆核心部件之一,主要起到起输送和分配燃料、在电堆中隔离阳极阴极气体的作用。目 前广泛采用的双极板材料为无孔石墨板,金属板和复合材料双极板。金属双极板因具有 优异的导电、导热性能、机械加工性、致密性,以及强度高、阻气性好等优势,可以为 汽车应用提供良好的动力密度、低温(-40℃)启动保障,适合大批量低成本生产。
目前,欧美和日本已经应用了不锈钢或钛板等金属双极板来生产氢燃料电池。然而, 双极板的成本比较高,钛板比较昂贵,奥氏体不锈钢双极板需要在不锈钢表面制备导电 防腐层,工艺复杂且成本高。为了降低氢燃料电池双极板的成本,本专利通过调整铁素体不锈钢的化学组成获得具有高耐蚀性、高导电率的超级铁素体不锈钢,用以取代涂层 类奥氏体不锈钢和钛材等价格昂贵的材料来制作氢燃料电池双极板。
发明内容
本发明所要解决的第一个技术问题是提供一种其自身具有低接触电阻与高耐蚀性 能,后期不需要进行表面涂层处理的燃料电池双极板用不锈钢。
本发明解决第一个技术问题所采用的技术方案为:一种燃料电池双极板用铁素体不 锈钢,其特征在于:该不锈钢的质量百分比组成为C≤0.015%,Si:0.15~0.40%,Mn:0.15~0.40%,Cr:27~33%,Ni≤0.6%,Mo:0.5~3.0%,N<0.025%,P<0.04%,S<0.01%,Nb:0.15~0.5%,Ti:0.05~0.2%,Al:0.001~0.03%,Cu:0.1~1.0%,V:0.01~0.10%,W:0.005~2.0%,Sn:0.001~0.15%,余量为Fe和不可避免杂质。
C:碳在钢中存在杂质元素,固溶在不锈钢中可以降低钢的塑性,同时降低耐蚀性,但考虑到精炼成本,碳不能完全去除,本发明控制C≤0.015%。
N:氮在不锈钢中可以提高钢的强度,对钢的成形性不利,因此氮含量控制在0.025% 以下。
Si:硅在铁素体不锈钢中可以起到脱氧的作用,同时作为合金化元素,一定程度上增加钢的强度,降低材料的加工性,本发明中硅含量控制在0.15~0.4%。
Mn:锰具有固定硫的作用,具有改善热加工性的效果。锰含量过高会有损于耐蚀性,本发明中锰含量在0.15~0.4%。
P,S:磷和硫在不锈钢中被视为有害元素,应尽量控制得越低越好。
Cr:铬是不锈钢中最重要的合金元素,铬含量越高越显示出优异的抗蚀性。铬形成Cr2O3致密的氧化膜,提高钢的耐蚀性。在铁素体系不锈钢中,Cr含量超过35%时,规 模量产难度高。本发明中铬含量在27~33%。
Mo:钼的加入,用以提高耐腐蚀性能,钼含量太高时,容易产生脆化,使生产困 难。本发明选择钼含量在0.5~3.0%,该含量的钼使得不锈钢的耐腐蚀性能和加工性能比 较好。
Nb和Ti:在铁素体不锈钢中以固溶态和析出物存在,特别是与C结合可以降低C 与Cr结合形成Cr23C6型析出倾向,改善耐腐蚀性,同时也提高钢的加工性和力学性能。 本发明中铌含量控制在0.15~0.5%,本发明中钛含量控制在0.05~0.2%。
Al:铝作为脱氧元素可以提高铁素体不锈钢的钢质纯净度,提高加工性和成形性,但太高含量的Al会形成不良夹杂物,引起性能的不稳定,因此本发明选择0.001~0.03%。
Cu:少量的铜能提高强度和韧性,缺点是在热加工时容易产生热脆,铜含量超过0.5%塑性显著降低,当铜含量小于0.5%对焊接性无影响,因此本发明选择0.1~0.5%以下。
V:钒可以提高铁素体不锈钢的强度和硬度。少量钒的作用是改善夹杂物的形态,获得细小的接近球状的夹杂物,改善夹杂物的变形加工性能。本发明选择0.01~0.10%。
Sn:锡在不锈钢表面钝化膜中,以金属锡或氧化锡的形式富集,可以提高钝化膜的再钝化能力。当外层钝化膜遭到破坏,锡离子从内层偏移到表面并与周围的结合水形 成氧化合物,阻止金属的溶解和破坏。同时,Sn氧化物还有助于生成致密的超薄钝化 膜,可降低不锈钢的表面接触电阻。在不影响加工性的条件下,锡的范围控制在0.001~0.15%。
W:钨在铁素体不锈钢中,形成的含钨析出物具有导电性能,形成于表面上的含钨析出相存在于表面,分散在钝化膜中,可以提高不锈钢的表面导电性能,对于降低表面 的接触电阻有利。本专利中钨含量控制在0.005~2.0%之间。
Ni:适量的镍含量降低铸坯的韧脆转变温度,在铸坯的修磨运送过程中,不易发生开裂等问题。镍价格昂贵,镍含量上限为0.6%。
作为优选,Nb、Ti的添加量满足:10≤(Nb+Ti)/(C+N)≤16。Nb和Ti的加入,可以 稳定碳和氮元素,通过碳氮化物的弥散析出提高不锈钢组织均匀性、成形性和焊接性。 在不锈钢的高温冷却过程中,随冷速的不同,常见的化合物有NbN,NbC或其复合型 析出物,他们与碳氮之间应满足10≤(Nb+Ti)/(C+N)≤16的关系,碳、氮尽可能与Nb、 Ti结合形成碳、氮化物,降低C与Cr结合形成Cr23C6型析出倾向,从而避免因为在晶 界析出Cr23C6型化合物导致晶界贫铬带来的耐蚀性下降。以保证这些合金元素的加入使 钢具有良好耐腐蚀性的同时具有高的加工性。
作为优选,Cr、Mo、Sn、W的添加量满足:Cr+Mo=20~40(Sn+W)。Cr和Mo元 素可以形成致密钝化膜,对提高钝化膜的耐蚀性有利,但过量的加入,会增加生产工艺 的难度。Sn和W元素可以改善钝化膜的导电性,氢燃料电池极板表面钝化膜需要较高 的耐蚀性和导电性,为了兼顾本发明专利不锈钢表面良好的耐蚀性和导电性,本发明专 利中,Cr,Mo,Sn,W元素之间存在以下对应关系:Cr+Mo=20~40(Sn+W)。在保证钝 化膜耐蚀性的基础上,尽可能通过Sn和W的协同作用,控制钝化膜的厚度,同时增加 表面导电相,来降低表面的接触电阻。同样地,加入过量的Sn和W,会降低钢的热加 工性能。
作为优选,还添加有RE:0.001~0.1%。稀土金属元素能起到脱氧、脱硫净化钢水的作用,改善不锈钢的纯净度。稀土元素的加入量不宜过多,否则会恶化钢的质量,因 此本专利中稀土元素的加入量控制在0.001~0.1%范围内。
作为优选,该不锈钢的基材为铁素体,铁素体的表面形成有一层致密的钝化膜,该钝化膜以Cr2O3为基体,基体上分布有含钨析出相、Sn以及氧化锡。
作为优选,所述钝化膜的厚度在3nm以下,含钨析出相体积占比为0.01~0.1%。
作为优选,该不锈钢的电流密度≤1.0μA/cm2,接触电阻≤15mΩ。
本发明所要解决的第二个技术问题是提供一种燃料电池双极板用不锈钢的制备方 法。
本发明解决第二个技术问题所采用的技术方案为:一种燃料电池双极板用不锈钢的 制备方法,其特征在于:包括以下制备步骤:
1)熔炼、锻造:按照所需成分配料、熔炼,模具铸造得到铸锭;
2)热轧:锻造后的钢坯铣去表面氧化皮,然后进行热轧,于1150~1230℃加热并保温60~100min后开始轧制,始轧温度大于1130℃,终轧温度控制在980℃以上,轧后水 冷;
3)均匀化退火:对热轧钢板进行退火,退火温度980~1050℃,退火时间2-10min;
4)冷轧:对退火后的热轧钢板进行酸洗、表面打磨后进行冷轧,冷轧轧制总压下率不低于80%,冷轧的道次之间以及冷轧结束后分别设置光亮退火,光亮退火温度为 980~1050℃,退火时间为1-10min。
作为优选,所述步骤4)结束后,将冷轧钢板浸泡在硫酸水溶液中,硫酸水溶液的浓度为10-20wt%,40℃≤温度≤60℃、浸泡时间2~10min。
与现有技术相比,本发明的优点在于:通过在铁素体不锈钢中添加Sn、W,改善不锈钢表面钝化膜的导电性,控制钝化膜的厚度,降低表面接触电阻,提高氢燃料电池的 功率和使用效率,最终实现该不锈钢的电流密度≤1.0μA/cm2,接触电阻≤15mΩ。
附图说明
图1为本发明实施例1的金相组织照片。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
本发明提供5个实施例和1个对比例,实施例具体成分见表1。
实施例按照本发明燃料电池双极板用不锈钢的制备方法制备,制备步骤以下:
1)熔炼、锻造:按照所需成分配料、熔炼,模具铸造得到圆形铸锭,直径150mm。
2)热轧:锻造后的钢坯铣去表面氧化皮,然后进行热轧,于1150~1230℃加热并保温60~100min后开始轧制,始轧温度大于1130℃,终轧温度控制在980℃以上,轧后水 冷;
3)均匀化退火:对热轧钢板进行退火,退火温度980~1050℃,退火时间2-10min;
4)冷轧:对退火后的热轧钢板进行酸洗、表面打磨后进行冷轧,最终得到0.05~0.1mm 钢板,冷轧的道次之间以及冷轧结束后分别设置光亮退火,光亮退火温度为980~1050℃, 退火时间为1-10min。控制表面粗糙度Ra 0.01~0.05微米,晶粒度等级控制在7.5~10级, 既可以保证良好的深冲加工性能又有利于降低表面的接触电阻。
5)表面处理:为了进一步改善不锈钢材料的导电特性,降低电导率,可以将冷轧钢板浸泡在一定浓度的硫酸水溶液中进行化学处理降低表面钝化膜厚度,将冷轧钢板浸泡在硫酸水溶液中,硫酸水溶液的浓度为10-20wt%,40℃≤温度≤60℃、浸泡时间 2~10min。具体关键控制参数见表2。
对比例为常规的奥氏体不锈钢SUS316L(022Cr17Ni12Mo2),冷轧成品+表面涂层制备,化学成分见表1。本对比例采用金属氮化物作为涂层,涂层工艺为采用封闭场非 平衡磁控溅射离子镀技术(利用不同的电流,将具有不同Mo含量的CrMoN膜镀到 SUS316L上)在电流4A的条件下得到的CrMoNG4A涂层,可以使双极板表面结构致 密、均匀、连续,能够提供优良的保护,具有最佳的耐蚀性和低接触电阻。
实施例1的金相组织如图1所示,基材组织为铁素体,晶粒度9~10级,夹杂物以 球状为主。
对得到的实施例的钝化膜进行检测,该钝化膜是以Cr2O3为基体,基体上分布有含钨析出相、Sn以及氧化锡。钝化膜的厚度在3nm以下,含钨析出相体积占比为0.01~0.1%。
对得到的实施例和对比例的样板进行力学性能、耐蚀性能和导电性能检测。晶粒度 测试参见标准GB/T6394-2017,力学性能测试参见标准GB/T20042.6-2011, YB/T4334-2013,双极板耐腐蚀性能和接触电阻的测试参见测试标准见 GB/T20042.6-2011,测得的结果列于表3中。结果表明本发明钢的耐蚀性和导电性可以 满足燃料电池设计技术要求。
表1实施例的成分/wt%
Figure BDA0003631780680000061
表2实施例的关键制备参数控制
Figure BDA0003631780680000062
表3实施例、对比例的性能
Figure BDA0003631780680000071

Claims (9)

1.一种燃料电池双极板用铁素体不锈钢,其特征在于:该不锈钢的质量百分比组成为C≤0.015%,Si:0.15~0.40%,Mn:0.15~0.40%,Cr:27~33%,Ni≤0.6%,Mo:0.5~3.0%,N<0.025%,P<0.04%,S<0.01%,Nb:0.15~0.5%,Ti:0.05~0.2%,Al:0.001~0.03%,Cu:0.1~1.0%,V:0.01~0.10%,W:0.005~2.0%,Sn:0.001~0.15%,余量为Fe和不可避免杂质。
2.根据权利要求1所述的燃料电池双极板用铁素体不锈钢,其特征在于:Nb、Ti的添加量满足:10≤(Nb+Ti)/(C+N)≤16。
3.根据权利要求1所述的燃料电池双极板用铁素体不锈钢,其特征在于:Cr、Mo、Sn、W的添加量满足:Cr+Mo=20~40(Sn+W)。
4.根据权利要求1所述的燃料电池双极板用铁素体不锈钢,其特征在于:还添加有RE:0.001~0.1%。
5.根据权利要求1所述的燃料电池双极板用铁素体不锈钢,其特征在于:该不锈钢的基材为铁素体,铁素体的表面形成有一层致密的钝化膜,该钝化膜以Cr2O3为基体,基体上分布有含钨析出相、Sn以及氧化锡。
6.根据权利要求5所述的燃料电池双极板用铁素体不锈钢,其特征在于:所述钝化膜的厚度在3nm以下,含钨析出相体积占比为0.01~0.1%。
7.根据权利要求1至6任一权利要求所述的燃料电池双极板用铁素体不锈钢,其特征在于:该不锈钢的电流密度≤1.0μA/cm2,接触电阻≤15mΩ。
8.一种权利要求1至6任一权利要求所述的燃料电池双极板用不锈钢的制备方法,其特征在于:包括以下制备步骤:
1)熔炼、锻造:按照所需成分配料、熔炼,模具铸造得到铸锭;
2)热轧:锻造后的钢坯铣去表面氧化皮,然后进行热轧,于1150~1230℃加热并保温60~100min后开始轧制,始轧温度大于1130℃,终轧温度控制在980℃以上,轧后水冷;
3)均匀化退火:对热轧钢板进行退火,退火温度980~1050℃,退火时间2-10min;
4)冷轧:对退火后的热轧钢板进行酸洗、表面打磨后进行冷轧,冷轧轧制总压下率不低于80%,冷轧的道次之间以及冷轧结束后分别设置光亮退火,光亮退火温度为980~1050℃,退火时间为1-10min。
9.根据权利要求8所述的燃料电池双极板用铁素体不锈钢的制备方法,其特征在于:所述步骤4)结束后,将冷轧钢板浸泡在硫酸水溶液中,硫酸水溶液的浓度为10-20wt%,40℃≤温度≤60℃、浸泡时间2~10min。
CN202210492911.5A 2022-05-07 2022-05-07 一种燃料电池双极板用铁素体不锈钢及其制备方法 Pending CN115029625A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210492911.5A CN115029625A (zh) 2022-05-07 2022-05-07 一种燃料电池双极板用铁素体不锈钢及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210492911.5A CN115029625A (zh) 2022-05-07 2022-05-07 一种燃料电池双极板用铁素体不锈钢及其制备方法

Publications (1)

Publication Number Publication Date
CN115029625A true CN115029625A (zh) 2022-09-09

Family

ID=83119612

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210492911.5A Pending CN115029625A (zh) 2022-05-07 2022-05-07 一种燃料电池双极板用铁素体不锈钢及其制备方法

Country Status (1)

Country Link
CN (1) CN115029625A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116254473A (zh) * 2023-03-01 2023-06-13 广东思达氢能科技有限公司 电池双极板、不锈钢及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101195894A (zh) * 2007-12-19 2008-06-11 吉林化工学院 含稀土元素钇的用于固体氧化物燃料电池的铁素体不锈钢
JP2011162863A (ja) * 2010-02-12 2011-08-25 Nippon Steel & Sumikin Stainless Steel Corp 耐酸化性と電気伝導性に優れたAl含有フェライト系ステンレス鋼
CN103154292A (zh) * 2010-10-08 2013-06-12 杰富意钢铁株式会社 耐腐蚀性和导电性优异的铁素体系不锈钢及其制造方法、固体高分子型燃料电池隔板以及固体高分子型燃料电池
JP6157664B1 (ja) * 2016-02-23 2017-07-05 新日鐵住金ステンレス株式会社 フェライト系ステンレス鋼およびその製造方法
CN110669988A (zh) * 2019-09-29 2020-01-10 宁波宝新不锈钢有限公司 一种用于核电换热器的铁素体不锈钢及其制备方法
CN111876661A (zh) * 2020-06-17 2020-11-03 宁波宝新不锈钢有限公司 一种燃料电池用高耐蚀铁素体不锈钢及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101195894A (zh) * 2007-12-19 2008-06-11 吉林化工学院 含稀土元素钇的用于固体氧化物燃料电池的铁素体不锈钢
JP2011162863A (ja) * 2010-02-12 2011-08-25 Nippon Steel & Sumikin Stainless Steel Corp 耐酸化性と電気伝導性に優れたAl含有フェライト系ステンレス鋼
CN103154292A (zh) * 2010-10-08 2013-06-12 杰富意钢铁株式会社 耐腐蚀性和导电性优异的铁素体系不锈钢及其制造方法、固体高分子型燃料电池隔板以及固体高分子型燃料电池
JP6157664B1 (ja) * 2016-02-23 2017-07-05 新日鐵住金ステンレス株式会社 フェライト系ステンレス鋼およびその製造方法
CN110669988A (zh) * 2019-09-29 2020-01-10 宁波宝新不锈钢有限公司 一种用于核电换热器的铁素体不锈钢及其制备方法
CN111876661A (zh) * 2020-06-17 2020-11-03 宁波宝新不锈钢有限公司 一种燃料电池用高耐蚀铁素体不锈钢及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
朱志强 等, 冶金工业出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116254473A (zh) * 2023-03-01 2023-06-13 广东思达氢能科技有限公司 电池双极板、不锈钢及制备方法
CN116254473B (zh) * 2023-03-01 2024-04-19 广东思达氢能科技有限公司 电池双极板、不锈钢及制备方法

Similar Documents

Publication Publication Date Title
KR101558276B1 (ko) 내식성 및 전기 전도성이 우수한 페라이트계 스테인리스 강과 그의 제조 방법, 고체 고분자형 연료 전지 세퍼레이터 및 고체 고분자형 연료 전지
JP4798298B2 (ja) 導電性と延性に優れた燃料電池セパレータ用ステンレス鋼およびその製造方法
CN101962740B (zh) 汽车尾气排放系统用铁素体不锈钢及其制造方法
CN113186472B (zh) 耐蚀钢筋及其生产方法
CN103866194B (zh) 一种反常偏析的含锡低间隙铁素体不锈钢及其制备方法
CN111876661A (zh) 一种燃料电池用高耐蚀铁素体不锈钢及其制造方法
CN114875341B (zh) 一种燃料电池双极板用不锈钢及其制备方法
EP3202940A1 (en) Ferritic stainless steel material, separator for solid polymer fuel cells which uses same, and solid polymer fuel cell
EP2667439A1 (en) Method for producing stainless steel for fuel cell separators, stainless steel for fuel cell separators, fuel cell separator, and fuel cell
CN109750239A (zh) 一种0.01~0.05mm超薄N6纯镍箔的制备工艺
CN106756628A (zh) 一种高硅含氮奥氏体不锈钢及其制备方法
CN113564486B (zh) 屈服强度500MPa级含锑耐酸蚀钢及制备方法
JP3097690B1 (ja) 固体高分子型燃料電池
CN115029625A (zh) 一种燃料电池双极板用铁素体不锈钢及其制备方法
CN117431457A (zh) 一种燃料电池用无涂层不锈钢双极板及其制造方法
WO2024093461A1 (zh) 一种经济性高寿命大功率风电偏航轴承圈用钢、轴承圈及生产工艺
WO2024082955A1 (zh) 耐腐蚀460MPa级钢板及其生产方法
CN117551936A (zh) 一种燃料电池双极板含钨氮高耐蚀性不锈钢及其制备方法
CN106715743B (zh) 固体氧化物型燃料电池用钢和其制造方法
CN112322934B (zh) 一种用于质子交换膜燃料电池双极板的钛合金
CN114737036B (zh) 一种氢燃料电池双极板用高塑性钛合金超薄板材的制备方法
CN109355594B (zh) 一种铜钒钴改性不锈钢及其加工与热处理方法
CN116254473B (zh) 电池双极板、不锈钢及制备方法
CN111057828B (zh) 一种高氧搪瓷钢及其生产方法
CN109355472B (zh) 一种铜铌钴改性奥氏体不锈钢及其加工与热处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220909