CN110666919B - 一种用于陶瓷3d打印机的铺料刮刀自适应调速控制方法 - Google Patents

一种用于陶瓷3d打印机的铺料刮刀自适应调速控制方法 Download PDF

Info

Publication number
CN110666919B
CN110666919B CN201910903844.XA CN201910903844A CN110666919B CN 110666919 B CN110666919 B CN 110666919B CN 201910903844 A CN201910903844 A CN 201910903844A CN 110666919 B CN110666919 B CN 110666919B
Authority
CN
China
Prior art keywords
printing
scraper
ceramic
model
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910903844.XA
Other languages
English (en)
Other versions
CN110666919A (zh
Inventor
袁鸿
顾海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong Institute of Technology
Original Assignee
Nantong Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong Institute of Technology filed Critical Nantong Institute of Technology
Priority to CN201910903844.XA priority Critical patent/CN110666919B/zh
Publication of CN110666919A publication Critical patent/CN110666919A/zh
Application granted granted Critical
Publication of CN110666919B publication Critical patent/CN110666919B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

本发明提供了一种用于陶瓷3D打印机的铺料刮刀自适应控制器及调速控制方法,通过对待打印陶瓷浆料物理参数的测量,采用自适应控制器在打印中对铺料刮刀运动速度进行优化控制,实现精益控制,可使得新铺的浆料不破坏,能够成形固相表面,且表面均匀,无肉眼可见气泡,浆料和已成形固相的边缘无肉眼可见凹陷,推动了陶瓷3D打印装备的发展。

Description

一种用于陶瓷3D打印机的铺料刮刀自适应调速控制方法
技术领域
本发明属于3D打印机控制系统设计领域,特别涉及一种用于陶瓷3D打印机的铺料刮刀自适应调速控制方法。
背景技术
陶瓷3D打印机通常采用SLA或者DLP光固化成形技术,目前绝大多数的打印设备都是采用光敏树脂成形设备进行改造,陶瓷浆料和光敏树脂的物理特性不同,简单的改造不能彻底解决诸如铺料不均匀、供料不连续等问题,尤其是铺料刮刀速度一旦设定,在打印成形的全过程中通常保持恒定值,不可改变;而成形模型每一层的固化实体面积不同,导致已固化部分和未固化的部分与陶瓷浆料之间的粘附力始终在变化,而刮刀由于恒定速度运动带来的推力F0确保持不变,这种情况会直接影响到铺料的均匀性,甚至会发生由于粘附力过大或者过小,导致铺料时新的浆料撕裂已成形模型或者新铺的浆料表面含有气泡、破损等缺陷。铺料刮刀运动的精益控制成为影响陶瓷浆料成型效率和成型精度的一个关键问题,同时也是陶瓷浆料光固化3D打印设备发展成为一种独立的专用装备所需要解决的问题之一。
发明内容
技术问题:为了解决现有技术的缺陷,以实现铺料刮刀的精益控制,推动陶瓷3D打印装备的发展,本发明提供了一种用于陶瓷3D打印机的铺料刮刀自适应控制器,采用自适应控制器,自适应控制器的公式为
Figure BDA0002212671280000011
其中V1为刮刀运动的速度输出量、Vk为第k层模型的刮刀速度;其中k=1,2,…,N,N为模型分层数。
作为改进,通过实验测量及存储打印机使用的陶瓷浆料的固相、液相成分及固液相质量比B1,存储陶瓷浆料粘度S1、固相粒径尺寸D1
作为改进,通过实验测量及存储陶瓷浆料的已光固化固相与陶瓷浆料之间的粘附力F1与陶瓷浆料内粘附力F2
作为改进,其中Vk=[C1×F1×Sk%+C2×F2×(1-Sk%)],其中C1、C2为增益调整系数,k=1,2,…,N,N为模型分层数;Sk%为待打印模型分层切片中每一层模型实体固相面积占打印平台单次铺料总面积的固相百分比。
作为改进,对刮刀运动基准速度V0进行处理,通过自适应处理V′0=V0-C0×B1,其中C0为增益调整系数,获得刮刀运动基准速度输入量V′O
同时,还提供了一种用于陶瓷3D打印机的铺料刮刀自适应调速控制方法,具体为:
(1)陶瓷浆料参数的准备
测量及存储打印机使用的陶瓷浆料的固相、液相成分及固液相质量比B1,存储陶瓷浆料粘度S1、固相粒径尺寸D1;实验测量并存储不同陶瓷浆料的已光固化固相与陶瓷浆料之间的粘附力F1,陶瓷浆料内粘附力F2,作为打印前准备;
(2)获得控制参数V′O
采用步骤(1)中数值,通过自适应处理V′0=V0-C0×B1,其中C0为增益调整系数,获得刮刀运动基准速度输入量V′O
(3)获得控制参数Sk
针对具体打印模型,在用打印软件分层切片后,需要导出分层数据,计算并存储待打印模型分层切片中每一层模型实体固相面积占打印平台单次铺料总面积的固相百分比Sk%,其中k=1,2,…,N,N为模型分层数;
(4)获得参数Vk
采用自适应控制器,通过自适应处理的公式为
Vk=[C1×F1×Sk%+C2×F2×(1-Sk%)],
Figure BDA0002212671280000021
进行处理计算,获得V1为刮刀运动的速度输出量、Vk为第k层模型的刮刀速度;其中C1、C2为增益调整系数,k=1,2,…,N,N为模型分层数;
(5)输出到刮刀控制模块进行打印
将步骤(1)-(4)中参数,应用于打印机控制系统,可实现陶瓷3D打印机铺料刮刀根据待打印模型的几何结构特征和陶瓷浆料的物理特性、包括粘度、粒径大小,在打印的过程中,自适应调节铺料刮平速度,让待成形浆料更加均匀的铺在打印平台上。
作为改进,步骤(3)中,在打印平台面积足够的时候,一次打印同时打印几个相同或不同的模型,计算固相百分比Sk%时,需所有待打印模型的当前分层固相面积之和。
有益效果:本发明提供一种用于陶瓷3D打印机的铺料刮刀自适应调速控制方法,通过自适应控制器及具体的参数获得,实现铺料刮刀的精益控制,使得在刮刀精益控制的判定条件下为新铺的浆料不破坏,能够成形固相表面,且表面均匀,无肉眼可见气泡,浆料和已成形固相的边缘无肉眼可见凹陷,推动了陶瓷3D打印装备的发展。
附图说明
图1为本发明Sk%计算示意图的结构示意图,其中A、B、C为不同形状的模型。
图2为本发明控制方法的流程图。
具体实施方式
下面对本发明附图结合实施例作出进一步说明。
如图1、图2所示,本发明的用于陶瓷3D打印机铺料刮刀自适应调速控制方法,应用于打印机控制系统后,可实现陶瓷3D打印机铺料刮刀根据待打印模型的几何结构特征和陶瓷浆料的物理特性、包括粘度、粒径大小等,在打印的过程中,自适应调节铺料刮平速度,让待成形浆料更加均匀的铺在打印平台上。
具体打印过程分为打印前参数准备和打印中自动控制两部分。
1、打印前参数准备:
测量并存储打印机将要进行打印的陶瓷浆料的固相、液相成分及固液相质量比B1,陶瓷浆料粘度S1、固相粒径尺寸D1
实验测量并存储不同陶瓷浆料的已光固化固相与陶瓷浆料之间的粘附力-固液间粘附力F1,陶瓷浆料内粘附力-液内粘附力F2
刮刀推动浆料前铺的速度过大,会导致新铺的浆料表面出现气泡、破损等缺陷,影响打印成形质量,为解决上述问题,取环境温度25℃,粘度为200cps纯光敏树脂最佳打印刮刀速度(经验值)作为陶瓷打印铺料刮刀运动基准速度V0,通过自适应处理V′0=V0-C0×B1,其中C0为增益调整系数,获得刮刀运动基准速度输入量V′O。表明随着陶瓷浆料固液相质量比的增加,为获得良好的刮平效果,刮刀的运动速度需逐渐降低。
针对具体打印模型,在用打印软件分层切片后,导出分层数据,计算并存储待打印模型分层切片中每一层模型实体固相面积占打印平台单次铺料总面积的固相百分比Sk%,其中k=1,2,…,N,N为模型分层数,作为控制参数;每次计算分层的固相百分比SK%时要统计本次打印加载的全部待打印模型的分层固相面积之和,其中N为待打印模型中最高的,即Z轴那个模型的分层数。
2、打印中自动控制:
在打印控制系统中输入固液间粘附力F1,液内粘附力F2,固相百分比Sk%及刮刀运动基准速度V0,通过自适应运算,控制系统输出刮刀速度Vk,其中k=1,2,…,N作为刮刀运动速度输出域,实现对刮刀运动速度的精益控制。
自适应控制器的公式为
Vk=[C1×F1×Sk%+C2×F2×(1-Sk%)],
Figure BDA0002212671280000041
其中Vk为第k层模型的刮刀速度;C1、C2为增益调整系数,k=1,2,…,N,N为模型分层数,V1为刮刀运动的速度输出量。
实施例1
首先,测量并存储打印机将要进行打印的陶瓷浆料的固相、液相成分及固液相质量比B1,陶瓷浆料粘度S1、固相粒径尺寸D1,这些参数可由商用陶瓷浆料生产厂家提供,或者自配陶瓷浆料时测量;
然后,通过实验测量并存储不同陶瓷浆料的已光固化固相与陶瓷浆料之间的粘附力(固液间粘附力)F1,陶瓷浆料内粘附力(液内粘附力)F2
再针对具体打印模型,在用打印软件分层切片后,需要导出分层数据,计算并存储待打印模型分层切片中每一层模型实体固相面积占打印平台单次铺料总面积的固相百分比Sk%,其中k=1,2,…,N,N为模型分层数作为控制参数。
如果为提高打印效率,在打印平台面积足够的时候,1次打印同时打印几个相同或不同的模型,计算固相百分比Sk%时要统计所有待打印模型的当前分层固相面积之和,如图1的模型A、B和C的当前分层面积之和,且N为待打印模型中最高的,即Z轴那个模型的分层数。
最后,打印控制系统中,刮刀的速度控制不在是人工设置一个经验值,而是采用上述自适应控制器,Vk=[C1×F1×Sk%+C2×F2×(1-Sk%)],
Figure BDA0002212671280000042
其中Vk为第k层模型的刮刀速度;C1、C2为增益调整系数,k=1,2,…,N,N为模型分层数,V1为刮刀运动的速度输出量。
刮刀精益控制的判定条件为新铺的浆料不破坏已成形固相表面,且表面均匀,无肉眼可见气泡,浆料和已成形固相的边缘无肉眼可见凹陷。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (4)

1.一种用于陶瓷3D打印机的铺料刮刀自适应调速控制方法,其特征在于:具体步骤为
(1)陶瓷浆料参数的准备
测量及存储打印机使用的陶瓷浆料的固相、液相成分及固液相质量比B1,存储陶瓷浆料粘度S1、固相粒径尺寸D1;实验测量并存储不同陶瓷浆料的已光固化固相与陶瓷浆料之间的粘附力F1,陶瓷浆料内粘附力F2,作为打印前准备;
(2)获得控制参数V′O
采用步骤(1)中数值,通过自适应处理V′0=V0-C0×B1,其中C0为增益调整系数,获得刮刀运动基准速度输入量V′O
(3)获得控制参数Sk
针对具体打印模型,在用打印软件分层切片后,需要导出分层数据,计算并存储待打印模型分层切片中每一层模型实体固相面积占打印平台单次铺料总面积的固相百分比Sk%,其中k=1,2,…,N,N为模型分层数;
(4)获得参数Vk
通过自适应处理的公式为
Vk=[C1×F1×Sk%+C2×F2×(1-Sk%)],
Figure FDA0002722655240000011
进行处理计算,获得V1为刮刀运动的速度输出量、Vk为第k层模型的刮刀速度;其中C1、C2为增益调整系数,k=1,2,…,N,N为模型分层数;
(5)输出到刮刀控制模块进行打印
将步骤(1)-(4)中参数,应用于打印机控制系统,可实现陶瓷3D打印机铺料刮刀根据待打印模型的几何结构特征和陶瓷浆料的物理特性,包括粘度、粒径大小,在打印的过程中,自适应调节铺料刮平速度,让待成形浆料更加均匀的铺在打印平台上。
2.根据权利要求1所述的铺料刮刀自适应调速控制方法,其特征在于:步骤(3)中,在打印平台面积足够的时候,一次打印同时打印几个相同或不同的模型,计算固相百分比Sk%时,需所有待打印模型的当前分层固相面积之和。
3.一种采用根据权利要求1或2所述的铺料刮刀自适应调速控制方法的铺料刮刀自适应控制器。
4.根据权利要求3所述的铺料刮刀自适应控制器,其特征在于:取环境温度25℃,粘度为200cps纯光敏树脂最佳打印刮刀速度,即为经验值,将该经验值作为陶瓷打印铺料刮刀运动基准速度V0,通过自适应处理V′0=V0-C0×B1,其中C0为增益调整系数,获得刮刀运动基准速度输入量V′O
CN201910903844.XA 2019-09-24 2019-09-24 一种用于陶瓷3d打印机的铺料刮刀自适应调速控制方法 Active CN110666919B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910903844.XA CN110666919B (zh) 2019-09-24 2019-09-24 一种用于陶瓷3d打印机的铺料刮刀自适应调速控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910903844.XA CN110666919B (zh) 2019-09-24 2019-09-24 一种用于陶瓷3d打印机的铺料刮刀自适应调速控制方法

Publications (2)

Publication Number Publication Date
CN110666919A CN110666919A (zh) 2020-01-10
CN110666919B true CN110666919B (zh) 2021-02-19

Family

ID=69078543

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910903844.XA Active CN110666919B (zh) 2019-09-24 2019-09-24 一种用于陶瓷3d打印机的铺料刮刀自适应调速控制方法

Country Status (1)

Country Link
CN (1) CN110666919B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114434797B (zh) * 2020-11-06 2023-07-18 上海普利生机电科技有限公司 三维模型的打印方法、模型、设备和计算机可读介质
CN113547737A (zh) * 2021-07-21 2021-10-26 东北大学 一种提高增材制造中粉床性能和铺粉效率的刮板形状设计
CN113976915B (zh) * 2021-10-29 2023-08-08 西安铂力特增材技术股份有限公司 刮刀控制方法及装置
CN114378917B (zh) * 2021-12-23 2024-01-05 集美大学 一种可液位调节的大幅面浆料3d打印方法
CN114801186B (zh) * 2022-04-19 2023-01-24 青岛博瑞科三维制造有限公司 一种光固化3d打印机智能刮刀系统及控制方法
CN116175730B (zh) * 2023-03-23 2023-09-08 中国科学院空间应用工程与技术中心 一种光固化陶瓷3d打印铺料中辊子刮刀的改进方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202782140U (zh) * 2012-09-11 2013-03-13 深圳德森精密设备有限公司 全自动视觉印刷机刮刀压力自适应稳定装置
JP6390108B2 (ja) * 2014-02-07 2018-09-19 セイコーエプソン株式会社 焼結造形材料、焼結造形方法、焼結造形物および焼結造形装置
CN104999782A (zh) * 2015-07-22 2015-10-28 昆山允升吉光电科技有限公司 一种自适应刮刀
CN106469031A (zh) * 2015-08-17 2017-03-01 北京奇虎科技有限公司 一种基于打印机的打印方法、打印机和打印系统
CN107803987B (zh) * 2017-10-18 2020-06-30 湖南华曙高科技有限责任公司 用于增材制造的自适应分层处理方法、系统及增材制造设备
CN108381925B (zh) * 2018-05-20 2024-01-12 江苏奇迹智能制造科技有限公司 3d打印喷头自适应控制装置
CN110238392B (zh) * 2019-05-31 2021-07-13 上海航天设备制造总厂有限公司 一种提高工件成形质量的3d打印刮刀集成装置与方法

Also Published As

Publication number Publication date
CN110666919A (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
CN110666919B (zh) 一种用于陶瓷3d打印机的铺料刮刀自适应调速控制方法
US20210362409A1 (en) Method and device for 3d printing using temperature-controlled processing
US20230226755A1 (en) Method for producing three-dimensional molded parts and regulating the moisture content in build material
US20230131987A1 (en) Binder system and devices for 3-d printing and articles produced therefrom
CN103702811B (zh) 一种用于制造成形物体的方法及装置
Hodder et al. Bridging additive manufacturing and sand casting: Utilizing foundry sand
AU2018262560B2 (en) Molding method and apparatus, particularly applicable to metal and/or ceramics
JP5795756B2 (ja) 焼結セラミック物品の異方性収縮と関連づけられた方法及び装置
US20210237363A1 (en) Accuracy improvement and surface finishing using fusing agent and detailing agent
US10442141B2 (en) Stereoscopic modeling apparatus and stereoscopic modeling method
EP3050697B1 (en) Stereoscopic modeling apparatus, method of manufacturing stereoscopic modeled product, and carrier means
CN106273513B (zh) 一种基于力反馈系统的3d打印方法
CN111194265B (zh) 用于3d打印设备的打印机单元和方法
JP2005125787A (ja) 立体造形システムおよび方法
US20220080508A1 (en) Determining liquid agent amounts in 3d printing
CN112936848B (zh) 三维打印方法、设备和计算机可读介质
US20210283835A1 (en) Selective deposit of a functional agent
CN105001652A (zh) 一种基于明胶的3dp打印方法
US20200406558A1 (en) Three-dimensional shaping apparatus and three-dimensional shaping method
JP7323361B2 (ja) 積層造形用粉末、積層造形用スラリー、3次元積層造形体、焼結体、積層造形用スラリーの製造方法、積層造形方法及び焼結方法
Baş et al. Using adaptive slicing method and variable binder amount algorithm in binder jetting
CN110885253A (zh) 一种激光扫描陶瓷打印工艺
KR20150021901A (ko) 오프셋 인쇄 조성물, 이를 이용한 인쇄방법 및 오프셋 인쇄 조성물을 이용하여 형성된 패턴
Pietras Development of Agile and Cost Effective Routes for Manufacturing Reliable Ceramic Components for SOFC Systems (Final Scientific Report Updated)
Pietras Development of Agile and Cost Effective Routes for Manufacturing Reliable Ceramic Components for SOFC Systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant