CN110649953B - 一种基于变分贝叶斯学习的在具有冲击噪声情况下的信道估计方法 - Google Patents

一种基于变分贝叶斯学习的在具有冲击噪声情况下的信道估计方法 Download PDF

Info

Publication number
CN110649953B
CN110649953B CN201910762246.5A CN201910762246A CN110649953B CN 110649953 B CN110649953 B CN 110649953B CN 201910762246 A CN201910762246 A CN 201910762246A CN 110649953 B CN110649953 B CN 110649953B
Authority
CN
China
Prior art keywords
updating
gamma
delta
sigma
beta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910762246.5A
Other languages
English (en)
Other versions
CN110649953A (zh
Inventor
戴继生
郭梦雅
周磊
曹政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weinan Anbeinuo Network Technology Co.,Ltd.
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201910762246.5A priority Critical patent/CN110649953B/zh
Publication of CN110649953A publication Critical patent/CN110649953A/zh
Application granted granted Critical
Publication of CN110649953B publication Critical patent/CN110649953B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0854Joint weighting using error minimizing algorithms, e.g. minimum mean squared error [MMSE], "cross-correlation" or matrix inversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0857Joint weighting using maximum ratio combining techniques, e.g. signal-to- interference ratio [SIR], received signal strenght indication [RSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/025Channel estimation channel estimation algorithms using least-mean-square [LMS] method
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)
  • Noise Elimination (AREA)

Abstract

本发明公开了一种基于变分贝叶斯学习的在具有冲击噪声情况下的信道估计方法,1:T个时刻内,基站发送导频信号矩阵X,接收信号y=Φw+n+e;2:设置迭代次数计数变量k=1,初始化w的精度向量γ,噪声精度α,冲击噪声精度β,定义并初始化Z中元素为1,初始化δ;3:固定α、β、γ、Z、δ,更新μ、Σ;4:固定μ、Σ、β、γ、Z、δ,更新α;5:固定α、μ、Σ、γ、Z、δ,更新β;6:固定α、β、μ、Σ、Z、δ,更新γ;7:固定α、β、μ、Σ、γ、δ,更新Z;8:固定α、β、μ、Σ、γ、Z,更新δ;9:判断k是否达到上限K或γ是否收敛,若都不满足,则k=k+1,返回步骤3;10:估计最终的信道。

Description

一种基于变分贝叶斯学习的在具有冲击噪声情况下的信道估 计方法
技术领域
本发明属于无线通信领域,涉及一种多输入多输出(Multiple-Input Multiple-Output,MIMO)通信系统的信道估计方法,具体的说是处于冲击噪声情况下的一种基于变分贝叶斯学习(Variational Bayesian Inference,VBI)的大规模MIMO通信系统的信道估计方法。
背景技术
大规模多输入多输出技术在无线通信领域备受关注,被广泛认为是满足5G无线网络容量需求的关键候选技术。了解发射机的信道状态信息能充分发挥大规模MIMO系统的优势。
信道估计是信号检测和自适应传输的基础,当前,在高斯噪声环境中的信道估计占据较大的比重,但是实际应用中普遍存在非高斯噪声,特别是冲击噪声的影响。如果不考虑冲击噪声的话,信道估计性能可能会大幅度下降。近年来,人们提出了许多方法来处理高斯噪声的大规模MIMO信道估计问题,例如在文献J.Dai,A.Liu and V.K.N.Lau,FDDMassive MIMO Channel Estimation with Arbitrary 2D-Array Geometry,IEEETransactions on Signal Processing,vol.66,no.10,pp.2584-2599,15May,2018中提出了一种基于离网稀疏贝叶斯学习的大规模MIMO通信系统的信道估计方法,但是该方法未考虑冲击噪声产生的影响,方法稳健性较弱。
发明内容
针对现有方法的不足,本发明将提出一种基于变分贝叶斯学习(VBI)的冲击噪声情况下的下行链路(downlink)信道估计方法。
用于实现本发明的技术解决方案包括如下步骤:
步骤1:基站采用了一个具有N根天线的均匀线性阵列,下行链路中的移动用户采用单天线,在T个时刻内,基站发送导频信号矩阵X,则存在冲击情况下,用户接收到的信号是y=Φw+n+e。
步骤2:设置迭代次数计数变量k=1,初始化w的精度向量
Figure BDA0002170694750000011
中的各元素为1,初始化噪声精度α=1,初始化冲击噪声精度
Figure BDA0002170694750000012
中的各元素为0,定义矩阵
Figure BDA0002170694750000013
并初始化Z中的各元素为1,同时初始化δ为全零元素。
步骤3:利用VBI原理,固定α、β、γ、Z、δ,更新μ、Σ。
步骤4:固定μ、Σ、β、γ、Z、δ,更新α。
步骤5:固定α、μ、Σ、γ、Z、δ,更新β。
步骤6:固定α、β、μ、Σ、Z、δ,更新γ。
步骤7:固定α、β、μ、Σ、γ、δ,更新Z。
步骤8:固定α、β、μ、Σ、γ、Z,更新δ。
步骤9:判断迭代计数变量k是否达到上限K或γ是否收敛,如果都不满足,则迭代计数变量k=k+1,并返回步骤3。
步骤10:估计最终的信道。
本发明的有益效果:
利用VBI原理,本发明获得了一种基于变分贝叶斯学习的信道估计方法。与现有方法相比,本发明能有效地改善冲击噪声情况下下行链路信道估计的性能。
附图说明
图1是本发明实施流程图。
图2是200次蒙特卡洛实验条件下,信噪比为10dB时,导频时刻T由40到90变化时,本发明和离网稀疏贝叶斯学习方法估计信道的归一化均方根误差(normalized meansquare error,NMSE)比较。
图3是200次蒙特卡洛实验条件下,导频时刻为70时,信噪比由-10到10变化时,本发明和离网稀疏贝叶斯学习方法估计信道的NMSE比较。
具体实施方式
下面结合附图对本发明作进一步说明。
如图1所示,本发明的具体实施步骤和方法包括如下:
(1)基站采用了一个具有N根天线的均匀线性阵列,下行链路中的移动用户采用单天线,在T个时刻内,基站发送导频信号矩阵X,则存在冲击情况下,用户接收到的信号是y=Φw+n+e。其中:
Φ(δ)=XA(δ)称为测量矩阵,
A(δ)=[a(θ11),a(θ22),...,a(θLL)]表示阵列流型矩阵,
Figure BDA0002170694750000031
表示导向矢量,
λd表示电磁波的工作波长,d表示相邻天线阵元间的距离,
Figure BDA0002170694750000032
表示均匀划分
Figure BDA0002170694750000033
的L个网格点,即
Figure BDA0002170694750000034
Figure BDA0002170694750000035
中的元素δl表示θll上的角度偏差,
Figure BDA0002170694750000036
w是一个L维的信道在测量矩阵Φ(δ)上稀疏表示的向量,其均值为μ,方差为Σ,
n是一个T维的均值为零,精度为α的高斯白噪声向量,
e是一个T维的均值为零,精度为
Figure BDA0002170694750000037
的冲击噪声向量。
(2)设置迭代次数计数变量k=1,初始化w的精度向量
Figure BDA0002170694750000038
中的各元素为1,初始化噪声精度α=1,初始化冲击噪声精度β中的各元素为0,定义矩阵
Figure BDA0002170694750000039
并初始化Z中的各元素为1,同时初始化δ为全零元素。
(3)固定α、β、γ、Z、δ,更新μ,Σ:
μ=ΣΦ′Hy′
Σ=(Φ′HΦ′+diag(γ))-1
其中:
Figure BDA00021706947500000310
(·)H表示共轭转置,diag(·)表示取向量的对角元素,
Figure BDA00021706947500000311
Figure BDA00021706947500000312
Figure BDA00021706947500000313
yt表示y的第t个元素,
Figure BDA0002170694750000041
Figure BDA0002170694750000042
Figure BDA0002170694750000043
Φt表示Φ的第t行向量,
Figure BDA0002170694750000044
dt=αφtt,1t,2βt,
Figure BDA0002170694750000045
φt,1=<zt,1>,φt,2=<zt,2>,
Figure BDA0002170694750000046
<·>表示求期望运算。
(4)固定μ、Σ、β、γ、Z、δ,更新α:
Figure BDA0002170694750000047
其中:
Figure BDA0002170694750000048
a=b=0.0001,
Figure BDA0002170694750000049
tr(·)表示矩阵的迹,||·||2表示矩阵的2范数。
(5)固定α、μ、Σ、γ、Z、δ,更新β:
Figure BDA00021706947500000410
(6)固定α、β、μ、Σ、Z、δ,更新γ:
Figure BDA00021706947500000411
Figure BDA00021706947500000412
μl表示μ的第l个元素,∑l表示Σ的第l个对角元素。
(7)固定α、β、μ、Σ、γ、δ,更新Z:
Figure BDA00021706947500000413
Figure BDA00021706947500000414
(8)固定α、β、μ、Σ、γ、Z,更新δ:
Figure BDA0002170694750000051
其中:
Figure BDA0002170694750000052
Figure BDA0002170694750000053
Figure BDA0002170694750000054
Figure BDA0002170694750000055
Figure BDA0002170694750000056
Figure BDA0002170694750000057
Re(·)表示矩阵中元素的实值,
Figure BDA0002170694750000058
c1=-α(χll+|μl|2),
Figure BDA0002170694750000059
c2=α(μly-l-X∑j≠lχjla(θjj)),
Figure BDA00021706947500000510
y-l=y-X·∑j≠lj·a(θjj)),
Figure BDA00021706947500000511
a′(θll)表示a(θll)在θll处的导数,
Figure BDA00021706947500000512
μl和χjl分别代表μ的第l个元素Σ的第(j,l)元素。
(9)判断迭代计数变量k是否达到上限K=100或γ是否收敛(即当次更新结果与上次更新结果是否相等),如都不满足,则迭代计数变量k=k+1,并返回(3)。
(10)估计最终的信道:h=A(δ)μ。
下面结合仿真实验对本发明的效果做进一步说明。
为了评估本方法的性能,假设基站采用了一个具有N=150根天线的均匀线性阵列,下行链路的工作频率为2170MHz,无线信道由3GPP spatial channel model(SCM)模型随机产生,基站发送导频信号矩阵X的每个元素服从零均值单位方差的独立高斯分布,背景噪声假设为SaS噪声。
实验条件
采用本发明在信噪比为10dB,导频时刻T由40到90变化时对信道进行200次估计,网格数为200,仿真结果如图2所示。
采用本发明在导频时刻为70,信噪比由-10到10变化时对信道进行200次估计,网格数为200,仿真结果如图3所示。
实验分析
从图2和图3可以看出,本发明能精确地估计出大规模MIMO通信系统的下行链路信道信息,其NMSE性能明显优于现有方法。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (3)

1.一种基于变分贝叶斯学习的在具有冲击噪声情况下的信道估计方法,其特征在于,包括如下步骤:
步骤1:基站采用具有N根天线的均匀线性阵列,下行链路中的移动用户采用单天线,在T个时刻内,基站发送导频信号矩阵X,则存在冲击情况下,用户接收到的信号是y=Φw+n+e;
步骤2:设置迭代次数计数变量k=1,初始化w的精度向量
Figure FDA0003755313490000011
中的各元素为1,初始化噪声精度α=1,初始化冲击噪声精度
Figure FDA0003755313490000012
中的各元素为0,定义矩阵
Figure FDA0003755313490000013
并初始化Z中的各元素为1,同时初始化δ为全零元素;
步骤3:利用VBI原理,固定α、β、γ、Z、δ,更新μ、∑;
步骤4:固定μ、∑、β、γ、Z、δ,更新α;
步骤5:固定α、μ、∑、γ、Z、δ,更新β;
步骤6:固定α、β、μ、∑、Z、δ,更新γ;
步骤7:固定α、β、μ、∑、γ、δ,更新Z;
步骤8:固定α、β、μ、∑、γ、Z,更新δ;
步骤9:判断迭代计数变量k是否达到上限K或γ是否收敛,如果都不满足,则迭代计数变量k=k+1,并返回步骤3;
步骤10:估计最终的信道;
所述步骤3中,更新μ、∑的方法如下:
μ=∑Φ′Hy′
∑=(Φ′HΦ′+diag(γ))-1
其中:
(·)H表示共轭转置,diag(·)表示取向量的对角元素,
Figure FDA0003755313490000014
yt表示y的第t个元素,
Figure FDA0003755313490000021
Φt表示Φ的第t行向量,
dt=αφt,1t,2βt
φt,1=<zt,1>,φt,2=<zt,2>,
<·>表示求期望运算;
所述步骤4中,更新α的方法如下:
Figure FDA0003755313490000022
其中:
Figure FDA0003755313490000023
a=b=0.0001,
tr(·)表示矩阵的迹,||·||2表示矩阵的2范数;
所述步骤5中,更新β的方法如下:
Figure FDA0003755313490000024
所述步骤6中,更新γ的方法如下:
Figure FDA0003755313490000025
μl表示μ的第l个元素,∑l表示∑的第l个对角元素;
所述步骤7中,更新Z的方法如下:
Figure FDA0003755313490000031
Figure FDA0003755313490000032
所述步骤8中,更新δ的方法如下:
Figure FDA0003755313490000033
其中:
Figure FDA0003755313490000034
Figure FDA0003755313490000035
Figure FDA0003755313490000036
Re(·)表示矩阵中元素的实值,
Figure FDA00037553134900000316
c1=-α(χll+|μl|2),
Figure FDA0003755313490000038
c2=α(μly-l-X∑j≠lχjla(θjj)),
Figure FDA0003755313490000039
y-l=y-X·∑j≠lj·a(θjj)),
Figure FDA00037553134900000310
a′(θll)表示a(θll)在θll处的导数,
μl和χjl分别代表μ的第l个元素∑的第(j,l)元素。
2.根据权利要求1所述的一种基于变分贝叶斯学习的在具有冲击噪声情况下的信道估计方法,其特征在于,所述步骤1中,Φ(δ)=XA(δ)为测量矩阵,
A(δ)=[a(θ11),a(θ22),...,a(θLL)]表示阵列流型矩阵,
Figure FDA00037553134900000311
表示导向矢量,
λd表示电磁波的工作波长,d表示相邻天线阵元间的距离,
Figure FDA00037553134900000312
表示均匀划分
Figure FDA00037553134900000313
的L个网格点,
Figure FDA00037553134900000314
Figure FDA00037553134900000315
中的元素δl表示θl上的角度偏差,
w是一个L维的信道在测量矩阵Φ(δ)上稀疏表示的向量,其均值为μ,方差为∑,
n是一个T维的均值为零,精度为α的高斯白噪声向量,
e是一个T维的均值为零,精度为
Figure FDA0003755313490000041
的冲击噪声向量。
3.根据权利要求1所述的一种基于变分贝叶斯学习的在具有冲击噪声情况下的信道估计方法,其特征在于,所述步骤10中,估计的信道为:h=A(δ)μ。
CN201910762246.5A 2019-08-19 2019-08-19 一种基于变分贝叶斯学习的在具有冲击噪声情况下的信道估计方法 Active CN110649953B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910762246.5A CN110649953B (zh) 2019-08-19 2019-08-19 一种基于变分贝叶斯学习的在具有冲击噪声情况下的信道估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910762246.5A CN110649953B (zh) 2019-08-19 2019-08-19 一种基于变分贝叶斯学习的在具有冲击噪声情况下的信道估计方法

Publications (2)

Publication Number Publication Date
CN110649953A CN110649953A (zh) 2020-01-03
CN110649953B true CN110649953B (zh) 2022-11-18

Family

ID=68990116

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910762246.5A Active CN110649953B (zh) 2019-08-19 2019-08-19 一种基于变分贝叶斯学习的在具有冲击噪声情况下的信道估计方法

Country Status (1)

Country Link
CN (1) CN110649953B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115086116B (zh) * 2022-06-13 2023-05-26 重庆邮电大学 基于dct和dwt的稀疏贝叶斯电力线信道和脉冲噪声联合估计方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108111441B (zh) * 2018-01-12 2020-07-31 电子科技大学 基于变分贝叶斯推断的信道估计方法
CN108337199B (zh) * 2018-01-17 2019-08-02 江苏大学 一种基于稀疏贝叶斯学习的大规模mimo通信系统的下行链路信道估计方法
CN108696465A (zh) * 2018-09-07 2018-10-23 电子科技大学 带有双端相位噪声的大规模mimo系统上行链路信道估计方法
CN109639604A (zh) * 2019-01-10 2019-04-16 江苏大学 一种基于实值稀疏贝叶斯学习的大规模mimo通信系统的下行链路信道估计方法

Also Published As

Publication number Publication date
CN110649953A (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
WO2018094565A1 (zh) 脉冲噪声下的波束成形方法及装置
CN108832976B (zh) 一种大规模mimo系统的上行链路信道估计方法
Kundu et al. RIS-assisted MISO communication: Optimal beamformers and performance analysis
Shutin et al. Incremental sparse Bayesian learning for parameter estimation of superimposed signals
CN114745237B (zh) 一种智能超表面辅助多用户无线通信系统的信道估计方法
CN107566303A (zh) 一种基于贝叶斯压缩感知的毫米波信道估计方法
CN114124623A (zh) 一种无线通信信道估计方法和装置
CN104539340A (zh) 一种基于稀疏表示和协方差拟合的稳健波达角估计方法
CN110649953B (zh) 一种基于变分贝叶斯学习的在具有冲击噪声情况下的信道估计方法
CN109639604A (zh) 一种基于实值稀疏贝叶斯学习的大规模mimo通信系统的下行链路信道估计方法
Cheng et al. Channel path identification in mmWave systems with large-scale antenna arrays
CN108494445B (zh) 大规模mimo中基于上行信道信息辅助的下行信道估计方法
Seyedsalehi et al. Propagation channel modeling by deep learning techniques
CN103346984B (zh) 基于bsl0的局部聚类稀疏信道估计方法
US12044786B1 (en) Method, system, and intelligent terminal for one-bit quantization direction of arrival estimation
CN112910518A (zh) 无人机通信中非高斯噪声下mimo系统发射天线数估计方法
CN110636017A (zh) 一种基于变分贝叶斯推断的大规模mimo系统的下行链路信道估计方法
Song et al. Deep learning for geometrically-consistent angular power spread function estimation in massive MIMO
CN115037339A (zh) 信号检测方法及终端设备
Bharti et al. Auto-generated summaries for stochastic radio channel models
CN114726685B (zh) 一种低复杂度的大规模mimo通信系统下行链路信道估计方法
Jian et al. A adaptive beamforming design in low sample number conditions based on diagonal loading algorithm
Yang et al. Deep-learning-based bouncing-order prediction for propagation channel characterization using graph modeling
Li et al. Robust beamforming algorithm based on steering vector estimation and interference plus noise covariance matrix reconstruction
KR100965100B1 (ko) 적응적 빔포밍 장치 및 그 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231008

Address after: 230000 Room 203, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee after: Hefei Jiuzhou Longteng scientific and technological achievement transformation Co.,Ltd.

Address before: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee before: Dragon totem Technology (Hefei) Co.,Ltd.

Effective date of registration: 20231008

Address after: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee after: Dragon totem Technology (Hefei) Co.,Ltd.

Address before: Zhenjiang City, Jiangsu Province, 212013 Jingkou District Road No. 301

Patentee before: JIANGSU University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231017

Address after: No. 02, Nanpai, Letianxin Village Community, Duqiao Community, Linwei District, Weinan City, Shaanxi Province, 714000

Patentee after: Weinan Anbeinuo Network Technology Co.,Ltd.

Address before: 230000 Room 203, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee before: Hefei Jiuzhou Longteng scientific and technological achievement transformation Co.,Ltd.

TR01 Transfer of patent right