CN110639371B - 一种纳米二氧化钛共混氧化石墨烯疏松型纳滤膜的制备方法及在染料脱盐中的应用 - Google Patents

一种纳米二氧化钛共混氧化石墨烯疏松型纳滤膜的制备方法及在染料脱盐中的应用 Download PDF

Info

Publication number
CN110639371B
CN110639371B CN201910558279.8A CN201910558279A CN110639371B CN 110639371 B CN110639371 B CN 110639371B CN 201910558279 A CN201910558279 A CN 201910558279A CN 110639371 B CN110639371 B CN 110639371B
Authority
CN
China
Prior art keywords
titanium dioxide
graphene oxide
nano titanium
aqueous solution
nanofiltration membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910558279.8A
Other languages
English (en)
Other versions
CN110639371A (zh
Inventor
徐燕青
吴梦瑶
沈江南
高从堦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201910558279.8A priority Critical patent/CN110639371B/zh
Publication of CN110639371A publication Critical patent/CN110639371A/zh
Application granted granted Critical
Publication of CN110639371B publication Critical patent/CN110639371B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/08Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种纳米二氧化钛共混氧化石墨烯疏松型纳滤膜的制备方法及在染料脱盐中的应用。所述方法按照以下步骤进行:(1)将氧化石墨烯配制成0.25mg/L的水溶液,并超声30‑60min;(2)将纳米二氧化钛配制成0.25mg/L的水溶液,超声30min以上;(3)取氧化石墨烯水溶液和纳米二氧化钛水溶液按照体积比2:1‑1:5共混,并超声使分散均匀;(4)将聚砜膜置于超滤杯中,然后将步骤(3)的混合溶液以一定的压力压置在聚砜膜表面;(5)待溶液压置完全后,稳定30‑45min,得到纳米二氧化钛共混氧化石墨烯疏松型纳滤膜。本发明提供了所述的纳米二氧化钛共混氧化石墨烯疏松型纳滤膜在分子量在400以上的染料脱盐中的应用,具有良好的应用效果。

Description

一种纳米二氧化钛共混氧化石墨烯疏松型纳滤膜的制备方法 及在染料脱盐中的应用
(一)技术领域
本发明属于纳滤膜技术及水分离领域,特别涉及的是一种纳米二氧化钛共混氧化石墨烯疏松型纳滤膜的制备方法和在染料脱盐中的应用。
(二)技术背景
随着科技的发展,膜分离技术得到人们越来越多的关注。作为膜分离技术领域的重要组成,纳滤膜分离技术一直被社会所关注。目前超高速数码印花技术中墨水对盐含量有着极为苛刻的要求,这对传统纳滤膜分离技术提出更高的要求。近年来单片层的氧化石墨烯通过抽滤、蒸发或旋涂等方法可以制备成具有超快水传输通量纳滤分离膜,有望达到染料脱盐的目的。但氧化石墨烯纳米片厚度会极大影响水通量的传输,目前已有文献表明随着氧化石墨烯负载量的增加,其水通量呈现断崖式下降,不利于大规模的纳滤膜的应用。Weiwei L.Xu等人[Xu WL,Fang C,Zhou F,Song Z,Liu Q,Qiao R,et al.Self-Assembly:AFacile Way of Forming Ultrathin,High-Performance Graphene Oxide Membranes forWater Purification[J].Nano Letters.17:2928-33.]证实氧化石墨烯膜的层间结构对膜内的水输运有显著影响,他们慢速沉积得到的厚度为118nm的GO膜的通量在0.4L h-1m-2bar-1以下,通量十分低。Long Chen等人[Chen L,Li N,Wen Z,Zhang L,Chen Q,Chen L,etal.Graphene oxide based membrane intercalated by nanoparticles for highperformance nanofiltration application[J].Chemical Engineering Journal.2018,347:12-8.]制得的TiO2/GO膜对染料截留率均在90%以上,对盐的截留率也高达50%,故而不能很好的将染料中的盐去除。
(三)发明内容
本发明的首要目的在于提供一种纳米二氧化钛共混氧化石墨烯疏松型纳滤膜的制备方法,该制备方法简单易操作,具有工业化扩大生产的价值;所制备的纳米二氧化钛共混氧化石墨烯疏松型纳滤膜通过引入纳米二氧化钛增加了氧化石墨烯片层间距,提高了膜的水通量。
本发明的第二个目的是提供纳米二氧化钛共混氧化石墨烯疏松型纳滤膜在染料脱盐中的应用,具有良好的应用效果。
本发明采用以下技术方案
一方面,本发明提供了一种纳米二氧化钛共混氧化石墨烯疏松型纳滤膜的制备方法,所述方法按照以下步骤进行:
(1)将氧化石墨烯配制成0.25mg/L的水溶液,并超声30-60min,若超声时间过短氧化石墨烯会有少量沉淀,不能完全的分散在水溶液中;超声时间过长的话,超声的水温升高会使氧化石墨烯不稳定,使其有极大的可能变成还原性的;
(2)将纳米二氧化钛配制成0.25mg/L的水溶液,超声30min以上;由于锐钛矿型二氧化钛较难溶于水,超声的时间若低于30min,TiO2会沉积在溶液底部;
(3)取步骤(1)得到的氧化石墨烯水溶液和步骤(2)得到的纳米二氧化钛水溶液按照体积比2:1-1:5共混,并超声使纳米二氧化钛在氧化石墨烯中分散均匀,尽可能地防止其团聚;
(4)将聚砜膜置于超滤杯中,然后将步骤(3)得到的二氧化钛和氧化石墨烯混合溶液以一定的压力压置在聚砜膜表面;
(5)待溶液压置完全后,需要稳定30-45min,从而使二氧化钛和氧化石墨烯完全均匀地沉积在聚砜膜表面,得到纳米二氧化钛共混氧化石墨烯疏松型纳滤膜。制得的纳米二氧化钛共混氧化石墨烯疏松型纳滤膜密封保存即可。
作为优选,所述步骤(3)中,纳米二氧化钛为亲水性锐钛矿二氧化钛,尺寸为10-100nm。
作为优选,所述步骤(3)中,氧化石墨烯水溶液与纳米二氧化钛水溶液的体积比为2:1-1:5,优选1:1。
作为优选,所述步骤(4)中,混合水溶液的用量以待沉积表面的表面积计为10ml-60ml/15cm2
作为优选,所述步骤(4)中,所用压力的来源为高纯氮气,压力大小为2-5bar。
第二方面,本发明提供了所述纳米二氧化钛共混氧化石墨烯疏松型纳滤膜在染料脱盐中的应用,所述的染料的分子量在400以上。
与现有技术相比,本发明的有益效果在于:
(1)本发明采用纳米二氧化钛共混氧化石墨烯膜,该方法步骤简单易操作,具有工业化扩大生产的价值。
(2)制备的氧化石墨烯膜由于纳米二氧化钛存在增加了膜层之间的层间距,其筛分效用可用于截留分子量400以上的染料,且可渗透一二价盐,该制备所得膜材料可应用于染料脱盐的工业化染料生产中。
(四)附图说明
图1为本发明制备过程。
图2为不同比例GO/TiO2纳米复合膜的平面及断面图。
图3-a和3-b分别为不同比例GO/TiO2纳米复合膜纯水通量及接触角。
图4-a和4-b分别为不同比例GO/TiO2纳米复合膜对不同盐溶液的截留数据和通量。
图5为不同比例GO/TiO2纳米复合膜对不同染料的截留数据和通量。
图6-a、6-b、6-c、6-d、6-e分别为不同比例GO/TiO2纳米复合膜在不同Na2SO4浓度和2bar压力下对浓度为1.0g/L染料/盐混合物脱盐效果图。
(五)具体实施方案
以下结合若干个具体实施例,示例性说明及帮助进一步理解本发明,但实施例具体细节仅是为了说明本发明,并不代表本发明构思下全部技术方案,因此不应理解为对本发明总的技术方案限定,一些在技术人员看来,不偏离发明构思的非实质性改动,例如以具有相同或相似技术效果的技术特征简单改变或替换,均属本发明保护范围。
实施例1
(1)将氧化石墨烯配置成0.25mg/L的水溶液,并超30min。将亲水性60nm的纳米二氧化钛配置成0.25mg/L的水溶液,并超声30min。按1:1比例取5ml的氧化石墨烯水溶液和5ml的纳米二氧化钛水溶液共混,并超声30min。将聚砜膜置于超滤杯中,超滤杯中的聚砜膜面积为15cm2左右,利用高纯氮气将上述的二氧化钛和氧化石墨烯混合溶液以2bar的压力将其沉积在聚砜膜表面。待溶液压置完全后稳定30min,得到纳米二氧化钛共混氧化石墨烯疏松型纳滤膜。
(2)纳米二氧化钛共混氧化石墨烯疏松型纳滤膜对盐和染料溶液截留及通量评测
采用死端过滤装置来测试复合膜的选择透过性。测试操作过程是在2bar、25℃的条件下过滤不同的盐溶液和染料。记录膜的水渗透通量(P)和盐截留(R)。每个膜样品至少测试5次,结果取其平均值。水渗透通量和盐截留率的计算公式如下:
Figure GDA0002289845310000031
Figure GDA0002289845310000032
式中:R代表截留率(%);Cp和Cf分别代表进料液和渗透液的浓度。
实施例2
改变实施例1中GO与纳米二氧化钛比例为1:0,2:1,1:3,1:5,其他步骤不变,获得纳米二氧化钛共混氧化石墨烯疏松型纳滤膜。测试评价方法同实施例1。
图2为不同比例GO/TiO2纳米复合膜的平面及断面图,如图2的断面图所示,聚砜膜的厚度为79.4nm,加入GO后膜的厚度为132nm,随着TiO2的增加,膜的间距也相应增加,说明GO/TiO2可以很好的调控膜间距离,从而改变水通量及染料的截留率。
图3-a和3-b为不同比例GO/TiO2纳米复合膜纯水通量及接触角,如图3-a所示,1:0,2:1,1:1,1:3,1:5的纯水通量分别为2.61、3.03、6.23、16.42和25.14L h-1m-2bar-1,从膜的接触角值可以看出,接触角的减小趋势与膜中纯水通量的增加趋势相似。水通量的变化是由膜的厚度、亲水性和表面粗糙度的共同作用引起的。一方面,较薄的活性层可以显著降低膜的水阻力,提高膜水通量。另一方面,表面粗糙度和亲水性的降低会阻碍水的有效输送,导致水通量的降低。
图4-a和4-b分别为不同比例GO/TiO2纳米复合膜对不同盐溶液的截留数据和通量,从图4-b可得,其水通量在盐离子的作用下多为有所下降,受盐浓度的影响呈现一定的下降,对盐截留均低于10%(图4-a)。
图5为不同比例GO/TiO2纳米复合膜对不同染料的截留数据和通量。从图5可以发现,染料一定程度上吸附于氧化石墨烯层从而影响其通量,具体染料铬黑T、考马斯亮蓝和刚果红的通量和截留分别是7.78L h-1m-2bar-1,100%;5.18L h-1m-2bar-1,99.9%;9.03Lh- 1m-2bar-1,99.5%。从图5中可以看出,GO:TiO2比例为1:0,2:1,1:1膜对染料的截留保持不变,均在98%以上,且染料通量随着纳米颗粒的增加而变大;而比例为1:3,1:5的膜对三种染料的截留率下降明显,都低于98%,但均通量显著提高。由图2的电镜图可知,纳米颗粒的加入扩大了GO膜的层间距,使得水更容易通过。因间距的增大,故对染料的截流会有明显的影响。
GO/TiO2膜用于染料脱盐时,筛分和静电排斥效应均发挥作用。其中染料脱盐测试如图6-a、6-b、6-c、6-d、6-e所示,Na2SO4浓度分别从5-40g/L的条件下,其对1.0g/L染料的截留保持在90%以上,而对二价Na2SO4低于10%,且通量随着盐浓度的增加而降低。其中GO:TiO2为1:1的膜,在不同浓度Na2SO4下对铬黑T、考马斯亮蓝、刚果红的截流率均在98%以上;且对Na2SO4的截留均低于6%,表现出极大的分离差异性,从而实现染料脱盐。

Claims (5)

1.一种用于染料脱盐的纳米二氧化钛共混氧化石墨烯疏松型纳滤膜的制备方法,其特征在于:所述方法按照以下步骤进行:
(1)将氧化石墨烯配制成0.25mg/L的水溶液,并超声30-60min;
(2)将纳米二氧化钛配制成0.25mg/L的水溶液,超声30min以上;所述纳米二氧化钛为亲水性锐钛矿二氧化钛,尺寸为10-100nm;
(3)取步骤(1)得到的氧化石墨烯水溶液和步骤(2)得到的纳米二氧化钛水溶液按照体积比2:1-1:5共混,并超声使纳米二氧化钛在氧化石墨烯中分散均匀,尽可能地防止其团聚;
(4)将聚砜膜置于超滤杯中,然后将步骤(3)得到的二氧化钛和氧化石墨烯混合溶液以一定的压力压置在聚砜膜表面,所用压力的来源为高纯氮气,压力大小为2-5 bar;
(5)待溶液压置完全后,稳定30-45min,从而使二氧化钛和氧化石墨烯完全均匀地沉积在聚砜膜表面,得到纳米二氧化钛共混氧化石墨烯疏松型纳滤膜。
2.如权利要求1所述的制备方法,其特征在于:所述步骤(3)中,氧化石墨烯水溶液与纳米二氧化钛水溶液的体积比为1:1。
3.如权利要求1所述的制备方法,其特征在于:所述步骤(4)中,混合水溶液的用量以待沉积表面的表面积计为10ml-60ml/15cm2
4.根据权利要求1所述的制备方法制得的纳米二氧化钛共混氧化石墨烯疏松型纳滤膜。
5.如权利要求4所述的纳米二氧化钛共混氧化石墨烯疏松型纳滤膜在染料脱盐中的应用,所述的染料的分子量在400以上。
CN201910558279.8A 2019-06-26 2019-06-26 一种纳米二氧化钛共混氧化石墨烯疏松型纳滤膜的制备方法及在染料脱盐中的应用 Active CN110639371B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910558279.8A CN110639371B (zh) 2019-06-26 2019-06-26 一种纳米二氧化钛共混氧化石墨烯疏松型纳滤膜的制备方法及在染料脱盐中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910558279.8A CN110639371B (zh) 2019-06-26 2019-06-26 一种纳米二氧化钛共混氧化石墨烯疏松型纳滤膜的制备方法及在染料脱盐中的应用

Publications (2)

Publication Number Publication Date
CN110639371A CN110639371A (zh) 2020-01-03
CN110639371B true CN110639371B (zh) 2022-05-24

Family

ID=68989751

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910558279.8A Active CN110639371B (zh) 2019-06-26 2019-06-26 一种纳米二氧化钛共混氧化石墨烯疏松型纳滤膜的制备方法及在染料脱盐中的应用

Country Status (1)

Country Link
CN (1) CN110639371B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111036082B (zh) * 2020-01-10 2021-12-21 南昌航空大学 一种氧化石墨烯/TiO2复合膜的制备方法
CN111715079B (zh) * 2020-05-20 2021-08-17 嘉兴市轩禾园艺技术有限公司 多功能薄膜材料及其制备方法和用途
CN111450711B (zh) * 2020-05-22 2022-03-01 南京工业大学 一种制备疏水石墨烯膜的方法
CN111744371A (zh) * 2020-06-23 2020-10-09 西南石油大学 一种自清洁氧化石墨烯纳滤膜及其制备方法
CN114130201B (zh) * 2020-09-04 2023-04-14 三达膜科技(厦门)有限公司 一种二氧化钛氧化石墨烯改性有机超滤膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104275095A (zh) * 2014-09-30 2015-01-14 浙江碳谷上希材料科技有限公司 一种高通量的石墨烯/碳纳米管复合纳滤膜的制备方法
CN107051208A (zh) * 2016-12-22 2017-08-18 浙江工商大学 三维结构纳米复合物共混掺杂聚偏氟乙烯混合基质超滤膜及其制备
CN107051229A (zh) * 2017-04-17 2017-08-18 江苏大学 一种聚乙烯亚胺交联的氧化石墨烯/二氧化钛层状复合膜的制备方法及其用途
CN107537320A (zh) * 2017-08-25 2018-01-05 杭州高瓴环境科技有限公司 一种复合膜及其制备方法
CN107720886A (zh) * 2017-10-17 2018-02-23 山东大学 一种纳米粒子插层氧化石墨烯薄膜及制备方法与应用
CN109012189A (zh) * 2018-09-14 2018-12-18 北京工业大学 一种利用冷冻干燥技术制备氧化石墨烯复合纳滤膜的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6203939B2 (ja) * 2013-04-12 2017-09-27 ゼネラル・エレクトリック・カンパニイ グラフェンを含む膜
CN103349919A (zh) * 2013-07-09 2013-10-16 福州大学 一种具有自清洁功能的石墨烯-半导体粒子复合滤膜
CN104607069B (zh) * 2015-01-27 2016-09-28 清华大学 一种复合脱盐膜及其制备方法和应用
CN108014653A (zh) * 2018-01-22 2018-05-11 福州大学 一种光照增强油水分离性能的氧化石墨烯-半导体复合膜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104275095A (zh) * 2014-09-30 2015-01-14 浙江碳谷上希材料科技有限公司 一种高通量的石墨烯/碳纳米管复合纳滤膜的制备方法
CN107051208A (zh) * 2016-12-22 2017-08-18 浙江工商大学 三维结构纳米复合物共混掺杂聚偏氟乙烯混合基质超滤膜及其制备
CN107051229A (zh) * 2017-04-17 2017-08-18 江苏大学 一种聚乙烯亚胺交联的氧化石墨烯/二氧化钛层状复合膜的制备方法及其用途
CN107537320A (zh) * 2017-08-25 2018-01-05 杭州高瓴环境科技有限公司 一种复合膜及其制备方法
CN107720886A (zh) * 2017-10-17 2018-02-23 山东大学 一种纳米粒子插层氧化石墨烯薄膜及制备方法与应用
CN109012189A (zh) * 2018-09-14 2018-12-18 北京工业大学 一种利用冷冻干燥技术制备氧化石墨烯复合纳滤膜的方法

Also Published As

Publication number Publication date
CN110639371A (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
CN110639371B (zh) 一种纳米二氧化钛共混氧化石墨烯疏松型纳滤膜的制备方法及在染料脱盐中的应用
Wang et al. Graphene oxide‐based polymeric membranes for water treatment
Ng et al. Incorporation of graphene oxide-based nanocomposite in the polymeric membrane for water and wastewater treatment: A review on recent development
Lyu et al. Separation and purification using GO and r-GO membranes
Bai et al. Cellulose nanocrystal-blended polyethersulfone membranes for enhanced removal of natural organic matter and alleviation of membrane fouling
Yang et al. Recent development of novel membranes for desalination
Zhang et al. Positively charged capillary nanofiltration membrane with high rejection for Mg2+ and Ca2+ and good separation for Mg2+ and Li+
Sharif et al. Two-dimensional graphene oxide based membranes for ionic and molecular separation: Current status and challenges
Wang et al. In-situ growth of metal-organic framework film on a polydopamine-modified flexible substrate for antibacterial and forward osmosis membranes
Xu et al. Positively charged nanofiltration membrane based on (MWCNTs-COOK)-engineered substrate for fast and efficient lithium extraction
CN111229053B (zh) 一种高通量纳滤膜、其制备方法及应用
Pang et al. Preparation and characterization of ZrO2/PES hybrid ultrafiltration membrane with uniform ZrO2 nanoparticles
Castelletto et al. Advantages, limitations, and future suggestions in studying graphene-based desalination membranes
Parvizian et al. Oleic acid-functionalized TiO2 nanoparticles for fabrication of PES-based nanofiltration membranes
CN110449032B (zh) 一种耐溶胀二维SA-MXene层状纳滤膜、制备及应用
Moeinzadeh et al. Synthesis of nanocomposite membrane incorporated with amino-functionalized nanocrystalline cellulose for refinery wastewater treatment
Yuan et al. Recent advances in membrane-based materials for desalination and gas separation
Zheng et al. 2D nanosheets seeding layer modulated covalent organic framework membranes for efficient desalination
Lan et al. Construction of a gelatin scaffold with water channels for preparing a high performance nanofiltration membrane
Vetrivel et al. Cellulose acetate nanocomposite ultrafiltration membranes tailored with hydrous manganese dioxide nanoparticles for water treatment applications
US20150151984A1 (en) Separation membrane, method of manufacturing the same, and water treatment device including the separation membrane
Liang et al. Intercalation of zwitterionic surfactants dramatically enhances the performance of low-pressure nanofiltration membrane
Xu et al. Constructing dense and hydrophilic forward osmosis membrane by cross-linking reaction of graphene quantum dots with monomers for enhanced selectivity and stability
Xu et al. MWCNTs-COOK-assisted high positively charged composite membrane: Accelerating Li+ enrichment and Mg2+ removal
CN103111196A (zh) 一种纳滤膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant