CN110630361B - 一种scr效率恢复的控制方法 - Google Patents
一种scr效率恢复的控制方法 Download PDFInfo
- Publication number
- CN110630361B CN110630361B CN201910894823.6A CN201910894823A CN110630361B CN 110630361 B CN110630361 B CN 110630361B CN 201910894823 A CN201910894823 A CN 201910894823A CN 110630361 B CN110630361 B CN 110630361B
- Authority
- CN
- China
- Prior art keywords
- scr
- injection
- oil
- regeneration
- post
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000011084 recovery Methods 0.000 title claims abstract description 10
- 238000002347 injection Methods 0.000 claims abstract description 203
- 239000007924 injection Substances 0.000 claims abstract description 203
- 230000008929 regeneration Effects 0.000 claims abstract description 104
- 238000011069 regeneration method Methods 0.000 claims abstract description 104
- 239000004202 carbamide Substances 0.000 claims abstract description 81
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims abstract description 76
- 238000006477 desulfuration reaction Methods 0.000 claims abstract description 38
- 230000023556 desulfurization Effects 0.000 claims abstract description 38
- 238000002425 crystallisation Methods 0.000 claims abstract description 37
- 230000008025 crystallization Effects 0.000 claims abstract description 30
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 13
- 231100000572 poisoning Toxicity 0.000 claims abstract description 13
- 230000000607 poisoning effect Effects 0.000 claims abstract description 13
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 13
- 239000011593 sulfur Substances 0.000 claims abstract description 13
- 239000003054 catalyst Substances 0.000 claims abstract description 12
- 230000009849 deactivation Effects 0.000 claims abstract description 7
- 239000003921 oil Substances 0.000 claims description 137
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 41
- 239000000446 fuel Substances 0.000 claims description 32
- 229910021529 ammonia Inorganic materials 0.000 claims description 20
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 16
- 239000004215 Carbon black (E152) Substances 0.000 claims description 16
- 229910052799 carbon Inorganic materials 0.000 claims description 16
- 239000000295 fuel oil Substances 0.000 claims description 16
- 229930195733 hydrocarbon Natural products 0.000 claims description 16
- 150000002430 hydrocarbons Chemical class 0.000 claims description 16
- 238000011068 loading method Methods 0.000 claims description 16
- 230000003197 catalytic effect Effects 0.000 claims description 9
- 230000003111 delayed effect Effects 0.000 claims description 9
- 239000007800 oxidant agent Substances 0.000 claims description 9
- 238000011217 control strategy Methods 0.000 claims description 8
- 230000001960 triggered effect Effects 0.000 claims description 8
- 238000001953 recrystallisation Methods 0.000 claims description 7
- 238000013461 design Methods 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 36
- 238000006243 chemical reaction Methods 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 238000010531 catalytic reduction reaction Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 108700041286 delta Proteins 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2006—Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
- F01N3/208—Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/02—Adding substances to exhaust gases the substance being ammonia or urea
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/14—Arrangements for the supply of substances, e.g. conduits
- F01N2610/1453—Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
- F01N2610/146—Control thereof, e.g. control of injectors or injection valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D2041/389—Controlling fuel injection of the high pressure type for injecting directly into the cylinder
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Exhaust Gas After Treatment (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
一种SCR效率恢复的控制方法,该控制方法包括以下步骤:A、若SCR效率低的原因是尿素浓度低,则更换正常浓度的尿素;B、若SCR效率低的原因是尿素喷射控制模型偏差大,则修正尿素喷射控制模型的偏差;C、若SCR效率低的原因是SCR结晶,则开启SCR去结晶再生;D、若SCR效率低的原因是SCR硫中毒,则开启SCR脱硫再生;E、若SCR效率低的原因是SCR催化剂失活,则更换SCR。本设计不仅能恢复SCR效率,而且控制方法可靠性高。
Description
技术领域
本发明涉及排气后处理系统的选择性催化还原(SCR)系统领域,尤其涉及一种SCR效率恢复的控制方法,主要适用于可靠地恢复SCR效率。
背景技术
随着国六排放法规的即将实施,目前柴油机制造厂都在开发国六柴油机,国六柴油机为了降低发动机尾气中的NOx和颗粒排放,都匹配了催化氧化器(DOC)+颗粒过滤器(DPF)+选择性氧化还原器(SCR)的后处理系统。无论是国四、国五还是国六法规,都要求当尾气排放NOx排放超过法规限值后进行报警,当NOx排放过高时还会进行限扭限速,影响司机的驾驶,因此需要能够准确预测SCR效率下降的故障,并进行相关操作使得SCR效率恢复,进而避免报警、限扭和限速。
中国专利,申请公布号为CN107076638A,申请公布日为2017年8月18日的发明公开了一种用于确定排气后处理系统的性能状态的系统,该系统可以包括使用样品氨输入值和样品NOx输入值来确定氨氮比,实际的NOx输入值和实际的氨输入值可以被接收,可以从第一传感器接收排放值,可以使用至少部分地基于实际的NOx输入值、实际的氨输入值以及氨氮比的迭代失效率计算来确定用于选择性催化还原的NOx排放估计、氨漏失估计以及最佳氨储存值,且NOx排放估计、氨漏失估计以及最佳氨储存值可以被输出至诊断系统。虽然该发明给出了SCR效率低的诊断方法,但是其并没有给出恢复SCR效率的方法。
发明内容
本发明的目的是克服现有技术中存在的无法恢复SCR效率的缺陷与问题,提供一种能可靠地恢复SCR效率的SCR效率恢复的控制方法。
为实现以上目的,本发明的技术解决方案是:一种SCR效率恢复的控制方法,该控制方法包括以下步骤:
A、若SCR效率低的原因是尿素浓度低,则更换正常浓度的尿素;
B、若SCR效率低的原因是尿素喷射控制模型偏差大,则通过停止喷射尿素使得原机NOx将SCR的储氨量全部反应掉,当后NOx传感器测量值与原机NOx值的偏差ε=(原机NOx值-后NOx传感器测量值)/原机NOx值小于设定值,设定值的范围为0﹪~30%,则认为SCR内的储氨量完全反应掉了,此时,尿素喷射控制模型重新恢复到初始状态,尿素喷射控制模型的控制参数全部变为0,尿素喷射控制模型的偏差也更新为0,进而修正了尿素喷射控制模型的偏差;
C、若SCR效率低的原因是SCR结晶,则开启SCR去结晶再生:
C1、SCR升温:提升排气温度到设定温度T1,设定温度T1的范围为250℃~400℃;
C2、SCR去结晶再生:当排气温度达到设定温度T1后,通过控制器控制缸内后喷油量、通过后处理燃油喷射系统往排气管内喷油或者同时采用控制器控制缸内后喷油量和后处理燃油喷射系统往排气管内喷油,使得排气管内有未燃的燃油或者碳氢,未燃燃油或者碳氢经过催化氧化器DOC时会被氧化,放出热量,从而使得排气温度提升到设定温度T2,设定温度T2的范围为480℃~650℃,并维持设定温度T2进行SCR去结晶再生;
C3、退出SCR去结晶再生:
C31、停止喷油
若SCR去结晶再生仅采用了控制器控制缸内后喷油量,则关闭缸内后喷;若SCR去结晶再生仅采用了后处理燃油喷射系统往排气管内喷油,则停止往排气管内喷油;若SCR去结晶再生同时采用了控制器控制缸内后喷油量和后处理燃油喷射系统往排气管内喷油,则同时停止缸内后喷和往排气管内喷油;当排气温度由设定温度T2下降到设定温度T3,设定温度T3的范围为250℃~500℃,则进入步骤C32;
C32、恢复到发动机正常运行的工况
发动机主喷油正时、高压共轨的轨压、节气门开度、废气再循环阀开度、可变涡轮增压器阀开度或者发动机预喷喷油量都恢复到正常状态;
D、若SCR效率低的原因是SCR硫中毒,则开启SCR脱硫再生:
D1、SCR升温:提升排气温度到设定温度T1,设定温度T1的范围为250℃~400℃;
D2、SCR脱硫再生:当排气温度达到设定温度T1后,通过控制器控制缸内后喷油量、通过后处理燃油喷射系统往排气管内喷油或者同时采用控制器控制缸内后喷油量和后处理燃油喷射系统往排气管内喷油,使得排气管内有未燃的燃油或者碳氢,未燃燃油或者碳氢经过催化氧化器DOC时会被氧化,放出热量,从而使得排气温度提升到设定温度T2,设定温度T2的范围为480℃~650℃,并维持设定温度T2进行脱硫再生;
D3、退出SCR脱硫再生:
D31、停止喷油
若SCR脱硫再生仅采用了控制器控制缸内后喷油量,则关闭缸内后喷;若SCR脱硫再生仅采用了后处理燃油喷射系统往排气管内喷油,则停止往排气管内喷油;若SCR脱硫再生同时采用了控制器控制缸内后喷油量和后处理燃油喷射系统往排气管内喷油,则同时停止缸内后喷和往排气管内喷油;当排气温度由设定温度T2下降到设定温度T3,设定温度T3的范围为250℃~500℃,则进入步骤D32;
D32、恢复到发动机正常运行的工况
发动机主喷油正时、高压共轨的轨压、节气门开度、废气再循环阀开度、可变涡轮增压器阀开度或者发动机预喷喷油量都恢复到正常状态;
E、若SCR效率低的原因是SCR催化剂失活,则更换SCR。
步骤C中,SCR去结晶再生的开启需要同时满足以下5个条件:SCR结晶;颗粒过滤器DPF碳载量小于最大碳载量限值;当距离上一次再生的发动机运行时间或里程高于标定值;控制策略并没有禁止进行再生;颗粒过滤器DPF再生需求未触发。
步骤C1中,通过以下措施中的一种或者多种来提升排气温度值至设定温度T1:推迟发动机主喷油正时,正时推迟0.5°~2°;降低高压共轨的轨压,轨压为200kpa~2000kpa;部分关闭节气门,节气门开度为0﹪~60﹪;减小废气再循环阀开度,废气再循环阀开度为0﹪~50﹪;增大可变涡轮增压器阀开度,可变涡轮增压器阀开度为20﹪~100﹪或者增加发动机预喷喷油量,发动机预喷喷油量为0g/str~20g/str。
步骤D中,SCR脱硫再生的开启需要同时满足以下5个条件:SCR硫中毒;颗粒过滤器DPF碳载量小于最大碳载量限值;当距离上一次再生的发动机运行时间或里程高于标定值;控制策略并没有禁止进行再生;颗粒过滤器DPF再生需求未触发。
步骤D1中,通过以下措施中的一种或者多种来提升排气温度值至设定温度T1:推迟发动机主喷油正时,正时推迟0.5°~2°;降低高压共轨的轨压,轨压为200kpa~2000kpa;部分关闭节气门,节气门开度为0﹪~60﹪;减小废气再循环阀开度,废气再循环阀开度为0﹪~50﹪;增大可变涡轮增压器阀开度,可变涡轮增压器阀开度为20﹪~100﹪或者增加发动机预喷喷油量,发动机预喷喷油量为0g/str~20g/str。
与现有技术相比,本发明的有益效果为:
本发明一种SCR效率恢复的控制方法,针对具体的SCR效率低原因来恢复SCR效率;若SCR效率低的原因是尿素浓度低,则更换正常浓度的尿素;若SCR效率低的原因是尿素喷射控制模型偏差大,则修正尿素喷射控制模型的偏差;若SCR效率低的原因是SCR结晶,则开启SCR去结晶再生;若SCR效率低的原因是SCR硫中毒,则开启SCR脱硫再生;若SCR效率低的原因是SCR催化剂失活,则更换SCR。因此,本发明不仅能恢复SCR效率,而且控制方法可靠性高。
附图说明
图1是本发明中SCR去结晶再生的示意图。
图2是本发明中的SCR脱硫再生的示意图。
具体实施方式
以下结合附图说明和具体实施方式对本发明作进一步详细的说明。
参见图1、图2,一种SCR效率恢复的控制方法,该控制方法包括以下步骤:
A、若SCR效率低的原因是尿素浓度低,则更换正常浓度的尿素;
B、若SCR效率低的原因是尿素喷射控制模型偏差大,则通过停止喷射尿素使得原机NOx将SCR的储氨量全部反应掉,当后NOx传感器测量值与原机NOx值的偏差ε=(原机NOx值-后NOx传感器测量值)/原机NOx值小于设定值,设定值的范围为0﹪~30%,则认为SCR内的储氨量完全反应掉了,此时,尿素喷射控制模型重新恢复到初始状态,尿素喷射控制模型的控制参数全部变为0,尿素喷射控制模型的偏差也更新为0,进而修正了尿素喷射控制模型的偏差;
C、若SCR效率低的原因是SCR结晶,则开启SCR去结晶再生:
C1、SCR升温:提升排气温度到设定温度T1,设定温度T1的范围为250℃~400℃;
C2、SCR去结晶再生:当排气温度达到设定温度T1后,通过控制器控制缸内后喷油量、通过后处理燃油喷射系统往排气管内喷油或者同时采用控制器控制缸内后喷油量和后处理燃油喷射系统往排气管内喷油,使得排气管内有未燃的燃油或者碳氢,未燃燃油或者碳氢经过催化氧化器DOC时会被氧化,放出热量,从而使得排气温度提升到设定温度T2,设定温度T2的范围为480℃~650℃,并维持设定温度T2进行SCR去结晶再生;
C3、退出SCR去结晶再生:
C31、停止喷油
若SCR去结晶再生仅采用了控制器控制缸内后喷油量,则关闭缸内后喷;若SCR去结晶再生仅采用了后处理燃油喷射系统往排气管内喷油,则停止往排气管内喷油;若SCR去结晶再生同时采用了控制器控制缸内后喷油量和后处理燃油喷射系统往排气管内喷油,则同时停止缸内后喷和往排气管内喷油;当排气温度由设定温度T2下降到设定温度T3,设定温度T3的范围为250℃~500℃,则进入步骤C32;
C32、恢复到发动机正常运行的工况
发动机主喷油正时、高压共轨的轨压、节气门开度、废气再循环阀开度、可变涡轮增压器阀开度或者发动机预喷喷油量都恢复到正常状态;
D、若SCR效率低的原因是SCR硫中毒,则开启SCR脱硫再生:
D1、SCR升温:提升排气温度到设定温度T1,设定温度T1的范围为250℃~400℃;
D2、SCR脱硫再生:当排气温度达到设定温度T1后,通过控制器控制缸内后喷油量、通过后处理燃油喷射系统往排气管内喷油或者同时采用控制器控制缸内后喷油量和后处理燃油喷射系统往排气管内喷油,使得排气管内有未燃的燃油或者碳氢,未燃燃油或者碳氢经过催化氧化器DOC时会被氧化,放出热量,从而使得排气温度提升到设定温度T2,设定温度T2的范围为480℃~650℃,并维持设定温度T2进行脱硫再生;
D3、退出SCR脱硫再生:
D31、停止喷油
若SCR脱硫再生仅采用了控制器控制缸内后喷油量,则关闭缸内后喷;若SCR脱硫再生仅采用了后处理燃油喷射系统往排气管内喷油,则停止往排气管内喷油;若SCR脱硫再生同时采用了控制器控制缸内后喷油量和后处理燃油喷射系统往排气管内喷油,则同时停止缸内后喷和往排气管内喷油;当排气温度由设定温度T2下降到设定温度T3,设定温度T3的范围为250℃~500℃,则进入步骤D32;
D32、恢复到发动机正常运行的工况
发动机主喷油正时、高压共轨的轨压、节气门开度、废气再循环阀开度、可变涡轮增压器阀开度或者发动机预喷喷油量都恢复到正常状态;
E、若SCR效率低的原因是SCR催化剂失活,则更换SCR。
步骤C中,SCR去结晶再生的开启需要同时满足以下5个条件:SCR结晶;颗粒过滤器DPF碳载量小于最大碳载量限值;当距离上一次再生的发动机运行时间或里程高于标定值;控制策略并没有禁止进行再生;颗粒过滤器DPF再生需求未触发。
步骤C1中,通过以下措施中的一种或者多种来提升排气温度值至设定温度T1:推迟发动机主喷油正时,正时推迟0.5°~2°;降低高压共轨的轨压,轨压为200kpa~2000kpa;部分关闭节气门,节气门开度为0﹪~60﹪;减小废气再循环阀开度,废气再循环阀开度为0﹪~50﹪;增大可变涡轮增压器阀开度,可变涡轮增压器阀开度为20﹪~100﹪或者增加发动机预喷喷油量,发动机预喷喷油量为0g/str~20g/str。
步骤D中,SCR脱硫再生的开启需要同时满足以下5个条件:SCR硫中毒;颗粒过滤器DPF碳载量小于最大碳载量限值;当距离上一次再生的发动机运行时间或里程高于标定值;控制策略并没有禁止进行再生;颗粒过滤器DPF再生需求未触发。
步骤D1中,通过以下措施中的一种或者多种来提升排气温度值至设定温度T1:推迟发动机主喷油正时,正时推迟0.5°~2°;降低高压共轨的轨压,轨压为200kpa~2000kpa;部分关闭节气门,节气门开度为0﹪~60﹪;减小废气再循环阀开度,废气再循环阀开度为0﹪~50﹪;增大可变涡轮增压器阀开度,可变涡轮增压器阀开度为20﹪~100﹪或者增加发动机预喷喷油量,发动机预喷喷油量为0g/str~20g/str。
本发明的原理说明如下:
本设计针对具体SCR效率低原因进行更换合格的尿素溶液、控制模型自学习、高温去结晶再生和高温脱硫再生等方法来恢复SCR效率。
当SCR效率高于停止去结晶再生(脱硫再生)的设定值或者去结晶再生(脱硫再生)持续时间超过设定值,就会停止去结晶再生(脱硫再生)。
在恢复SCR效率之前,可以通过以下方法来诊断SCR效率及分析SCR效率低原因;
一种SCR效率的诊断方法,该诊断方法包括以下步骤:
1、开启SCR效率的诊断功能,并获取原机NOx值、后NOx传感器测量值和后NOx的理论值;
当满足以下条件后,SCR效率的诊断功能开启:
当前工况转速与前t1时刻的转速变化小于δ1,t1的范围为0.1s~10s,δ1的范围为10rpm~200rpm;
扭矩百分数小于δ2,δ2的范围为0%~20%;
SCR温度在T1和T2之间,T1的范围为180℃~240℃,T2的范围为300℃~500℃;
后处理系统无硬件故障(包括后NOx传感器、温度传感器等);
尿素喷射量大于m,m的范围为大于100ml/h;
原机NOx值在v1和v2之间,v1的范围为100ppm~1500ppm,v2的范围为300ppm~2000ppm;
后NOx传感器测量值在v3和v4之间,v3的范围为100ppm~1500ppm,v4的范围为300ppm~2000ppm;
原机NOx值通过安装在后处理器之前的NOx传感器测量得到或者根据转速、扭矩信号读取控制map得到,之后,对原机NOx进行延时处理,延时处理的方法为:
t0=V/Q;
上式中,V为发动机出口到后NOx传感器的流通体积或者前NOx传感器到后NOx传感器的流通体积,Q为排气体积流量;
将SCR温度、原机NOx值、废气流量值和尿素喷射量输入到SCR催化剂模块中,采用以下公式计算后NOx的理论值:
N=A-A*E*F;
上式中,N为后NOx的理论值;A为原机NOx值;E为NOx实际转化效率,由SCR催化剂模块中的SCR温度和尿素喷射量读取NOx实际转化效率map得到;F为储氨修正效率,根据当前储氨量和排气流量读取储氨修正效率map得到;
对原机NOx值、后NOx传感器测量值和后NOx的理论值进行滤波处理,滤波方式如下:
Yn=K*Xn+(1-K)Yn-1;
上式中,Yn为当前时刻的输出值,Xn为当前时刻的输入值,Yn-1为上一时刻的输出值,K为滤波系数,K的范围为0~1;
或者对原机NOx值、后NOx传感器测量值和后NOx的理论值进行滤波处理,滤波方式如下:
Yn=(Yn-1*(a-1)+Xn)/a;
上式中,Yn为当前时刻的输出值,Xn为当前时刻的输入值,Yn-1为上一时刻的输出值,a为滤波系数,a为整数,且a≥1;
2、根据原机NOx值和后NOx传感器测量值计算实际转化效率,实际转化效率=(原机NOx值-后NOx传感器测量值)/原机NOx值;
根据原机NOx值和后NOx的理论值计算目标转化效率,目标转化效率=(原机NOx值-后NOx的理论值)/原机NOx值;
3、通过对比目标转化效率和实际转化效率的差异,来判断SCR效率;
若目标转化效率/实际转化效率<P1,P1的范围为0.4~0.98,且持续时间超过标定值t2,标定值t2的范围为10s~3600s,则判断SCR效率低故障;
若目标转化效率/实际转化效率>P2,P2的范围为0.6~1,且持续时间超过标定值t3,标定值t3的范围为10s~3600s,则判断SCR效率正常。
一种SCR效率低的原因分析方法,该方法包括以下步骤:
1、检查尿素质量浓度是否正常;
尿素质量浓度分析有两种方法,方法1为:根据尿素质量浓度传感器测量尿素质量浓度,若尿素质量浓度低于设定值L1,设定值L1的范围为10﹪~32.5﹪,则判断SCR效率低的原因是尿素质量差;方法2为:当油耗大于发动机额定点油耗的5﹪~50﹪;废气流量大于发动机额定点废气流量的5﹪~50﹪;SCR温度大于设定温度L2,设定温度L2的范围为小于300℃;尿素泵无故障时,依次将尿素喷射量更改为原尿素喷射量的0.8倍、0.9倍、1.1倍、1.2倍、1.3倍,检查SCR效率下降的情况,若SCR效率成线性下降,则判断SCR效率低的原因是尿素质量差;
2、检查尿素喷射控制模型是否准确;
确定尿素质量浓度正常后,停止喷射尿素,观察控制模型中的储氨量,若控制模型中的储氨量为0,后NOx传感器测量值与原机NOx值的比值小于设定值L3,设定值L3的范围为0~0.9时,则判断SCR效率低的原因是尿素喷射控制模型不准确;
3、检查SCR是否发生结晶故障;
确定尿素质量浓度正常和尿素喷射控制模型准确后,进行SCR结晶分析,SCR结晶分析需要满足以下条件:油耗小于发动机额定点油耗的5﹪~50﹪;废气流量小于发动机额定点废气流量的5﹪~50﹪;SCR温度小于设定温度L2,设定温度L2的范围为小于300℃;尿素泵无故障;
SCR结晶分析根据结晶风险系数CFR来判断,CFR的计算公式为:
Qexhaust=Molexhaust·Cp·Tscr_in;
ΔQurea=Molurea·Cp3·ΔT3+Molurea·ΔH2+Molurea·ΔH3;
上式中,Molexhaust为排气的物质的量,单位为mol/h;Cp为排气比热容,单位为J/mol˙k;Tscr_in为催化剂入口温度,单位为K;为尿素水溶液中水的物质的量,单位为mol/h;Cp1为水的比热容,单位为J/mol˙k;ΔT1为水从常温升高到沸腾温度的温差,单位为K;ΔH1为水蒸发为蒸气的摩尔焓,单位为J/mol;Cp2为水蒸气的比热容,单位为J/mol˙k;Molurea为尿素水溶液中尿素的物质的量,单位为mol/h;Cp3为尿素的比热容,单位为J/mol˙k;ΔT3为尿素从常温升高到分解温度的温差,单位为K;ΔH2为尿素蒸发为尿素蒸气的摩尔焓,单位为J/mol;ΔH3为尿素蒸气分解为氨气的摩尔焓,单位为J/mol;
若CFR小于设定值L4,设定值L4的范围为0~30,则SCR存在结晶风险;否则SCR不存在结晶风险;
将存在结晶风险的时间加入到时间计数器中;将不存在结晶风险的时间从时间计数器中减去;当上一时刻SCR处于再生,当前时刻SCR再生结束,则需要将时间计数器更新为0;当时间计数器超过设定值L5,设定值L5的范围为大于5s,则判断SCR效率低的原因是SCR发生结晶故障;
4、检查SCR是否发生硫中毒故障;
确定尿素质量浓度正常、尿素喷射控制模型准确和SCR未发生结晶故障后,通过推迟发动机主喷油正时,正时推迟0.5°~2°;降低高压共轨的轨压,轨压为200kpa~2000kpa;部分关闭节气门,节气门开度为0﹪~60﹪;减小废气再循环阀开度,废气再循环阀开度为0﹪~50﹪;增大可变涡轮增压器阀开度,可变涡轮增压器阀开度为20﹪~100﹪或者增加发动机预喷喷油量,发动机预喷喷油量为0g/str~20g/str来提升排气温度值至设定温度L6,设定温度L6的范围为450℃~550℃,持续运行一段时间,该时间的范围为大于30min,若SCR效率提升一定幅度,该幅度的范围为大于0.1,则判断SCR效率低的原因是SCR发生硫中毒故障;
5、检查SCR催化剂是否失活;
确定尿素质量浓度正常、尿素喷射控制模型准确、SCR未发生结晶故障和SCR未发生硫中毒故障后,进行SCR催化剂失活分析;
当油耗大于发动机额定点油耗的5﹪~50﹪;废气流量大于发动机额定点废气流量的5﹪~50﹪;SCR温度大于设定温度L2,设定温度L2的范围为小于300℃;尿素泵无故障时,依次将尿素喷射量更改为原尿素喷射量的1.05倍、1.1倍、1.15倍、1.2倍、1.25倍、1.3倍直至后NOx传感器测量值变小,若后NOx传感器测量值无法降至设定值L7,设定值L7的范围为0~300,则判断SCR效率低的原因是SCR催化剂失活。
实施例:
参见图1、图2,一种SCR效率恢复的控制方法,该控制方法包括以下步骤:
A、若SCR效率低的原因是尿素浓度低,则更换正常浓度的尿素;
B、若SCR效率低的原因是尿素喷射控制模型偏差大,则通过停止喷射尿素使得原机NOx将SCR的储氨量全部反应掉,当后NOx传感器测量值与原机NOx值的偏差ε=(原机NOx值-后NOx传感器测量值)/原机NOx值小于设定值,设定值的范围为0﹪~30%,则认为SCR内的储氨量完全反应掉了,此时,尿素喷射控制模型重新恢复到初始状态,尿素喷射控制模型的控制参数全部变为0,尿素喷射控制模型的偏差也更新为0,进而修正了尿素喷射控制模型的偏差;
C、若SCR效率低的原因是SCR结晶,则开启SCR去结晶再生;
SCR去结晶再生的开启需要同时满足以下5个条件:SCR结晶;颗粒过滤器DPF碳载量小于最大碳载量限值;当距离上一次再生的发动机运行时间或里程高于标定值;控制策略并没有禁止进行再生;颗粒过滤器DPF再生需求未触发;
C1、SCR升温:通过以下措施中的一种或者多种来提升排气温度值至设定温度T1,设定温度T1的范围为250℃~400℃:推迟发动机主喷油正时,正时推迟0.5°~2°;降低高压共轨的轨压,轨压为200kpa~2000kpa;部分关闭节气门,节气门开度为0﹪~60﹪;减小废气再循环阀开度,废气再循环阀开度为0﹪~50﹪;增大可变涡轮增压器阀开度,可变涡轮增压器阀开度为20﹪~100﹪或者增加发动机预喷喷油量,发动机预喷喷油量为0g/str~20g/str;
C2、SCR去结晶再生:当排气温度达到设定温度T1后,通过控制器控制缸内后喷油量、通过后处理燃油喷射系统往排气管内喷油或者同时采用控制器控制缸内后喷油量和后处理燃油喷射系统往排气管内喷油,使得排气管内有未燃的燃油或者碳氢,未燃燃油或者碳氢经过催化氧化器DOC时会被氧化,放出热量,从而使得排气温度提升到设定温度T2,设定温度T2的范围为480℃~650℃,并维持设定温度T2进行SCR去结晶再生;
C3、退出SCR去结晶再生:
C31、停止喷油
若SCR去结晶再生仅采用了控制器控制缸内后喷油量,则关闭缸内后喷;若SCR去结晶再生仅采用了后处理燃油喷射系统往排气管内喷油,则停止往排气管内喷油;若SCR去结晶再生同时采用了控制器控制缸内后喷油量和后处理燃油喷射系统往排气管内喷油,则同时停止缸内后喷和往排气管内喷油;当排气温度由设定温度T2下降到设定温度T3,设定温度T3的范围为250℃~500℃,则进入步骤C32;
C32、恢复到发动机正常运行的工况
发动机主喷油正时、高压共轨的轨压、节气门开度、废气再循环阀开度、可变涡轮增压器阀开度或者发动机预喷喷油量都恢复到正常状态;
D、若SCR效率低的原因是SCR硫中毒,则开启SCR脱硫再生;
SCR脱硫再生的开启需要同时满足以下5个条件:SCR硫中毒;颗粒过滤器DPF碳载量小于最大碳载量限值;当距离上一次再生的发动机运行时间或里程高于标定值;控制策略并没有禁止进行再生;颗粒过滤器DPF再生需求未触发;
D1、SCR升温:通过以下措施中的一种或者多种来提升排气温度值至设定温度T1,设定温度T1的范围为250℃~400℃:推迟发动机主喷油正时,正时推迟0.5°~2°;降低高压共轨的轨压,轨压为200kpa~2000kpa;部分关闭节气门,节气门开度为0﹪~60﹪;减小废气再循环阀开度,废气再循环阀开度为0﹪~50﹪;增大可变涡轮增压器阀开度,可变涡轮增压器阀开度为20﹪~100﹪或者增加发动机预喷喷油量,发动机预喷喷油量为0g/str~20g/str;
D2、SCR脱硫再生:当排气温度达到设定温度T1后,通过控制器控制缸内后喷油量、通过后处理燃油喷射系统往排气管内喷油或者同时采用控制器控制缸内后喷油量和后处理燃油喷射系统往排气管内喷油,使得排气管内有未燃的燃油或者碳氢,未燃燃油或者碳氢经过催化氧化器DOC时会被氧化,放出热量,从而使得排气温度提升到设定温度T2,设定温度T2的范围为480℃~650℃,并维持设定温度T2进行脱硫再生;
D3、退出SCR脱硫再生:
D31、停止喷油
若SCR脱硫再生仅采用了控制器控制缸内后喷油量,则关闭缸内后喷;若SCR脱硫再生仅采用了后处理燃油喷射系统往排气管内喷油,则停止往排气管内喷油;若SCR脱硫再生同时采用了控制器控制缸内后喷油量和后处理燃油喷射系统往排气管内喷油,则同时停止缸内后喷和往排气管内喷油;当排气温度由设定温度T2下降到设定温度T3,设定温度T3的范围为250℃~500℃,则进入步骤D32;
D32、恢复到发动机正常运行的工况
发动机主喷油正时、高压共轨的轨压、节气门开度、废气再循环阀开度、可变涡轮增压器阀开度或者发动机预喷喷油量都恢复到正常状态;
E、若SCR效率低的原因是SCR催化剂失活,则更换SCR。
Claims (3)
1.一种SCR效率恢复的控制方法,其特征在于,该控制方法包括以下步骤:
A、若SCR效率低的原因是尿素浓度低,则更换正常浓度的尿素;
B、若SCR效率低的原因是尿素喷射控制模型偏差大,则通过停止喷射尿素使得原机NOx将SCR的储氨量全部反应掉,当后NOx传感器测量值与原机NOx值的偏差ε=(原机NOx值-后NOx传感器测量值)/原机NOx值小于设定值,设定值的范围为0﹪~30%,则认为SCR内的储氨量完全反应掉了,此时,尿素喷射控制模型重新恢复到初始状态,尿素喷射控制模型的控制参数全部变为0,尿素喷射控制模型的偏差也更新为0,进而修正了尿素喷射控制模型的偏差;
C、若SCR效率低的原因是SCR结晶,则开启SCR去结晶再生:
SCR去结晶再生的开启需要同时满足以下5个条件:SCR结晶;颗粒过滤器DPF碳载量小于最大碳载量限值;当距离上一次再生的发动机运行时间或里程高于标定值;控制策略并没有禁止进行再生;颗粒过滤器DPF再生需求未触发;
C1、SCR升温:提升排气温度到设定温度T1,设定温度T1的范围为250℃~400℃;
通过以下措施中的一种或者多种来提升排气温度值至设定温度T1:推迟发动机主喷油正时,正时推迟0.5°~2°;降低高压共轨的轨压,轨压为200kpa~2000kpa;部分关闭节气门,节气门开度为0﹪~60﹪;减小废气再循环阀开度,废气再循环阀开度为0﹪~50﹪;增大可变涡轮增压器阀开度,可变涡轮增压器阀开度为20﹪~100﹪或者增加发动机预喷喷油量,发动机预喷喷油量为0g/str~20g/str;
C2、SCR去结晶再生:当排气温度达到设定温度T1后,通过控制器控制缸内后喷油量、通过后处理燃油喷射系统往排气管内喷油或者同时采用控制器控制缸内后喷油量和后处理燃油喷射系统往排气管内喷油,使得排气管内有未燃的燃油或者碳氢,未燃燃油或者碳氢经过催化氧化器DOC时会被氧化,放出热量,从而使得排气温度提升到设定温度T2,设定温度T2的范围为480℃~650℃,并维持设定温度T2进行SCR去结晶再生;
C3、退出SCR去结晶再生:
C31、停止喷油
若SCR去结晶再生仅采用了控制器控制缸内后喷油量,则关闭缸内后喷;若SCR去结晶再生仅采用了后处理燃油喷射系统往排气管内喷油,则停止往排气管内喷油;若SCR去结晶再生同时采用了控制器控制缸内后喷油量和后处理燃油喷射系统往排气管内喷油,则同时停止缸内后喷和往排气管内喷油;当排气温度由设定温度T2下降到设定温度T3,设定温度T3的范围为250℃~500℃,则进入步骤C32;
C32、恢复到发动机正常运行的工况
发动机主喷油正时、高压共轨的轨压、节气门开度、废气再循环阀开度、可变涡轮增压器阀开度或者发动机预喷喷油量都恢复到正常状态;
D、若SCR效率低的原因是SCR硫中毒,则开启SCR脱硫再生:
D1、SCR升温:提升排气温度到设定温度T1,设定温度T1的范围为250℃~400℃;
D2、SCR脱硫再生:当排气温度达到设定温度T1后,通过控制器控制缸内后喷油量、通过后处理燃油喷射系统往排气管内喷油或者同时采用控制器控制缸内后喷油量和后处理燃油喷射系统往排气管内喷油,使得排气管内有未燃的燃油或者碳氢,未燃燃油或者碳氢经过催化氧化器DOC时会被氧化,放出热量,从而使得排气温度提升到设定温度T2,设定温度T2的范围为480℃~650℃,并维持设定温度T2进行脱硫再生;
D3、退出SCR脱硫再生:
D31、停止喷油
若SCR脱硫再生仅采用了控制器控制缸内后喷油量,则关闭缸内后喷;若SCR脱硫再生仅采用了后处理燃油喷射系统往排气管内喷油,则停止往排气管内喷油;若SCR脱硫再生同时采用了控制器控制缸内后喷油量和后处理燃油喷射系统往排气管内喷油,则同时停止缸内后喷和往排气管内喷油;当排气温度由设定温度T2下降到设定温度T3,设定温度T3的范围为250℃~500℃,则进入步骤D32;
D32、恢复到发动机正常运行的工况
发动机主喷油正时、高压共轨的轨压、节气门开度、废气再循环阀开度、可变涡轮增压器阀开度或者发动机预喷喷油量都恢复到正常状态;
E、若SCR效率低的原因是SCR催化剂失活,则更换SCR。
2.根据权利要求1所述的一种SCR效率恢复的控制方法,其特征在于:步骤D中,SCR脱硫再生的开启需要同时满足以下5个条件:SCR硫中毒;颗粒过滤器DPF碳载量小于最大碳载量限值;当距离上一次再生的发动机运行时间或里程高于标定值;控制策略并没有禁止进行再生;颗粒过滤器DPF再生需求未触发。
3.根据权利要求1所述的一种SCR效率恢复的控制方法,其特征在于:步骤D1中,通过以下措施中的一种或者多种来提升排气温度值至设定温度T1:推迟发动机主喷油正时,正时推迟0.5°~2°;降低高压共轨的轨压,轨压为200kpa~2000kpa;部分关闭节气门,节气门开度为0﹪~60﹪;减小废气再循环阀开度,废气再循环阀开度为0﹪~50﹪;增大可变涡轮增压器阀开度,可变涡轮增压器阀开度为20﹪~100﹪或者增加发动机预喷喷油量,发动机预喷喷油量为0g/str~20g/str。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910894823.6A CN110630361B (zh) | 2019-09-20 | 2019-09-20 | 一种scr效率恢复的控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910894823.6A CN110630361B (zh) | 2019-09-20 | 2019-09-20 | 一种scr效率恢复的控制方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110630361A CN110630361A (zh) | 2019-12-31 |
CN110630361B true CN110630361B (zh) | 2021-02-05 |
Family
ID=68972117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910894823.6A Active CN110630361B (zh) | 2019-09-20 | 2019-09-20 | 一种scr效率恢复的控制方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110630361B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111365095A (zh) * | 2020-03-20 | 2020-07-03 | 一汽解放汽车有限公司 | 一种柴油发动机用电加热颗粒捕捉器后处理系统 |
CN112065540B (zh) * | 2020-09-09 | 2021-09-21 | 安徽江淮汽车集团股份有限公司 | 一种nsc的脱硫方法 |
CN113047924B (zh) * | 2021-03-04 | 2022-07-15 | 广西玉柴机器股份有限公司 | 一种柴油机催化器的处理方法及系统 |
CN113700541B (zh) * | 2021-09-23 | 2023-01-20 | 潍柴动力股份有限公司 | 一种发动机scr系统催化单元脱硫再生的方法及其装置 |
CN115163265A (zh) * | 2022-07-14 | 2022-10-11 | 东风商用车有限公司 | 一种scr效率测试的诊断方法及诊断仪 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2504975A (en) * | 2012-08-15 | 2014-02-19 | Gm Global Tech Operations Inc | Method of controlling a DeSOx regeneration process of a Lean NOx Trap |
US9016047B2 (en) * | 2013-02-15 | 2015-04-28 | GM Global Technologies Operations LLC | System and method for exhaust gas aftertreatment |
US9890678B2 (en) * | 2013-10-03 | 2018-02-13 | Baohua Qi | Multi-stage SCR control and diagnostic system |
KR101637758B1 (ko) * | 2014-12-03 | 2016-07-07 | 현대자동차주식회사 | Scr 시스템의 고장진단방법 및 고장진단장치 |
CN106014571B (zh) * | 2016-05-31 | 2018-10-19 | 无锡威孚力达催化净化器有限责任公司 | 发动机原机NOx值的计算方法 |
CN106121797A (zh) * | 2016-08-29 | 2016-11-16 | 无锡威孚力达催化净化器有限责任公司 | Scr后处理系统氨泄漏状态判断方法 |
CN106401704B (zh) * | 2016-10-28 | 2019-01-04 | 东风商用车有限公司 | 一种柴油机scr催化器硫中毒消除装置及其使用方法 |
CN108691609B (zh) * | 2017-04-05 | 2023-08-18 | 无锡恒和环保科技有限公司 | 一种柴油机scr后处理系统的维修方法与装置 |
CN109252922A (zh) * | 2017-07-14 | 2019-01-22 | 罗伯特·博世有限公司 | 选择性催化还原装置主动除结晶系统 |
-
2019
- 2019-09-20 CN CN201910894823.6A patent/CN110630361B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN110630361A (zh) | 2019-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110630361B (zh) | 一种scr效率恢复的控制方法 | |
CN110761881B (zh) | 一种scr效率的诊断方法 | |
CN110767268B (zh) | 一种scr效率低的原因分析方法 | |
CN102037230B (zh) | NOx传感器的异常诊断装置及异常诊断方法 | |
CN112282906B (zh) | 一种scr催化器结晶检测方法、检测装置及清除装置 | |
US9038370B2 (en) | Method for operating an exhaust emission control system having a SCR-catalyst and an upstream oxidation catalyst exhaust emission control component | |
US9322312B2 (en) | Ambient humidity and temperature correction to particulate filter soot rate | |
EP2653680B1 (en) | Dpf system | |
US10029210B2 (en) | Exhaust gas purification apparatus and method for internal combustion engine | |
CN110700926B (zh) | 一种实现scr脱硫再生的控制方法 | |
JP2006125247A (ja) | エンジンの排気ガス浄化方法及び排気ガス浄化装置 | |
EP3239484A1 (en) | EXHAUST PURIFICATION SYSTEM AND METHOD FOR RESTORING NOx PURIFICATION CAPACITY | |
EP3075976B1 (en) | Catalyst regeneration processing apparatus | |
CN107407179B (zh) | 排气净化系统 | |
JP4218462B2 (ja) | 排気浄化触媒の還元剤添加誤差検出方法及び還元剤添加誤差検出装置 | |
JP4308702B2 (ja) | 排気浄化装置 | |
JP4561656B2 (ja) | 内燃機関の触媒温度推定装置 | |
EP3192989A1 (en) | Exhaust gas purification system | |
JP4341456B2 (ja) | 内燃機関の排気浄化触媒劣化判定方法及び劣化判定装置 | |
US8020375B2 (en) | Exhaust gas purification system for internal combustion engine | |
JP4648274B2 (ja) | 内燃機関の制御装置 | |
CN107407175B (zh) | 排气净化系统及催化剂再生方法 | |
CN110945218B (zh) | 排气净化系统 | |
CN107407178A (zh) | 排气净化系统及催化剂再生方法 | |
CN107429591B (zh) | 排气净化系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |