CN110661585B - 减少无线车辆消息的相邻信道干扰 - Google Patents

减少无线车辆消息的相邻信道干扰 Download PDF

Info

Publication number
CN110661585B
CN110661585B CN201910570731.2A CN201910570731A CN110661585B CN 110661585 B CN110661585 B CN 110661585B CN 201910570731 A CN201910570731 A CN 201910570731A CN 110661585 B CN110661585 B CN 110661585B
Authority
CN
China
Prior art keywords
channel
waveform
dsrc
data
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910570731.2A
Other languages
English (en)
Other versions
CN110661585A (zh
Inventor
卢红升
G·班赛尔
J·肯尼
清水崇之
都井吉春
O·阿尔廷塔斯
R·米莱恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN110661585A publication Critical patent/CN110661585A/zh
Application granted granted Critical
Publication of CN110661585B publication Critical patent/CN110661585B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0066Interference mitigation or co-ordination of narrowband interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/7103Interference-related aspects the interference being multiple access interference
    • H04B1/7107Subtractive interference cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/161Decentralised systems, e.g. inter-vehicle communication
    • G08G1/163Decentralised systems, e.g. inter-vehicle communication involving continuous checking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Traffic Control Systems (AREA)
  • Noise Elimination (AREA)

Abstract

本公开涉及减少无线车辆消息的相邻信道干扰。在一些实施例中,一种方法包括由车载计算机对车辆对一切V2X无线电装置的信道监测V2X消息。该方法包括确定描述在监测所述信道时由所述车载计算机在所述信道上测量的波形的波形数据。该方法包括确定描述相邻信道干扰波形的干扰数据,所述相邻信道干扰波形是在监测所述信道时由所述车载计算机在所述信道上测量的。所述波形包括所述相邻信道干扰波形。该方法包括从由所述波形数据描述的所述波形中消除由所述干扰数据描述的所述相邻信道干扰波形,以生成描述所述V2X消息的基本不包括所述相邻信道干扰波形的版本的数字数据,从而减少V2X消息的相邻信道干扰。

Description

减少无线车辆消息的相邻信道干扰
技术领域
本说明书涉及减少无线车辆消息的相邻信道干扰。
背景技术
全双工通信通常包括用于与另一个实体传输和接收消息的单个信道,并具有同时发送和接收消息的选项。专用短程通信(DSRC)越来越多地被包括在车辆中,因为它是许多高级驾驶员辅助系统(此处被称为“ADAS系统”)或自动驾驶系统提供其功能所需的传感器数据源。
发明内容
有七个不同的信道专用于DSRC。然而,多无线电收发器在它在相邻信道上进行传输时可能无法在信道上接收无线数据包,这是因为由车辆自身的DSRC通信引起的相邻信道干扰,这种DSRC通信可能是频繁的或一直发生的。例如,DSRC标准要求在专用信道上每0.1秒发送一次基本安全消息(这里称为“BSM”),由于消息在该专用信道上几乎一直传输,这会在相邻信道上产生相邻信道干扰。
本文描述了作为联网车辆的元件的干扰管理系统的实施例。干扰管理系统通过消除(或大大减少)相邻信道干扰来有益地解决联网车辆的相邻信道干扰的问题,使得无线消息(例如,诸如BSM之类的DSRC消息)可以在一个信道上不断被接收,同时其他无线消息(例如,其他DSRC消息)在相邻信道上清楚地被传输,而不需要增大在这些相邻信道上传输的DSRC消息的能量水平。
针对联网车辆的相邻信道干扰问题的现有解决方案是增大由联网车辆发送的无线消息的能量水平,以便即使存在相邻信道干扰,它们也能被接收者“听到”。这种现有的方案是不够的,因为在实践中,由于强烈的相邻信道干扰,它仍然会导致一些消息不会被接收者听到。相比之下,这里描述的干扰管理系统的实施例不需要无线消息的任何能量水平增大,并且无线消息不会由于相邻信道干扰而丢失。
为了清楚和方便,这里参考DSRC消息来描述干扰管理系统的实施例的功能。然而,在实践中,干扰管理系统可用于减少或消除任何类型的车辆对一切(V2X)消息的相邻信道干扰,而不仅仅是用于DSRC消息。例如,干扰管理系统可用于减少或消除以下参考网络105或通信单元145描述的任何类型的无线通信协议的相邻信道干扰。
在一些实施例中,干扰管理系统可用于允许DSRC发射器持续在信道“N”上发送低能量水平的“DSRC消息#1”。参见例如图1B和1C。干扰管理系统则消除由DSRC消息#1在相邻信道“N+1”、“N+2”、“N+3”、“N-1”、“N-2”和“N-3”上引起的相邻信道干扰,使得由DSRC消息#1引起的任何相邻信道干扰对于其余的六个DSRC信道被消除。不存在提供由根据一些实施例的干扰管理系统提供的该示例功能的其他方案。
在一些实施例中,DSRC消息是由联网车辆接收到的行人安全消息(“PSM”)。
在一些实施例中,诸如BSM和PSM之类的DSRC消息由包括干扰管理系统的联网车辆发送或接收,这会导致相邻信道干扰,这种干扰会抑制联网车辆以足够可靠的方式同时使用DSRC发射器的两个相邻DSRC信道(例如信道171和172)同时进行通信的能力。在一些实施例中,干扰管理系统包括安装在联网车辆的车载计算机中的软件,该软件解决由联网车辆自己的DSRC通信产生的相邻信道干扰的问题。例如,干扰管理系统包括可操作的代码和例程,它们在由车载计算机执行时使车载计算机消除或显著减少由联网车辆自身的DSRC消息传输引起的相邻信道干扰,使得联网车辆的多无线电DSRC收发器可以在同一时间或不同时间通过七个DSRC信道中的任何一个发送和接收DSRC消息。例如,干扰管理系统减少相邻信道干扰,使得联网车辆的多无线电DSRC收发器的无线电装置可以在一个DSRC信道(例如信道172)上发送DSRC传输,同时在相邻信道(例如信道171或173)上接收DSRC传输。干扰管理系统的另一个有益之处在于,它实际上使得能够通过单个DSRC无线电装置使用不同的相邻信道进行传输和接收而实现全双工通信。尽管干扰管理系统对于DSRC消息传递应用特别有利,但是它也有益于受到相邻信道干扰负面影响的任何无线通信。
不存在现有方案能够消除由BSM、PSM和其他DSRC消息引起的DSRC信道的相邻信道干扰。这里描述的干扰管理系统的实施例通过提供软件来解决这个问题,该软件估计将由BSM和PSM(以及其他DSRC消息或任何其他V2X消息)对相邻信道引起的相邻信道干扰波形,然后为相邻信道消除该相邻信道干扰波形(或大大减小它),使得这些相邻信道上的消息可以被清楚地听到(即,可以接收到包括在它们的载荷中的数据),而不需要发送方增大这些V2X消息的能量水平。不存在提供此功能的现有方案。
配备有DSRC无线电装置的车辆以周期性间隔(例如,每0.10秒一次或某个其他时间间隔一次,时间间隔是可由用户配置的或每当车辆停放时可由干扰管理系统配置的)传输BSM。BSM包括由BSM数据组成的载荷。BSM数据是数字数据,其中描述了以下各项中一项或多项:传输BSM的车辆的路径历史;传输车辆的地理位置,其具有相对于传输车辆的实际位置正负1.5米的精度;以及传输车辆的前进方向或轨迹。下面参考图4和图5更详细地描述BSM数据。
PSM包括由PSM数据组成的载荷。下面将参考图6对PSM数据进行更详细的描述。PSM在2017年10月27日提交的题为“PSM Message-based Device Discovery for a VehicularMesh Network”的美国专利申请号15/796,296中有更详细的描述,其全部内容通过引用并入于此。PSM还在2017年6月6日提交的题为“Optimization of a Motion Profile for aVehicle”的的美国专利申请号15/640,352中有所描述,其全部内容通过引用并入于此。
一个或多个计算机的系统可以被配置为通过在系统上安装软件、固件、硬件或它们的组合来执行特定的操作或动作,这些软件、固件、硬件或它们的组合在操作中导致系统执行这些动作。一个或多个计算机程序可以被配置为通过包括指令来执行特定的操作或动作,这些指令在被数据处理装置执行时使得该装置执行这些动作。
一个一般方面包括一种方法,该方法包括:由车载计算机对V2X无线电装置的信道监测V2X消息;确定描述在监测信道时由车载计算机在信道上测量的波形的波形数据;确定描述在监测信道时由车载计算机在信道上测量的相邻信道干扰波形的干扰数据,其中所述波形包括相邻信道干扰波形;以及从由波形数据描述的波形中消除由干扰数据描述的相邻信道干扰波形,以生成描述V2X消息的基本上不包括相邻信道干扰波形的版本的数字数据。该方面的其他实施例包括相应计算机系统、装置以及记录在一个或多个计算机存储设备上的计算机程序,它们中每一个都被配置为执行这些方法的动作。
在一些实施例中,消除相邻信道干扰波形包括从由波形数据描述的波形中减少或最小化相邻信道干扰波形。在一些实施例中,消除相邻信道干扰波形包括从由波形数据描述的波形中消除或基本消除相邻信道干扰波形。
实现方式可以包括以下特征中的一个或多个。在方法中,V2X消息是DSRC消息。在方法中,V2X消息不是下列消息之一:WiFi消息;3G消息;4G消息;5G消息;长期演进(LTE)消息;毫米波通信消息;蓝牙信息;以及卫星通信。在方法中,V2X无线电装置是联网车辆的元件。在方法中,V2X无线电装置不是联网车辆的元件。在方法中,V2X无线电装置包括多个信道,所述多个信道包括所述信道和预留信道,其中预留信道与所述信道相邻,并且相邻信道干扰波形是由在预留信道上传输的无线消息引起的。例如,在预留信道上传输BSM,并且这种传输会导致在与预留信道相邻的信道上听到或观察到的相邻信道干扰波形。在一些实施例中,所述信道是以下信道中的一个或多个:紧邻预留信道;次紧邻预留信道;第三紧邻预留信道;以及……第N紧邻预留信道(其中“N”是大于3的正整数)。在方法中,预留信道被预留用于BSM,并且相邻信道干扰波形描述由V2X无线电装置在预留信道上传输并在所述信道上同时被听到(“听到”的其他合适的术语包括“观察到”或“接收到”)的BSM,并且相邻信道(无论它们是紧邻的还是次紧邻的等等)的这种同时传输和接收导致相邻信道干扰波形在所述信道上被听到(或“观察到”或“接收到”)。在方法中,预留信道被预留用于PSM,并且相邻信道干扰波形描述由V2X无线电装置在预留信道上传输并在所述信道上被同时听到(或“观察到”或“接收到”)的PSM,并且相邻信道(无论它们是紧邻的还是第二紧邻的等等)的这种同时传输和接收导致相邻信道干扰波形在所述信道上被听到(或“观察到”或“接收到”)。所描述技术的实现方式可以包括硬件、方法或过程或者计算机可访问介质上的计算机软件。
一个一般方面包括一种系统,该系统包括:处理器,其通信地耦合到V2X无线电装置和非暂时性存储器,其中V2X无线电装置可操作以在V2X无线电装置的信道上接收V2X消息,并且非暂时性存储器存储计算机代码,计算机代码在被处理器执行时使处理器:由处理器对信道监测V2X消息;确定描述在监测信道时由处理器在信道上测量的波形的波形数据;确定描述在监测信道时由处理器在信道上测量的相邻信道干扰波形的干扰数据,其中所述波形包括相邻信道干扰波形;以及从由波形数据描述的波形中消除由干扰数据描述的相邻信道干扰波形,以生成描述V2X消息的基本上不包括相邻信道干扰波形的版本的数字数据。该方面的其他实施例包括相应计算机系统、装置以及记录在一个或多个计算机存储设备上的计算机程序,它们中每一个都被配置为执行这些方法的动作。
实现方式可以包括以下特征中的一个或多个。在系统中,V2X消息是DSRC消息。在系统中,V2X消息不是下列消息之一:WiFi消息;3G消息;4G消息;5G消息;LTE消息;毫米波通信消息;蓝牙信息;以及卫星通信。在系统中,V2X无线电装置是联网车辆的元件。在系统中,监测信道包括处理器测量波形和相邻信道干扰波形。在系统中,V2X无线电装置包括多个信道,其中包括所述信道和预留信道,其中预留信道与所述信道相邻,并且相邻信道干扰波形是由在预留信道上传输的无线消息引起的。在系统中,预留信道是为BSM预留的,并且相邻信道干扰波形描述由V2X无线电装置在预留信道上发送并在所述信道上同时被听到(或“观察到”或“接收到”)的BSM。在系统中,预留信道是为PSM预留的,相邻信道干扰波形描述由V2X无线电装置在预留信道上发送并在所述信道上同时被听到(或“观察到”或“接收到”)的PSM。在计算机程序产品中,V2X无线电装置包括多个信道,其中包括所述信道和预留信道,其中预留信道与所述信道相邻,并且相邻信道干扰波形是由在预留信道上传输的无线消息引起的。在计算机程序产品中,预留信道是为BSM预留的,并且相邻信道干扰波形描述V2X无线电装置在预留信道上以及在所述信道上同时被听到的BSM。在计算机程序产品中,预留信道是为PSM预留的,并且相邻信道干扰波形描述V2X无线电装置在预留信道上以及在所述信道上同时被听到的PSM。所述技术的实现方式可以包括硬件、方法或过程或者计算机可访问介质上的计算机软件。
一个一般方面包括一种计算机程序产品,该计算机程序产品包括指令,所述指令在由处理器执行时使处理器执行操作,这些操作包括:由处理器对V2X无线电装置的信道监测V2X消息;确定描述在监测信道时由处理器在信道上测量的波形的波形数据;确定描述在监测信道时由处理器在信道上测量的相邻信道干扰波形的干扰数据,其中所述波形包括相邻信道干扰波形;以及从由波形数据描述的波形中消除由干扰数据描述的相邻信道干扰波形,以生成描述V2X消息的基本上不包括相邻信道干扰波形的版本的数字数据。该方面的其他实施例包括相应计算机系统、装置以及记录在一个或多个计算机存储设备上的计算机程序,它们中每一个都被配置为执行这些方法的动作。
实现方式可以包括以下特征中的一个或多个。在计算机程序产品中,V2X无线电装置包括多个信道,其中包括信道和预留信道,其中预留信道与信道相邻,并且相邻信道干扰波形是由在预留信道上传输的无线消息引起的。在计算机程序产品中,预留信道是为BSM预留的,并且相邻信道干扰波形描述由V2X无线电装置在预留信道上发送并在所述信道上同时被听到(或“观察到”或“接收到”)的BSM。在计算机程序产品中,预留信道是为PSM预留的,并且相邻信道干扰波形描述由V2X无线电装置在预留信道上发送并在所述信道上同时被听到(或“观察到”或“接收到”)的PSM。所述技术的实现方式可以包括硬件、方法或过程或者计算机可访问介质上的计算机软件。
附图说明
在附图中,通过示例而非限制的方式示出了本公开,在附图中,相似的附图标记用于指代相似的元件。
图1A是示出根据一些实施例的干扰管理系统的操作环境的框图。
图1B是示出根据一些实施例的一组V2X无线电装置和干扰管理系统的框图。
图1C是示出根据一些实施例的一组DSRC无线电装置和干扰管理系统的框图。
图2是示出根据一些实施例的包括干扰管理系统的示例计算机系统的框图。
图3描绘了根据一些实施例的用于减少联网车辆的相邻信道干扰的方法。
图4和图5是示出根据一些实施例的BSM数据的示例的框图。
图6是示出根据一些实施例的PSM数据的示例的框图。
具体实施方式
现在描述干扰管理系统的实施例,其可操作以减少或消除V2X通信的相邻信道干扰。V2X通信的示例包括以下各项中的一项或多项:DSRC(包括BSM和PSM,以及其他类型的DSRC通信);LTE;毫米波通信;3G;4G;5G LTE-车辆对一切(LTE-V2X);LTE-车辆对车辆(LTE-V2V);LTE-设备对设备(LTE-D2D);LTE语音(VoLTE);等等。
在一些实施例中,包括干扰管理系统的联网车辆是配备DSRC的车辆。配备DSRC的车辆是指这样的车辆:(1)包括DSRC无线电装置;(2)包括符合DSRC的全球定位系统(GPS)单元;以及(3)可操作以在配备DSRC的车辆所在的管辖区中合法地发送和接收DSRC消息。DSRC无线电装置是包括DSRC接收器和DSRC发射器的硬件。DSRC无线电装置可操作以无线发送和接收DSRC消息。符合DSRC的GPS单元可操作以为车辆(或包括符合DSRC的GPS单元的某种其他配备DSRC的设备)提供具有车道级精度的位置信息。下面将更详细地描述符合DSRC的GPS单元。
“配备DSRC的”设备是一种基于处理器的设备,其包括DSRC无线电装置、符合DSRC的GPS单元并可操作以在配备DSRC的设备所在的管辖区中合法地发送和接收DSRC消息。各种端点可以是配备DSRC的设备,包括例如路侧单元(RSU)、智能手机、平板计算机和任何其他基于处理器的计算设备,该计算设备包括DSRC无线电装置并且如上所述可操作以合法地发送和接收DSRC消息。
在一些实施例中,作为配备DSRC的设备的RSU不包括符合DSRC的GPS单元,但是包括非暂时性存储器,该非暂时性存储器存储描述具有车道级精度的RSU的位置信息的数字数据,并且RSU的DSRC无线电装置或某种其他系统将该数字数据的副本插入由RSU的DSRC无线电装置传输的BSM数据中。通过这种方式,RSU不包括符合DSRC的GPS单元,但仍可操作以分发满足DSRC标准的要求的BSM数据。根据一些实施例,下面将参考图4和图5更详细地描述BSM数据。
DSRC消息是一种无线消息,其专门被配置为由高度移动的设备(如车辆)发送和接收,并符合以下DSRC标准中的一个或多个(包括其任何衍生标准或分叉标准):EN 12253:2004“Dedicated Short-Range Communication–Physical layer using microwave at5.8GHz(review)”;EN 12795:2002“Dedicated Short-Range Communication(DSRC)–DSRCData link layer:Medium Access and Logical Link Control(review)”;EN 12834:2002“Dedicated Short-Range Communication–Application layer(review)”;和EN13372:2004“Dedicated Short-Range Communication(DSRC)–DSRC profiles for RTTTapplications(review)”;EN ISO 14906:2004“Electronic Fee Collection–Applicationinterface”。
在美国、欧洲和亚洲,DSRC消息以5.9GHz发射。在美国,DSRC消息被分配5.9GHz波段中的75MHz频谱。在欧洲和亚洲,DSRC消息被分配5.9GHz波段中的30MHz频谱。因此,无线消息不是DSRC消息,除非它在5.9GHz波段中工作。无线消息也不是DSRC消息,除非它是由DSRC无线电装置的DSRC发射器传输的。
因此,DSRC消息不是以下各项中的任何消息:WiFi消息;3G消息;4G消息;LTE消息;毫米波通信消息;蓝牙信息;卫星通信;以及由密钥卡(key fob)以315MHz或433.92MHz发送或广播的短程无线电消息。例如,在美国,用于遥控无钥匙系统的密钥卡包括以315MHz工作的短程无线电发射器,并且来自该短程无线电发射器的传输或广播不是DSRC消息,因为例如这种传输或广播不符合任何DSRC标准,不是由DSRC无线电装置的DSRC发射器传输的,并且不是以5.9GHz传输的。在另一示例中,在欧洲和亚洲,遥控无钥匙系统的密钥卡包括以433.92MHz工作的短程无线电发射器,并且由于与上述美国遥控无钥匙系统相似的原因,来自该短程无线电发射器的传输或广播不是DSRC消息。
由于附加原因,作为遥控无钥匙进入系统的组件的密钥卡的无线消息不是DSRC消息。例如,DSRC消息的载荷还需要包括描述各种数据类型的大量车辆数据的数字数据。一般地,DSRC消息总是至少包括传输DSRC消息的车辆的唯一标识符以及该车辆的GPS数据。与对于其他类型的非DSRC无线消息可行的带宽相比,这种数据量需要更大的带宽。例如,图4和图5描绘了被称为BSM的特定类型DSRC消息的允许载荷的示例。作为遥控无钥匙进入系统组件的密钥卡的无线消息不是DSRC信息,因为它们不包括DSRC标准下允许的载荷。例如,密钥卡仅传输包括与密钥卡配对的车辆所已知的数字密钥的无线消息;因为分配给这些传输的带宽非常小,所以没有足够的带宽将其他数据包括在载荷中。相比之下,DSRC消息被分配了大量的带宽,并且需要包括更丰富的数据量,例如包括传输DSRC消息的车辆的唯一标识符和GPS数据。
在一些实施例中,配备DSRC的车辆不包括传统的全球定位系统单元(“GPS单元”),而是包括符合DSRC的GPS单元。传统GPS单元提供描述传统GPS单元的位置的位置信息,其精度为传统GPS单元的实际位置的正负10米。相比之下,符合DSRC的GPS单元提供的GPS数据描述符合DSRC的GPS单元的位置,其精度为符合DSRC的GPS单元的实际位置的正负1.5米。这种程度的精度被称为“车道级精度”,因为例如道路的车道通常约为3米宽,正负1.5米的精度足以识别车辆在道路的哪个车道上行驶。
在一些实施例中,符合DSRC的GPS单元可操作以在开阔空间下在68%的时间识别、监测和跟踪其实际位置的1.5米内的二维位置。
参考图1A,描绘了根据一些实施例的干扰管理系统199的操作环境100。如图所示,操作环境100包括以下元件:车辆123;以及端点124。这些元件通过网络105彼此通信耦合。
尽管在图1A中描绘了一个车辆123、一个端点124和一个网络105,但是在实践中,操作环境100可以包括一个或多个车辆123、一个或多个端点124以及一个或多个网络105。
网络105可以是有线或无线的传统类型,并且可以具有许多不同的配置,包括星形配置、令牌环配置或其他配置。此外,网络105可以包括局域网(LAN)、广域网(WAN)(例如因特网),或者多个设备和/或实体可以通过其进行通信的其他互连数据路径。在一些实施例中,网络105可以包括对等网络。网络105还可以耦合到或可以包括电信网络的部分,用于以各种不同的通信协议发送数据。在一些实施例中,网络105包括
Figure BDA0002110793000000111
通信网络或蜂窝通信网络,用于发送和接收数据,包括经由短消息服务(SMS)、多媒体消息服务(MMS)、超文本传输协议(HTTP)、直接数据连接、无线应用协议(WAP)、电子邮件、DSRC、全双工无线通信、毫米波、WiFi(基础设施模式)、WiFi(自组织模式)、可见光通信、TV空白区通信和卫星通信。网络105还可以包括移动数据网络,该移动数据网络可以包括3G、4G、LTE、LTE-V2V、LTE-V2X、LTE-D2D、VoLTE、LTE-5G或任何其他移动数据网络或者移动数据网络的组合。此外,网络105可以包括一个或多个IEEE 802.11无线网络。
以下是网络105的端点:车辆123;以及端点124。
车辆123是任何类型的联网车辆。例如,车辆123是以下类型的车辆之一:小汽车;卡车;运动型多功能车;公共汽车;半卡车;机器人小汽车;无人机或任何其他基于道路的运输工具。在一些实施例中,车辆123是配备DSRC的车辆。
在一些实施例中,车辆123是自主车辆或半自主车辆。例如,车辆123包括一组高级驾驶员辅助系统(一组ADAS系统),其向车辆123提供足以使车辆123成为自主车辆的自主特征。
国家高速公路交通安全管理局(NHTSA)已经定义了不同级别的自主车辆,例如0级、1级、2级、3级、4级和5级。如果自主车辆具有比另一自主车辆高的级别号(例如,级别3是比级别2或1高的级别号),则具有较高级别号的自主车辆相对于具有较低级别号的车辆提供了自主特征的更多组合和数量。下面将简要介绍不同级别的自主车辆。
0级:安装在车辆上的一组ADAS系统不具有车辆控制。该组ADAS系统可以向车辆驾驶员发出警告。0级车辆不是自主或半自主车辆。
1级:驾驶员必须随时准备好接管对自主车辆的驾驶控制。安装在自主车辆中的一组ADAS系统可以提供自主特征,诸如以下一项或多项:自适应巡航控制(ACC);和自动转向停车辅助和车道保持辅助(LKA)类型II,以任何组合。
2级:驾驶员有义务检测道路环境中的物体和事件,并且在安装在自主车辆中的一组ADAS系统未能正确响应(基于驾驶员的主观判断)的情况下进行响应。安装在自主车辆中的该组ADAS系统执行加速、制动和转向。安装在自主车辆中的该组ADAS系统可以在驾驶员接管后立即停用。
3级:在已知的有限环境(如高速公路)中,驾驶员可以安全地将注意力从驾驶任务上转移开,但仍必须准备好在需要时接管对自主车辆的控制。
4级:安装在自主车辆上的一组ADAS系统可以在除诸如恶劣天气的一些环境之外的所有环境中控制自主车辆。只有在安全的情况下,驾驶员才能启用自动系统(由安装在车辆上的一组ADAS系统组成)。当自动系统启用时,自动车辆不需要驾驶员注意就能安全运行并符合公认的规范。
5级:除了设置目的地和启动系统,不需要人工干预。自动系统可以驾驶到任何合法的地点,并自行做出决定(这可能会基于车辆所在的司法管辖区而有所不同)。
高度自主车辆(HAV)是3级或更高级别的自主车辆。
因此,在一些实施例中,车辆123是以下各种车辆之一:1级自主车辆;2级自主车辆;3级自主车辆;4级自主车辆;5级自动车辆;和HAV。
在一些实施例中,车辆123包括以下元件:处理器125;存储器127;通信单元145;和干扰管理系统199。
在一些实施例中,处理器125和存储器127可以是车载计算机系统(诸如下面参考图2描述的计算机系统200)的元件。车载计算机系统可操作以引起或控制车辆123的干扰管理系统199的操作。车载计算机系统可操作以访问和执行存储在存储器127上的数据,以提供此处描述的车辆123的干扰管理系统199或其元件(例如参见图2)的功能。车载计算机系统可操作以执行干扰管理系统199,干扰管理系统199使得车载计算机系统执行下面参考图3描述的一个或多个方法300的一个或多个步骤。
在一些实施例中,处理器125和存储器127可以是车载单元的元件。车载单元包括电子控制单元(这里称为ECU)或车载计算机系统,其可操作以引起或控制干扰管理系统199的操作。车载单元可操作以访问和执行存储在存储器127上的数据,以提供这里描述的干扰管理系统199或其元件的功能。车载单元可操作以执行干扰管理系统199,干扰管理系统199使得车载单元执行下面参考图3描述的一个或多个方法300的一个或多个步骤。在一些实施例中,图2中描绘的计算机系统200是车载单元的示例。
在一些实施例中,车辆123可以包括传感器组。传感器组可以包括一个或多个传感器,这些传感器可操作以测量车辆123外部的物理环境。例如,传感器组可以包括记录车辆123附近的物理环境的一个或多个物理特性的一个或多个传感器。存储器127可以存储描述由传感器组记录的一个或多个物理特性的传感器数据。
在一些实施例中,车辆123的传感器组可以包括以下车辆传感器中的一个或多个:相机;LIDAR传感器;雷达传感器;激光高度计;红外探测器;运动探测器;恒温器;声音探测器、一氧化碳传感器;二氧化碳传感器;氧气传感器;质量空气流量传感器;发动机冷却剂温度传感器;节气门位置传感器;曲轴位置传感器;汽车发动机传感器;阀门定时器;空燃比计;盲点测量仪;路侧探测器;缺陷探测器;霍尔效应传感器、歧管绝对压力传感器;停车传感器;雷达测速仪;速度计;速度传感器;轮胎压力监测传感器;扭矩传感器;变速器流体温度传感器;涡轮速度传感器(TSS);可变磁阻传感器;车速传感器(VSS);水传感器;车轮速度传感器;和任何其他类型的汽车传感器。
处理器125包括算术逻辑单元、微处理器、通用控制器或一些其他处理器阵列,以执行计算并向显示设备提供电子显示信号。处理器125处理数据信号并且可以包括各种计算体系结构,包括复杂指令集计算机(CISC)体系结构、精简指令集计算机(RISC)体系结构或实现指令集组合的体系结构。车辆123可以包括一个或多个处理器125。其他处理器、操作系统、传感器、显示器和物理配置也是可以的。
存储器127是存储可由处理器125访问和执行的指令或数据的非暂时性存储器。指令或数据可以包括用于执行这里描述的技术的代码。存储器127可以是动态随机存取存储器(DRAM)设备、静态随机存取存储器(SRAM)设备、闪存或某种其他存储设备。在一些实施例中,存储器127还包括非易失性存储器或类似的永久存储设备和介质,包括硬盘驱动器、软盘驱动器、CD ROM设备、DVD ROM设备、DVD RAM设备、DVD RW设备、闪存设备或用于更永久地存储信息的某种其他大容量存储设备。存储器127的一部分可以被预留用作缓冲器或虚拟随机存取存储器(虚拟RAM)。车辆123可以包括一个或多个存储器127。
在一些实施例中,存储器127将这里描述的任何数据存储为数字数据。在一些实施例中,存储器127存储干扰管理系统199提供其功能所需的任何数据。
通信单元145往返于网络105或另一通信信道发送数据和接收数据。在一些实施例中,通信单元145可以包括DSRC收发器、DSRC接收器以及使车辆123成为配备DSRC的设备所必需的其他硬件或软件。
在一些实施例中,通信单元145包括用于直接物理连接到网络105或另一通信信道的端口。例如,通信单元145包括用于与网络105进行有线通信的USB、SD、CAT-5或类似端口。在一些实施例中,通信单元145包括无线收发器,用于使用包括以下的一种或多种无线通信方法与网络105或其他通信信道交换数据:IEEE 802.11;IEEE 802.16,
Figure BDA0002110793000000141
EN ISO14906:2004“Electronic Fee Collection–Application interface”;EN 11253:2004“Dedicated Short-Range Communication–Physical layer using microwave at 5.8GHz(review)”;EN 12795:2002“Dedicated Short-Range Communication(DSRC)–DSRC Datalink layer:Medium Access and Logical Link Control(review)”;EN 12834:2002“Dedicated Short-Range Communication–Application layer(review)”;EN 13372:2004“Dedicated Short-Range Communication(DSRC)–DSRC profiles for RTTTapplications(review)”;在2014年8月28日提交的题为“Full-Duplex CoordinationSystem”的美国专利申请14/471,387中描述的通信方法;或者另一合适的无线通信方法。
在一些实施例中,通信单元145包括全双工协调系统,如在2014年8月28日提交的题为“Full-Duplex Coordination System”的美国专利申请14/471,387中所描述的,其全部内容通过引用并入于此。
在一些实施例中,通信单元145包括蜂窝通信收发器,用于通过蜂窝通信网络发送和接收数据,包括经由短消息服务(SMS)、多媒体消息服务(MMS)、超文本传输协议(HTTP)、直接数据连接、WAP、电子邮件或另一合适类型的电子通信。在一些实施例中,通信单元145包括有线端口和无线收发器。通信单元145还提供到网络105的其他常规连接,用于使用标准网络协议来分发文件或媒体对象,所述标准网络协议包括TCP/IP、HTTP、HTTPS和SMTP、毫米波、DSRC等。
在一些实施例中,通信单元145包括:第一V2X无线电装置147;和第二V2X无线电装置148。
第一V2X无线电装置147是包括V2X发射器和V2X接收器的电子设备,其可操作以经由任何V2X协议来发送和接收无线消息。例如,第一V2X无线电装置147可操作以经由DSRC来发送和接收无线消息。V2X发射器可操作以在5.9GHz波段上传输和广播DSRC消息。V2X接收器可操作以在5.9GHz波段上接收DSRC消息。第一V2X无线电装置147包括七个信道(例如DSRC信道号172、174、176、178、180、182和184),这些信道中的至少一个被预留用于发送和接收BSM(例如,DSRC信道号172被预留用于BSM)。在一些实施例中,这些信道中的至少一个被预留用于发送和接收PSM,如在2017年10月27日提交的题为“PSM Message-based DeviceDiscovery for a Vehicular Mesh Network”的美国专利申请号15/796,296中所描述的,其全部内容通过引用并入于此。在一些实施例中,DSRC信道号172被预留用于发送和接收PSM。在一些实施例中,DSRC信道号176被预留用于发送和接收PSM。
在一些实施例中,第一V2X无线电装置147包括存储控制用于广播BSM的频率的数字数据的非暂时性存储器。在一些实施例中,非暂时性存储器存储车辆123的GPS数据的缓冲版本,使得车辆123的GPS数据被作为由第一V2X无线电装置147定期广播的BSM的元素来广播。
在一些实施例中,第一V2X无线电装置147包括使车辆123符合DSRC标准所需的任何硬件或软件。在一些实施例中,图2中描绘的符合DSRC的GPS单元250是第一V2X无线电装置147的元件。
第二V2X无线电装置148是包括V2X发射器和V2X接收器的电子设备,其可操作以经由任何V2X协议发送和接收无线消息。第二V2X无线电装置148提供类似于第一V2X无线电装置147的功能,因此,这里不再重复该描述。
在一些实施例中,第一V2X无线电装置147包括专用于发送和/或接收特定类型无线消息的单个信道。例如,第一V2X无线电装置147包括专用于发送和接收BSM的单个信道。例如,参见图1B,其中第一V2X无线电装置147包括专用于发送和接收BSM的信道172。在一些实施例中,第一V2X无线电装置147包括专用于发送和接收BSM的单个信道,第二V2X无线电装置148包括可操作以发送和接收非BSM的任何V2X消息的多个其他信道。例如,第二V2X无线电装置148包括如图1B所示的六个其他信道,这些信道可操作以发送和接收不是BSM的任何V2X消息。
在另一个示例中,第一V2X无线电装置147包括专用于接收PSM的单个信道,第二V2X无线电装置148包括可操作以发送和接收非PSM的任何V2X消息的多个其他信道。
在一些实施例中,第一V2X无线电装置147是专用于发送和接收BSM的第一DSRC无线电装置。第一V2X无线电装置147包括第一DSRC无线电收发器。第二V2X无线电装置148是第二DSRC无线电装置,其发送和接收不是BSM的任何DSRC消息。第二V2X无线电装置148包括第二DSRC无线电收发器。参见例如图1C。因此,在一些实施例中,车辆123是支持DSRC的车辆,其包括两个不同的DSRC无线电装置。
在一些实施例中,干扰管理系统199包括软件,其可操作以在由处理器125执行时使处理器125执行下面参考图3描述的方法300的一个或多个步骤。将在下面更详细地描述根据一些实施例的干扰管理系统199的功能。
在一些实施例中,干扰管理系统199使用包括现场可编程门阵列(FPGA)或专用集成电路(ASIC)的硬件来实现。在一些其他实施例中,干扰管理系统199使用硬件和软件的组合来实现。
端点124是可操作以发送和接收V2X通信的任何电子设备。例如,端点124是电子设备或另一联网车辆,包括类似于通信单元145的通信单元。在一些实施例中,端点124是智能手机、平板计算机、个人计算机、路侧单元或者包括通信单元145的某种其他基于处理器的计算设备。在一些实施例中,端点124是配备DSRC的设备,其可操作以发送和接收DSRC消息。
全双工通信通常包括用于与另一实体发送和接收消息的单个信道,并具有同时发送和接收消息的选项。相比之下,半双工通信不包括同时发送和接收消息的选项。
DSRC越来越多地被包括在车辆中,因为它是许多ADAS系统或自主驾驶系统提供其功能所需的传感器数据的源。在美国,有七个不同的信道专用于DSRC,这七个信道中的一个信道通常用于BSM的传输。例如,该信道大约99%的时间用于BSM传输,因此,出于本说明书的目的,该信道被称为“专用于BSM的信道”或“为BSM预留的信道”。专用于BSM的信道(即信道172)得到了大量使用,因为道路上的每辆支持DSRC的车辆都以规则的间隔(例如每0.10秒一次)发送BSM。这七个信道中的另一个通常可以以类似于信道172通常用于BSM的方式用于PSM,因此,该信道被称为“专用于PSM”或“为PSM预留”。例如,认为信道176通常可以用于PSM。
在一些实施例中,当车辆123在道路上行驶时,这两个信道(即,用于BSM的第一信道,用于PSM的第二信道)几乎一直在使用,几乎总是发送或接收BSM或PSM。结果,由于大量BSM和PSM引起的相邻信道干扰,其余的五个专用于DSRC消息的信道将难以使用。在一些实施例中,干扰管理系统199通过消除相邻信道干扰来解决这个问题,使得在相邻信道上传输一个或多个DSRC消息的同时,可以在一个信道上接收DSRC消息。
在一些实施例中,车辆123配备有两个或更多个不同的DSRC无线电装置(例如,第一V2X无线电装置147和第二V2X无线电装置148)。每个DSRC无线电装置都包括DSRC发射器和DSRC接收器。其中一个DSRC无线电装置仅专用于接收BSM。其他DSRC无线电装置用于接收任何其他非BSM的DSRC消息。
在一些实施例中,存储器127存储掩码数据(mask data)。掩码数据包括描述七个DSRC信道中每一个信道的传输掩码的数字数据。参见例如图1B和图1C中描绘的掩码数据190。
在一些实施例中,干扰管理系统199包括代码和例程,它们可操作以在由处理器125执行时使得处理器125监测七个DSRC信道中的每一个。处理器125可以访问存储在存储器127中的掩码数据190。例如,掩码数据190被存储在第一V2X无线电装置147和第二V2X无线电装置148中的一个或多个的缓冲器中,使得它可被处理器125快速检索。
在一些实施例中,干扰管理系统199包括代码和例程,它们可操作以在由处理器125执行时使得处理器125在DSRC数据包被发送时(例如,每隔0.10秒)连续分析每个DSRC信道。
在一些实施例中,干扰管理系统199包括代码和例程,它们可操作以在由处理器125执行时使得处理器125基于以下来确定每个DSRC信道上所存在的相邻信道干扰:(1)所传输的DSRC消息的波形(例如,特定DSRC消息的波形数据191);(2)用于数据包传输的信道上所存在的波形的能量水平;以及(3)每个信道的掩码数据。
图1B和图1C描绘了波形数据191的示例。波形数据191是描述DSRC消息的波形的数字数据。DSRC消息的波形在发送或接收该消息时可由处理器125在特定的DSRC信道上测量。例如,DSRC消息的波形可基于波形随时间的能量水平或描述波形的其他可测量参数由处理器125在特定的DSRC信道上进行测量。
在一些实施例中,干扰管理系统199包括代码和例程,它们可操作以在由处理器125执行时使得处理器125在接收特定DSRC信道上的DSRC消息时测量该特定DSRC信道的波形数据191。能量水平可能不需要由处理器125测量,因为在已包含在DSRC消息中的信息中对它进行描述。例如,DSRC消息包括描述DSRC消息的能量水平的一个或多个比特数据。
图1B和图1C描绘了根据一些实施例的干扰数据192的示例。在一些实施例中,在传输DSRC消息时,干扰管理系统199分析每个相邻DSRC信道的掩码数据190和传输的数据包的波形(例如传输的数据包的波形数据191),以确定在该特定时间该DSRC信道的干扰数据192。干扰数据192是描述在特定DSRC信道上可测量的波形部分的数字数据,该波形部分归因于从相邻信道流入该特定DSRC信道的相邻信道干扰。例如,干扰管理系统199包括代码和例程,它们可操作以在由处理器125执行时使得处理器125考虑每个DSRC信道的传输掩码(如掩码数据190所描述的)和波形(如波形数据191所描述的),使得当通信单元145使用七个信道中的一个或多个传输DSRC消息时处理器125听到DSRC消息。例如,干扰管理系统199的代码和例程可操作以在由处理器125执行时使处理器125从由波形数据191描述的波形中消除由掩码数据190描述的传输掩码。
传输事件是V2X无线电装置的特定信道(例如,DSRC无线电装置的DSRC信道或V2X无线电装置的某种其他V2X信道)上的V2X传输(例如DSRC传输)。
在一些实施例中,波形数据191是描述在特定时间间隔在特定DSRC信道上出现的波形的可测量方面的数字数据。波形数据191所描述的波形不是静态值,而是描述在特定时间段内(例如在传输事件期间)出现在特定DSRC信道中的波形的函数。该波形可以包括在特定DSRC信道上传输的DSRC消息。干扰数据192是描述在传输事件期间存在于相邻DSRC信道上的相邻信道干扰的数字数据。像波形数据191一样,干扰数据192描述在传输事件期间出现在特定DSRC信道上的相邻信道干扰的波形。掩码数据190是描述七个DSRC信道中的每个信道的传输掩码的数字数据。
在一些实施例中,干扰管理系统199包括软件,其可操作以在由处理器125执行时使得处理器125监测对第一V2X无线电装置147和第二V2X无线电装置148可用的每个DSRC信道。该软件可以访问存储在存储器127中的掩码数据190。
在一些实施例中,干扰管理系统199包括软件,其可操作以在由处理器125执行时使得处理器125在传输事件中连续分析每个DSRC信道。对于每个传输事件和每个DSRC信道,干扰管理系统199包括软件,其可操作以在由处理器125执行时使得处理器125基于以下来确定每个DSRC信道上存在的相邻信道干扰:(1)传输的DSRC消息的波形;(2)在具有数据包传输的信道上存在的波形的能量水平;以及(3)每个信道的掩码数据190。对于每个传输事件和每个DSRC信道,干扰管理系统199包括软件,其可操作以在由处理器125执行时使得处理器125通过测量出现在该特定DSRC信道上的波形的能量水平和描述波形的其他可测量参数来确定每个DSRC信道的波形数据191。这些测量值由波形数据191描述。每个信道的掩码数据190都是已知的并存储在存储器127中。例如,每个传输的DSRC消息的掩码数据190都是已知的,并存储在存储器127中。对于每个传输事件和每个DSRC信道(即对于每个传输的DSRC消息),干扰管理系统199包括软件,其可操作以在由处理器125执行时使得处理器125分析掩码数据190和波形数据191,以确定在该传输事件中该DSRC信道的干扰数据192。对于每个传输事件和每个DSRC信道(即对于每个传输的DSRC消息),干扰管理系统199包括软件,其可操作以在由处理器125执行时使处理器125从由波形数据191描述的波形中消除由干扰数据192描述的相邻信道干扰波形,以得到描述在特定信道上接收到的一个或多个DSRC消息(或某种其他类型的V2X消息)的V2X消息数据193(例如,参见图1B和1C)。对于每个信道和每个间隔,重复该消除过程。这个消除过程的最终结果是V2X消息数据193。例如,对在第一信道上接收到的每个V2X消息重复该消除过程,使得在预留信道上传输的DSRC消息不会阻止每个V2X消息中所包括的V2X消息数据193被确定(或由V2X无线电装置接收/听到)。
在一些实施例中,V2X消息数据193描述V2X消息的载荷。例如,V2X消息数据193描述BSM的BSM数据195。在一些实施例中,V2X消息数据193描述DSRC消息或任何其他类型V2X消息的载荷。
现在参考图1B,描绘了根据一些实施例的操作环境101,其包括一组V2X无线电装置147、148和干扰管理系统199。
如图1B所示,V2X信道#172是为BSM预留的信道。第一V2X无线电装置147专用于使用V2X信道#172来发送和接收BSM。第二V2X无线电装置148可使用其他六个V2X信道(#174、#176、#178、#180、#182和#184)。如该实施例中所描述的,信道#176被预留用于接收PSM。
干扰管理系统199可以支持在一个信道(例如信道#174)上向第一实体传输DSRC消息,同时在相邻信道(例如信道#178)上从该同一实体接收DSRC消息,因为在另一信道(例如信道#174或信道#172)上引起的相邻信道干扰可以被干扰管理系统199消除或减少。没有其他方案提供根据一些实施例的由干扰管理系统199提供的这种功能。
在一些实施例中,干扰管理系统199可操作以允许DSRC发射器(例如端点124)持续在信道#172上传输低能量水平BSM(在本段中称为BSM#1)。干扰管理系统199随后消除由信道#172上的BSM#1在相邻信道#174、#176、#178、#180、#182和#184上引起的相邻信道干扰,使得由BSM#1引起的任何相邻信道干扰对于其余六个V2X信道被消除。没有其他方案提供根据一些实施例的由干扰管理系统199提供的这种功能。
现在参考图1C,描绘了根据的一些实施例的操作环境102,其包括一组DSRC无线电装置167、168和干扰管理系统199。
第一DSRC无线电装置167提供与图1A和图1B所描绘的第一V2X无线电装置147相同的功能,只是在图1C中,第一DSRC无线电装置167可操作以仅发送和接收DSRC传输,而第一V2X无线电装置147可操作以发送和接收任何类型的V2X消息,包括DSRC消息。类似地,第二DSRC无线电装置168提供与图1A和图1B所描绘的第二V2X无线电装置148相同的功能,只是在图1C中,第二DSRC无线电装置168可操作以仅发送和接收DSRC传输,而第二V2X无线电装置148可操作以发送和接收任何类型的V2X消息,包括DSRC消息。
如图1C所示,DSRC信道#172是为BSM预留的信道。第一DSRC无线电装置167专用于使用DSRC信道#172来发送和接收BSM。第二DSRC无线电装置168可使用其他六个DSRC信道(#174、#176、#178、#180、#182和#184)。如该实施例中所描述的,信道#176被预留用于接收PSM。
如图1C所示,干扰管理系统199可以支持在一个信道(例如信道#174)上向第一实体传输DSRC消息,同时在相邻信道(例如信道#178)上从该同一实体接收DSRC消息,因为在另一信道(例如信道#174或信道#172)上引起的相邻信道干扰可以被干扰管理系统199消除或减少。没有其他方案提供根据一些实施例的由干扰管理系统199提供的这种功能。
在一些实施例中,如图1C所描绘的干扰管理系统199可操作以允许DSRC发射器(例如端点124)持续在信道#172上发送低能量水平BSM(在本段中称为BSM#1)。干扰管理系统199随后消除由信道#172上的BSM#1在相邻信道#174、#176、#178、#180、#182和#184上引起的相邻信道干扰,使得由BSM#1引起的任何相邻信道干扰对于其余六个V2X信道被消除。没有其他方案提供根据一些实施例的由干扰管理系统199提供的这种功能。
示例计算机系统
现在参考图2,描绘了示出根据一些实施例的包括干扰管理系统199的示例计算机系统200的框图。在一些实施例中,计算机系统200可以包括专用计算机系统,该专用计算机系统被编程为执行下面参考图3描述的一个或多个方法300的一个或多个步骤。在一些实施例中,计算机系统200是车辆123的车载计算机。在一些实施例中,计算机系统200是车辆123的车载单元。在一些实施例中,计算机系统200是车辆123的电子控制单元(ECU)、汽车音响本体(head unit)或某种其他基于处理器的计算设备。
根据一些示例,计算机系统200包括以下元件中的一个或多个:干扰管理系统199;处理器225;通信单元245;存储器227;和符合DSRC的GPS单元250。计算机系统200的组件通过总线220通信耦合。
在所示实施例中,处理器225通过信号线238通信耦合到总线220。通信单元245通过信号线240通信耦合到总线220。存储器127通过信号线242通信耦合到总线220。符合DSRC的GPS单元250通过信号线244通信耦合到总线220。
处理器225提供与上面参考图1A描述的处理器125类似的功能,因此,这里不再重复该描述。通信单元245提供与上面参考图1A描述的通信单元145类似的功能,因此,这里不再重复该描述。存储器227提供与上面参考图1A描述的存储器127类似的功能,因此,这里不再重复该描述。
存储器227可以存储上面参考图1A、图1B和图1C或下面参考图2-图6描述的任何数据。存储器227可以存储计算机系统200提供其功能所需的任何数据。
在一些实施例中,符合DSRC的GPS单元250包括使车辆123、计算机系统200或符合DSRC的GPS单元250符合以下DSRC标准(包括其任何衍生标准或分叉标准)中的一个或多个所必需的任何硬件和软件:EN 12253:2004“Dedicated Short-Range Communication–Physical layer using microwave at 5.8GHz(review)”;EN 12795:2002“DedicatedShort-Range Communication(DSRC)–DSRC Data link layer:Medium Access andLogical Link Control(review)”;EN 12834:2002“Dedicated Short-RangeCommunication–Application layer(review)”;和EN 13372:2004“Dedicated Short-Range Communication(DSRC)–DSRC profiles for RTTT applications(review)”;EN ISO14906:2004“Electronic Fee Collection–Application interface”。
在一些实施例中,符合DSRC的GPS单元250可操作以以车道级精度提供描述车辆123的位置的GPS数据。例如,车辆123正在道路的车道上行驶。车道级精度意味着车辆123的位置由GPS数据如此精确地描述,使得车辆123在道路内行驶的车道可以基于由符合DSRC的GPS单元250提供的该车辆123的GPS数据来精确地确定。在一些实施例中,GPS数据是BSM数据195(例如参见图4和图5)或PSM数据197(例如参见图6)的元素。
在一些实施例中,符合DSRC的GPS单元250包括与GPS卫星无线通信以检索GPS数据的硬件,GPS数据以符合DSRC标准的精度描述车辆123的地理位置。DSRC标准要求GPS数据足够精确,以推断两个车辆(例如其中一辆是车辆123)是否位于相邻的行驶车道中。在一些实施例中,符合DSRC的GPS单元250可操作以在开阔视野下在68%的时间识别、监测和跟踪其实际位置1.5米内的二维位置。由于驾驶车道通常不小于3米宽,每当GPS数据的二维误差小于1.5米时,这里描述的干扰管理系统199可以分析由符合DSRC的GPS单元250提供的GPS数据,并基于同时在道路上行驶的两辆或更多辆不同车辆(例如其中一辆是车辆123)的相对位置来确定车辆123行驶在哪个车道上。
与符合DSRC的GPS单元250相比,不符合DSRC标准的传统GPS单元不能以车道级精度确定车辆123的位置。例如,典型的车道大约3米宽。然而,传统的GPS单元仅具有相对于车辆123的实际位置正负10米的精度。结果,这种传统的GPS单元不足以精确到仅基于GPS数据来识别车辆123的行驶车道;相反,仅具有传统GPS单元的系统必须利用诸如相机之类的传感器来识别车辆123的行驶车道。识别车辆的行驶车道是有益的,例如因为在一些实施例中,它可以使干扰管理系统199能够更准确地识别包括计算机系统200并在具有多条行驶车道的道路中行驶的车辆123的位置。
在图2所示的图示实施例中,干扰管理系统199包括:通信模块202;和确定模块204。
通信模块202可以是软件,包括用于分别处理干扰管理系统199和图1A、图1B和图1C的操作环境100、101、102的其他组件之间的通信的例程。
在一些实施例中,通信模块202可以是可由处理器225执行的一组指令,用于提供下面描述的用于处理干扰管理系统199和计算机系统200的其他组件之间的通信的功能。在一些实施例中,通信模块202可以存储在计算机系统200的存储器227中,并且可以由处理器225访问和执行。通信模块202可以适于通过信号线222与处理器225和计算机系统200的其他组件合作和通信。
通信模块202经由通信单元245向操作环境100的一个或多个元件发送数据并从其接收数据。例如,通信模块202经由通信单元245接收或发送存储在存储器127上的一些或全部数字数据。通信模块202可以经由通信单元245发送或接收上面参考图1A、图1B、图1C或下面参考图2-图6描述的任何数字数据或消息。
在一些实施例中,通信模块202从干扰管理系统199的组件接收数据,并将数据存储在存储器227(或者存储器227的缓冲器或高速缓存,或者图2中未示出的独立缓冲器或高速缓存)中。例如,通信模块202从通信单元245接收BSM数据195,并将BSM数据195存储在存储器227中。
在一些实施例中,通信模块202可以处理干扰管理系统199的组件之间的通信。例如,通信模块202将掩码数据190从存储器227传输到确定模块204。
在一些实施例中,确定模块204可以是可由处理器225执行的一组指令,该组指令可操作以在由处理器225执行时使得处理器225执行下面参考图3描述的方法300的一个或多个步骤。在一些实施例中,确定模块204可以存储在计算机系统200的存储器227中,并且可以由处理器225访问和执行。确定模块204可以适于经由信号线224与处理器225和计算机系统200的其他组件合作和通信。
示例处理
图3描绘了根据一些实施例的用于减少联网车辆的相邻信道干扰的方法300。方法300的步骤可以任何顺序执行,而不一定按图3所示的顺序。
在步骤301,干扰管理系统监测七个DSRC信道中的每一个。例如,干扰管理系统在传输事件时连续分析DSRC信道中的每一个。在一些实施例中,七个DSRC信道是一个或多个V2X无线电装置的元件。V2X无线电装置的示例是DSRC无线电装置。
在步骤303,对于每个传输事件和每个DSRC信道,干扰管理系统确定在该DSRC信道上可测量的波形。这可以通过测量在一段时间内出现在特定DSRC信道上的波形的能量水平来实现。该测量值由波形数据描述。
在步骤305,对于每个传输事件和每个DSRC信道,干扰管理系统分析掩码数据(对于每个信道是恒定的且已知的)和波形数据(可变的并且在步骤303中测量)以确定描述在该特定传输事件期间在该特定DSRC信道上可听到的相邻信道干扰波形的干扰数据。该相邻信道干扰波形由干扰数据描述。
在步骤307,对于每个传输事件和每个DSRC信道,干扰管理系统从由波形数据描述的波形中消除由干扰数据描述的相邻信道干扰波形。这产生DSRC消息,DSRC消息可以在该特定时间间隔在该特定信道上被听到。
在一些实施例中,消除相邻信道干扰波形包括从由波形数据描述的波形中减少或最小化相邻信道干扰波形。在一些实施例中,消除相邻信道干扰波形包括从由波形数据描述的波形中消除或基本消除相邻信道干扰波形。
在步骤308,每当使用特定的DSRC信道发送DSRC消息时,重复该方法300以下步骤中的一个或多个:步骤303;步骤305;和步骤307。
在步骤309,干扰管理系统可以在一个信道(例如信道#174)上向第一实体发送DSRC消息,同时在相邻信道(例如信道#178)上从该同一实体接收DSRC消息,因为可以消除在另一信道(例如信道#174)上引起的相邻信道干扰。以这种方式,干扰管理系统有益地实现针对DSRC应用的全双工通信。
在步骤311,干扰管理系统允许DSRC发射器继续在信道#172上传输低能量级BSM(在本段中称为BSM#1)。干扰管理系统随后消除由信道#172上的BSM#1在相邻信道#174、#176、#178、#180、#182和#184上引起的相邻信道干扰,使得由BSM#1引起的任何相邻信道干扰对于其余六个DSRC信道被消除。
现在参考图4,描绘了示出根据一些实施例的BSM数据195的示例的框图。
用于传输BSM的规则间隔可以由用户配置。在一些实施例中,该间隔的默认设置可以是每0.10秒或基本每0.10秒传输BSM。
BSM在5.9GHz DSRC波段上广播。DSRC范围可以是大致1000米。在一些实施例中,DSRC范围可以包括大致100米至大致1000米的范围。DSRC范围通常为300至500米,取决于诸如地形和配备DSRC的端点之间的遮挡等变量。
现在参考图5,描绘了示出根据一些实施例的BSM数据195的示例的框图。
BSM可以包括两个部分。这两个部分可以包括不同的BSM数据195,如图5所示。
BSM数据195的部分1可以描述以下中的一个或多个:车辆的GPS数据;车辆前进方向;车速;车辆加速度;车辆方向盘角度;和车辆尺寸。
BSM数据195的部分2可以包括从可选元素列表中提取的可变数据元素集。包括在BSM的部分2中的一些BSM数据195是基于事件触发选择的,例如防抱死制动系统(ABS)被激活可以触发与车辆ABS系统相关的BSM数据195。
在一些实施例中,为了节省带宽,部分2的一些元素传输的频率较低。
在一些实施例中,BSM中所包括的BSM数据195包括车辆的当前快照。
现在参考图6,描绘了示出根据一些实施例的PSM数据197的示例的框图。在一些实施例中,PSM数据197的实例描述对于特定地理位置特定行人(或一组行人)相对道路基础设施之间的关系。道路基础设施可以是包括车辆123的道路环境的元素,其接收包括PSM数据197的PSM消息。
如图所示,PSM数据197包括两部分:部分1;和部分2。
PSM数据197的部分1包括数字数据,该数字数据描述:支持DSRC的设备的GPS数据;和支持DSRC的设备的路径历史数据。
根据一些实施例,在图1B中描绘了GPS数据的元素。在一些实施例中,GPS数据由符合DSRC的GPS单元生成,使得在支持DSRC的设备的符合DSRC的GPS单元处于开阔视野下时包括在部分1中的GPS数据在68%的时间精确度达正负1.5米。
在一些实施例中,路径历史数据描述过去连续多次的历史GPS数据,使得路径历史数据描述支持DSRC的设备的历史路径。
PSM数据197的部分2包括数字数据,该数字数据描述:支持DSRC的设备在指定时间和范围内的路径预测(例如基于由部分1的路径历史数据指示的轨迹);携带支持DSRC的设备的行人的组大小;携带支持DSRC的设备的行人的组半径;对行人是否正在推婴儿车的估计(例如,基于他们的路径历史、轨迹、加速度、行走模式和由包括在部分1或部分2的数字数据指示的其他数据中的一项或多项,相对于推婴儿车的人的已知数据);对行人是否有穿过道路的意图的估计(例如,基于行人的轨迹);对行人是否正与动物一起行走的估计(例如,基于他们的路径历史、轨迹、加速度、行走模式和由包括在部分1或部分2中的数字数据指示的其他数据中的一项或多项,相对于与动物一起行走的行人的已知数据);如果估计行人正在与动物一起行走,则对与行人一起行走的动物类型的估计(例如,基于他们的路径历史、轨迹、加速度、行走模式和由包括在部分1或部分2中的数字数据指示的其他数据中的一项或多项,相对于特定动物类型或与这些动物一起行走的行人的已知数据);对行人是否正在利用非车辆前进装置的估计(例如,基于他们的路径历史、轨迹、加速度、行走模式和由包括在部分1或部分2中的数字数据指示的其他数据中的一项或多项,相对于骑自行车、踏板车、滑板或任何其他类型的非车辆前进装置的行人的已知数据)。
在以上描述中,出于解释的目的,阐述了许多具体细节,以便提供对说明书的透彻理解。然而,对于本领域技术人员来说明晰的是,没有这些具体细节也可以实施本公开。在某些情况下,结构和设备以框图形式示出,以避免使描述模糊。例如,以上可以主要参考用户界面和特定硬件来描述本发明的实施例。然而,本发明的实施例可以应用于能够接收数据和命令的任何类型的计算机系统,以及提供服务的任何外围设备。
在说明书中对“一些实施例”或“一些实例”的引用意味着结合实施例或实例描述的特定特征、结构或特性可以包括在说明书的至少一个实施例中。说明书中不同地方出现的短语“在一些实施例中”不一定都指相同的实施例。
详细描述的一些部分是根据对计算机存储器中数据比特的操作的算法和符号表示来呈现的。这些算法描述和表示是数据处理领域的技术人员用来最有效地将他们工作的实质传达给本领域其他技术人员的手段。这里的算法,一般来说,被认为是一个导致期望结果的自相一致的步骤序列。这些步骤是需要对物理量进行物理运算的那些步骤。通常,尽管不是一定地,这些量采取能够被存储、传输、组合、比较、以及以其他方式操纵的电信号或磁信号的形式。主要为了通用的原因,将这些信号称为比特、值、元素、符号、字符、术语、数字等有时被证明具有其方便性。
然而,应该记住,所有这些和类似的术语都与适当的物理量相关联,并且仅仅是应用于这些量的方便标签。除非特别声明,否则从下面的讨论中显而易见,应当理解,在整个描述中使用包括“处理”或“计算”或“运算”或“确定”或“显示”等术语的讨论指的是计算机系统或类似电子计算设备的动作和过程,该计算机系统或类似电子计算设备将表示为计算机系统的寄存器和存储器中的物理(电子)量的数据操纵和转换成类似地表示为计算机系统存储器或寄存器或其他这样的信息存储、传输或显示设备中的物理量的其他数据。
说明书的当前实施例还可以涉及用于执行这里的操作的装置。该装置可以为所需目的专门构造,或者它可以包括由存储在计算机中的计算机程序选择性激活或重新配置的通用计算机。这种计算机程序可以存储在计算机可读存储介质中,包括但不限于任何类型的盘,包括软盘、光盘、CD ROM和磁盘、只读存储器(ROM)、随机存取存储器(RAM)、EPROM、EEPROM、磁卡或光卡、闪存,包括具有非易失性存储器的USB钥匙、或任何类型的适于存储电子指令的介质,它们中每一种都耦合到计算机系统总线。
说明书可以采取一些完全硬件实施例、一些完全软件实施例或者一些包含硬件和软件元素的实施例的形式。在一些优选实施例中,该说明书以软件实现,包括但不限于固件、常驻软件、微码等。
此外,该描述可以采取可从计算机可用或计算机可读介质访问的计算机程序产品的形式,该介质提供由计算机或任何指令执行系统使用或与其结合使用的程序代码。出于本说明书的目的,计算机可用或计算机可读介质可以是能够包含、存储、传递、传播或传输由指令执行系统、装置或设备使用或与其结合使用的程序的任何装置。
适于存储或执行程序代码的数据处理系统将包括至少一个通过系统总线直接或间接耦合到存储器元件的处理器。存储器元件可以包括在程序代码的实际执行期间使用的本地存储器、大容量存储器和高速缓冲存储器,高速缓冲存储器提供至少一些程序代码的临时存储,以便减少在执行期间必须从大容量存储器检索代码的次数。
输入/输出或I/O设备(包括但不仅限于,键盘、显示器、指示设备,等等)可以直接或者通过中间的/O控制器耦合到系统。
网络适配器也可以耦合到系统,以使数据处理系统能够通过中间的私有或公共网络耦合到其他数据处理系统或远程打印机或存储设备。调制解调器、电缆调制解调器和以太网卡只是当前可用的几种网络适配器。
最后,这里呈现的算法和显示并不固有地与任何特定的计算机或其他装置相关。各种通用系统可以与根据本文教导的程序一起使用,或者可以证明构建更专用的装置来执行所需的方法步骤是方便的。各种这些系统所需的结构将从描述变得明晰。此外,说明书没有参考任何特定的编程语言进行描述。应当理解,可以使用各种编程语言来实现这里描述的说明书的教导。
出于说明和描述的目的,已经呈现了说明书实施例的前述描述。它并不旨在穷举或将说明书限制在所公开的精确形式。根据上述教导,许多修改方案和变化是可能的。意图是本公开的范围不受该详细描述的限制,而是受本申请的权利要求的限制。如本领域技术人员将理解的,在不脱离其精神或基本特征的情况下,说明书可以以其他特定形式实施。同样,模块、例程、特征、属性、方法和其他方面的特定命名和划分不是强制性的或重要的,并且实现说明书或其特征的机制可以具有不同的名称、划分或格式。此外,对于相关领域的普通技术人员来说明晰的是,本公开的模块、例程、特征、属性、方法和其他方面可以实现为软件、硬件、固件或三者的任意组合。而且,只要本说明书的组件(其示例是模块)被实现为软件,该组件就可以被实现为独立程序、更大程序的一部分、多个独立程序、静态或动态链接库、内核可加载模块、设备驱动程序,或者以计算机编程领域的普通技术人员现在或将来已知的任何其他方式来实现。另外,本公开绝不限于任何特定编程语言的实施例,或者任何特定操作系统或环境的实施例。因此,本公开旨在说明而非限制说明书的范围,说明书的范围在以下权利要求中阐述。

Claims (10)

1.一种用于减少相邻信道干扰的方法,包括:
由车载计算机对车辆对一切V2X无线电装置的信道监测V2X消息;
确定描述在监测所述信道时由所述车载计算机在所述信道上测量的波形的波形数据;
基于掩码数据确定描述相邻信道干扰波形的干扰数据,所述相邻信道干扰波形是在监测所述信道时由所述车载计算机在所述信道上测量的,其中所述波形包括所述相邻信道干扰波形;以及
通过消除由所述掩码数据描述的传输掩码来从由所述波形数据描述的所述波形中消除由所述干扰数据描述的所述相邻信道干扰波形,以生成描述所述V2X消息的基本不包括所述相邻信道干扰波形的版本的数字数据。
2.根据权利要求1所述的方法,其中,所述V2X无线电装置包括多个信道,所述多个信道包括所述信道和预留信道,其中所述预留信道与所述信道相邻,并且所述相邻信道干扰波形是由在所述预留信道上传输的无线消息引起的。
3.根据权利要求2所述的方法,其中,所述预留信道是为基本安全消息BSM预留的,并且所述相邻信道干扰波形描述由所述V2X无线电装置在所述预留信道上传输并且同时在所述信道上听到的基本安全消息BSM。
4.根据权利要求2所述的方法,其中,所述预留信道是为行人安全消息PSM预留的,并且所述相邻信道干扰波形描述由所述V2X无线电装置在所述预留信道上传输并且同时在所述信道上听到的行人安全消息PSM。
5.一种用于减少相邻信道干扰的系统,包括:
处理器,所述处理器通信地耦接到车辆对一切V2X无线电装置和非暂时性存储器,其中所述V2X无线电装置可操作以在所述V2X无线电装置的信道上接收V2X消息,并且所述非暂时性存储器存储计算机代码,所述计算机代码可操作以在由所述处理器执行时使所述处理器:
由所述处理器对所述信道监测所述V2X消息;
确定描述在监测所述信道时由所述处理器在所述信道上测量的波形的波形数据;
基于掩码数据确定描述相邻信道干扰波形的干扰数据,所述相邻信道干扰波形是在监测所述信道时由所述处理器在所述信道上测量的,其中所述波形包括所述相邻信道干扰波形;以及
通过消除由所述掩码数据描述的传输掩码来从由所述波形数据描述的所述波形中消除由所述干扰数据描述的所述相邻信道干扰波形,以生成描述所述V2X消息的基本不包括所述相邻信道干扰波形的版本的数字数据。
6.根据权利要求5所述的系统,其中,对所述信道监测包括所述处理器测量所述波形和所述相邻信道干扰波形。
7.根据权利要求5所述的系统,其中,所述V2X无线电装置包括多个信道,所述多个信道包括所述信道和预留信道,其中所述预留信道与所述信道相邻,并且所述相邻信道干扰波形是由在所述预留信道上传输的无线消息引起的。
8.根据权利要求7所述的系统,其中,所述预留信道是为基本安全消息BSM预留的,并且所述相邻信道干扰波形描述由所述V2X无线电装置在所述预留信道上传输并且同时在所述信道上听到的基本安全消息BSM。
9.根据权利要求7所述的系统,其中,所述预留信道是为行人安全消息PSM预留的,并且所述相邻信道干扰波形描述由所述V2X无线电装置在所述预留信道上传输并且同时在所述信道上听到的行人安全消息PSM。
10.一种计算机可读存储介质,所述计算机可读存储介质存储有指令,所述指令在由处理器执行时使所述处理器执行包括以下的操作:
由所述处理器对车辆对一切V2X无线电装置的信道监测V2X消息;
确定描述在监测所述信道时由所述处理器在所述信道上测量的波形的波形数据;
基于掩码数据确定描述相邻信道干扰波形的干扰数据,所述相邻信道干扰波形是在监测所述信道时由所述处理器在所述信道上测量的,其中所述波形包括所述相邻信道干扰波形;以及
通过消除由所述掩码数据描述的传输掩码来从由所述波形数据描述的所述波形中消除由所述干扰数据描述的所述相邻信道干扰波形,以生成描述所述V2X消息的基本不包括所述相邻信道干扰波形的版本的数字数据。
CN201910570731.2A 2018-06-29 2019-06-28 减少无线车辆消息的相邻信道干扰 Active CN110661585B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/024,400 2018-06-29
US16/024,400 US10819389B2 (en) 2018-06-29 2018-06-29 Reducing adjacent channel interference for wireless vehicular messages

Publications (2)

Publication Number Publication Date
CN110661585A CN110661585A (zh) 2020-01-07
CN110661585B true CN110661585B (zh) 2022-05-03

Family

ID=67060261

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910570731.2A Active CN110661585B (zh) 2018-06-29 2019-06-28 减少无线车辆消息的相邻信道干扰

Country Status (4)

Country Link
US (1) US10819389B2 (zh)
EP (1) EP3588816B1 (zh)
JP (1) JP7172879B2 (zh)
CN (1) CN110661585B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11697410B2 (en) * 2019-03-07 2023-07-11 Toyota Jidosha Kabushiki Kaisha Vehicle-to-everything communication-based lane change collision avoidance warning
US10896556B1 (en) * 2019-12-21 2021-01-19 Continental Automotive Systems, Inc. Intelligent method of selecting incoming message channels in a V2X communication
US11663907B2 (en) 2021-06-21 2023-05-30 Ettifos Co. Method and apparatus for transmitting and receiving vehicle-to-pedestrian (V2P) message
KR102354630B1 (ko) * 2021-06-21 2022-01-25 에티포스 시오 V2p 메시지를 송수신하기 위한 방법 및 장치
US11904906B2 (en) * 2021-08-05 2024-02-20 Argo AI, LLC Systems and methods for prediction of a jaywalker trajectory through an intersection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104067546A (zh) * 2012-01-24 2014-09-24 高通股份有限公司 用于减少和/或消除自干扰效应的方法和装置
CN107872827A (zh) * 2017-10-31 2018-04-03 深圳无线电检测技术研究院 一种无线干扰测试方法和系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6934387B1 (en) * 1999-12-17 2005-08-23 Marvell International Ltd. Method and apparatus for digital near-end echo/near-end crosstalk cancellation with adaptive correlation
JP2008172496A (ja) 2007-01-11 2008-07-24 Denso Corp Dsrc車載器
JP2009212590A (ja) * 2008-02-29 2009-09-17 Fujitsu Ltd 無線通信装置
US8600411B2 (en) * 2012-01-23 2013-12-03 Qualcomm Incorporated Methods and apparatus for controlling the transmission and/or reception of safety messages by portable wireless user devices
US9786178B1 (en) 2013-08-02 2017-10-10 Honda Motor Co., Ltd. Vehicle pedestrian safety system and methods of use and manufacture thereof
WO2015130337A1 (en) * 2014-02-28 2015-09-03 Shahrnaz Azizi User station supporting dynamic channel selection and method for operation on dsrc band
EP3304971B1 (en) * 2015-06-08 2018-12-12 Nec Corporation Method for multi-channel operation in a vehicular network and vehicular network
US10236837B2 (en) * 2016-03-08 2019-03-19 Skyworks Solutions, Inc. Circuits, devices and methods for reducing co-channel interference
US20170325210A1 (en) * 2016-05-09 2017-11-09 Qualcomm Incorporated Location guided vehicular channel management
US10111045B2 (en) * 2016-06-24 2018-10-23 Qualcomm Incorporated Low power V2I/V2V mode for mobile devices
US10952045B2 (en) * 2016-10-13 2021-03-16 Lg Electronics Inc. Method and device for transmitting relay signal for V2X communication in wireless communication system
US10284655B2 (en) * 2017-05-22 2019-05-07 GM Global Technology Operations LLC Resource allocation for channel access in V2X communication systems
US10701688B2 (en) * 2017-09-11 2020-06-30 Intel Corporation Dynamic channel bonding and multi-band aggregation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104067546A (zh) * 2012-01-24 2014-09-24 高通股份有限公司 用于减少和/或消除自干扰效应的方法和装置
CN107872827A (zh) * 2017-10-31 2018-04-03 深圳无线电检测技术研究院 一种无线干扰测试方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Mitigating Adjacent Channel Interference in Vehicular Communication Systems";Joao Almeida;《Digital Communication and Networks》;20160331;第1-4章 *

Also Published As

Publication number Publication date
CN110661585A (zh) 2020-01-07
EP3588816B1 (en) 2023-06-07
US10819389B2 (en) 2020-10-27
EP3588816A1 (en) 2020-01-01
JP7172879B2 (ja) 2022-11-16
JP2020036308A (ja) 2020-03-05
US20200008086A1 (en) 2020-01-02

Similar Documents

Publication Publication Date Title
EP3557893B1 (en) Multi-level hybrid vehicle-to-anything communications for cooperative perception
CN110661585B (zh) 减少无线车辆消息的相邻信道干扰
US10248410B2 (en) Implementation decision to provide ADAS function update for a vehicle
US10281925B2 (en) Estimate of geographical position of a vehicle using wireless vehicle data
US10796175B2 (en) Detection of a drowsy driver based on vehicle-to-everything communications
CN111554119B (zh) 用于本车的方法和用于本车的系统
US11676427B2 (en) Vehicle component modification based on vehicle-to-everything communications
US11697410B2 (en) Vehicle-to-everything communication-based lane change collision avoidance warning
US20200307580A1 (en) Proactive message transmitter identification system
CN110944298B (zh) 对于车辆到一切v2x接收方的v2x全双工定位辅助
CN110896535B (zh) 用于车辆对一切通信的上下文系统
CN110392396B (zh) 用于连接车辆的基于云的网络优化器
US11328605B2 (en) Adjustable blind spot monitor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant