CN110628862A - 一种废水梯级能源回收的自聚集颗粒污泥构建方法 - Google Patents

一种废水梯级能源回收的自聚集颗粒污泥构建方法 Download PDF

Info

Publication number
CN110628862A
CN110628862A CN201910906131.9A CN201910906131A CN110628862A CN 110628862 A CN110628862 A CN 110628862A CN 201910906131 A CN201910906131 A CN 201910906131A CN 110628862 A CN110628862 A CN 110628862A
Authority
CN
China
Prior art keywords
wastewater
self
granular sludge
aggregation
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910906131.9A
Other languages
English (en)
Inventor
邢德峰
李�真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201910906131.9A priority Critical patent/CN110628862A/zh
Publication of CN110628862A publication Critical patent/CN110628862A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/12Bioreactors or fermenters specially adapted for specific uses for producing fuels or solvents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/36Means for collection or storage of gas; Gas holders
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/18External loop; Means for reintroduction of fermented biomass or liquid percolate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/02Separating microorganisms from the culture medium; Concentration of biomass
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P39/00Processes involving microorganisms of different genera in the same process, simultaneously
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/59Biological synthesis; Biological purification

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

一种废水梯级能源回收的自聚集颗粒污泥构建方法,属于发酵产氢技术领域。本发明为了解决现有废水处理混合培养体系组成复杂、启动时间长、能源效率低,操作繁琐、成本高、不利于扩大化等问题。本发明将哈尔滨产乙醇杆菌YUAN‑3和铜绿假单胞菌PqsL共培养形成的自聚集颗粒污泥接种至连续流生物制氢反应器中,通过微生物互作快速启动反应器,在处理废水同时高效回收氢气和乙醇等能源。本发明的铜绿假单胞菌PqsL能够快速消耗连续流生物制氢反应器内的氧气,为哈尔滨产乙醇杆菌YUAN‑3提供适宜厌氧环境,使其在未经厌氧处理的连续流生物制氢反应器体系中进行快速连续产氢,简化反应条件的同时,缩短反应器的启动时间。

Description

一种废水梯级能源回收的自聚集颗粒污泥构建方法
技术领域
本发明涉及一种废水梯级能源回收的自聚集颗粒污泥构建方法,属于发酵产氢技术领域。
背景技术
发酵法生物制氢能够在常温常压下利用有机废水生产清洁高效的氢气能源,具有产氢率高、生态友好、成本低等诸多优点。而氢作为一种重要的能量载体,燃烧密度高,清洁可持续,是一种极具发展前景的化石燃料替代品。
绝大多数厌氧发酵法生物制氢体系是以不同废水来源的预处理厌氧活性污泥为接种物的混合培养体系,其优势在于接种方便、操作简单、整个运行过程不需要灭菌处理。然而,混合培养体系具有复杂的有机组成和多变的氧含量,启动时间长,大大影响生物制氢系统的发酵特性和产氢能力。单一的纯培养体系虽然发酵类型固定、产氢效率高,但对培养条件极为敏感,一旦培养环境不适宜,制氢效率会大大降低,运行条件繁琐、成本高,不适合运用于连续制氢。尤其是哈尔滨产乙醇杆菌,其培养需要严格的厌氧环境,操作繁琐,条件苛刻,成本高、不利于扩大化。因此,提供一种废水梯级能源回收的自聚集颗粒污泥构建方法是十分必要的。
发明内容
本发明为解决现有混合培养体系组成复杂、启动时间长、制氢效率低,需要严格厌氧条件,操作繁琐、成本高、不利于生物制氢的扩大化等问题,提供了一种废水梯级能源回收的自聚集颗粒污泥构建方法。
本发明的技术方案:
一种废水梯级能源回收的自聚集颗粒污泥构建方法,该方法的具体操作步骤如下:
将哈尔滨产乙醇杆菌(Ethanoligenens harbinense)YUAN-3和铜绿假单胞菌(Pseudomonas aeruginosa)PqsL共培养形成的自聚集颗粒污泥接种至连续流生物制氢反应器中,35℃-37℃恒温共培养5小时后开始产氢产乙醇;所述的连续流生物制氢反应器的水力停留时间为6小时-12小时,回流比为6:1。
优选的:所述的铜绿假单胞菌PqsL培养操作步骤如下:将液体培养基A经高温高压蒸汽灭菌后,接种铜绿假单胞菌PqsL,然后在温度为35℃、转速为100rpm的恒温摇床里震荡培养6小时-12小时,得到淡黄色浑浊菌液,然后取100ml-300ml淡黄色浑浊菌液,12000r/h离心1分钟,弃上清液,得到铜绿假单胞菌PqsL的接种物。
最优选的:所述的淡黄色浑浊菌液在波长600nm处吸光度为0.9-1.0。
最优选的:每1L所述的液体培养基A由2.0g的蛋白胨,1.0g的酵母提取物,2.0g的NaCl组成。
优选的:所述的哈尔滨产乙醇杆菌YUAN-3培养操作步骤如下:将液体培养基B经纯度为99.99%的N2曝气和高温高压蒸汽灭菌后,接种哈尔滨产乙醇杆菌YUAN-3,在温度为35℃、转速为100rpm的恒温摇床里震荡培养24小时-48小时,得到伴有球状凝集颗粒的浑浊菌液,取100ml-300ml的浑浊菌液12000r/h离心1分钟,弃上清液,得到哈尔滨乙醇杆菌YUAN-3的接种物。
最优选的:每1L所述的液体培养基B由5g-15g的葡萄糖,1.0g的牛肉膏,2.0g的NaCl,1.0g的K2HPO4,0.2g的MgCl2·6H2O,0.1g-0.5g的L-半胱氨酸组成。
优选的:所述的共培养自聚集颗粒污泥接种物的培养操作步骤如下:将废水培养液经高温高压蒸汽灭菌后,同时接种0.05g-0.1g哈尔滨产乙醇杆菌YUAN-3接种物和0.05g-0.1g铜绿假单胞菌PqsL接种物,在温度为35℃、转速为100rpm的恒温摇床里震荡培养24小时-48小时,得到伴有球状凝集颗粒的浑浊菌液,取100ml-300ml的浑浊菌液8000r/h离心5分钟,弃上清液,得到自聚集颗粒污泥接种物。
优选的:所述的连续流生物制氢反应器包括反应器主体1、进水瓶2、进水泵3、循环泵4、收集气袋5和填料6,所述的反应器主体1通过进水泵3与进水瓶2连接,反应器主体1的上、下两端之间配有循环泵4进行回流,反应器主体1的上端连接收集气袋5用来收集反应器主体1内产生的氢气,多孔泡沫填料6填充在反应器主体1内,反应器主体1还设有溢流堰,反应器主体1的出水经过溢流堰排出;并且反应器主体1内设置有三相分离器,三相分离器用来分离上浮菌体、水和气体;所述的反应器主体1为有机玻璃,反应器主体1的有效反应区高径比为7:1,有效反应区体积为1L;所述的连续流生物制氢反应器的反应器主体1中装有pH为7的废水培养液,进水瓶2中装有pH为7-9的废水培养液。
最优选的:每1L所述的反应器主体1中废水培养液中接种0.5-1g自聚集颗粒污泥接种物。
最优选的:每1L所述的废水培养液含有5g-15g的蔗糖,1.0g的牛肉膏,2.0g的蛋白胨,1.0g的酵母提取物,2.0g的NaCl,1.0g的K2HPO4,0.2g的MgCl2·6H2O,0.1g-0.5g的L-半胱氨酸。
本发明具有以下有益效果:本发明利用哈尔滨产乙醇杆菌YUAN-3和铜绿假单胞菌PqsL共培养形成的自聚集颗粒污泥接种至连续流生物制氢反应器中,通过微生物互作快速启动反应器,在处理废水同时高效回收氢气和乙醇等能源。具体的本方法中使用铜绿假单胞菌PqsL能够快速消耗连续流生物制氢反应器内的氧气,为哈尔滨产乙醇杆菌YUAN-3提供适宜厌氧环境,使其在未经厌氧处理的连续流生物制氢反应器体系中进行快速连续产氢,简化反应条件的同时,缩短反应器的启动时间,使本方法可以在启动5小时后即可实现快速连续稳定产氢,最大氢气产率为2.2mol-氢气/mol-蔗糖,大幅降低制氢成本。并且本方法结合连续流生物制氢反应器高传质效率、高底物转化和低水力停留时间(HRT)等优秀性能,最终收集得到的氢气纯度更高,产率更大。此外,本发明还具有操作简便,适合扩大化的优势。
附图说明
图1为本发明连续流生物制氢反应器的结构示意图;
图中1-反应器主体,2-进水瓶,3-进水泵,4-循环泵,5-收集气袋,6-填料。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明均为常规方法。
下述具体实施例中涉及的哈尔滨产乙醇杆菌(Ethanoligenens harbinense)是2005年邢德峰等分离获得的乙醇型发酵的主要产氢功能细菌,其中菌株YUAN-3是从生物制氢反应器中分离得到的一株严格厌氧的高效产氢菌株,它是已报道的唯一一株具有自凝聚能力的产氢细菌,保藏编号为CGMCC No.1152。
铜绿假单胞菌(Pseudomonas aeruginosa)是一种广泛存在于自然界的兼性厌氧细菌,实验室中可在LB培养基中好氧培养,能够快速消耗密闭环境中的氧气。
具体实施方式1:本实施方式中提供了一种废水梯级能源回收的自聚集颗粒污泥构建方法,该方法的具体操作步骤如下:
(一)在恒温摇床内好氧培养铜绿假单胞菌PqsL:采用经高温高压蒸汽灭菌后的液体培养基A培养铜绿假单胞菌PqsL,将接种后的锥形瓶放置在恒温摇床里震荡培养,其中,恒温摇床温度为35℃,转速为100rpm,12小时后形成在波长600nm处吸光度达0.9-1.0的淡黄色浑浊菌液,取100ml-300ml淡黄色浑浊菌液,12000r/h离心1分钟,弃上清液,得到铜绿假单胞菌PqsL的接种物;其中每1L液体培养基A由2.0g的蛋白胨,1.0g的酵母提取物,2.0g的NaCl组成。并且向液体培养基A中加入微量元素和维生素。
(二)在恒温摇床内厌氧培养哈尔滨产乙醇杆菌YUAN-3:采用经高纯N2(99.99%)曝气并高温高压蒸汽灭菌后的液体培养基B培养哈尔滨产乙醇杆菌YUAN-3,将接种后的厌氧瓶放在恒温摇床中震荡培养,其中,恒温摇床温度为35℃,转速为100rpm,40小时后在厌氧瓶底部形成白色球状凝集颗粒的浑浊菌液,取100ml-300ml淡黄色浑浊菌液,12000r/h离心1分钟,弃上清液,得到哈尔滨产乙醇杆菌YUAN-3的接种物;其中每1L液体培养基B由11g的葡萄糖,1.0g的牛肉膏,2.0g的NaCl,1.0g的K2HPO4,0.2g的MgCl2·6H2O,0.3g的L-半胱氨酸组成;其中液体培养基B的配置方法为:先加入除L-半胱氨酸外的所有药品并煮沸10分钟,冷却至室温后加入L-半胱氨酸并溶解,继续煮沸定容至1L,并用多通道曝气针将高纯氮气(99.99%)曝入培养液中,直到培养液由粉红色变为啤酒色,稳定五分钟后将气针取出,瓶口用胶塞封死,最后经过121℃高压蒸汽灭菌,持续时间为15分钟。
(三)自聚集颗粒污泥接种物的培养:将废水培养液经高温高压蒸汽灭菌后,同时接种0.07g的哈尔滨产乙醇杆菌YUAN-3和0.07g的铜绿假单胞菌PqsL,在温度为35℃、转速为100rpm的恒温摇床里震荡培养24小时-48小时,得到伴有球状凝集颗粒的浑浊菌液,取100ml-300ml的浑浊菌液8000r/h离心5分钟,弃上清液,得到自聚集颗粒污泥接种物;其中每1L所述的废水培养液含有13g的蔗糖,1.0g的牛肉膏,2.0g的蛋白胨,1.0g的酵母提取物,2.0g的NaCl,1.0g的K2HPO4,0.2g的MgCl2·6H2O,0.1g-0.5g的L-半胱氨酸。其中,每1L废水培养液由13g的蔗糖,1.0g的牛肉膏,2.0g的蛋白胨,1.0g的酵母提取物,2.0g的NaCl,1.0g的K2HPO4,0.2g的MgCl2·6H2O,0.3g的L-半胱氨酸组成。并且向废水培养液中加入微量元素和维生素。
(四)运行连续流制氢反应器:将废水培养液注入连续流生物制氢反应器的反应器主体1和进水瓶2中,并调节反应器主体1内废水培养液的pH为7,调节进水瓶2中废水培养液的pH值为7-9,反应器主体1通过进水泵3与进水瓶2连通,反应器主体1的反应区设有三相分离器,以分离反应器主体1内上浮菌体、水和气体,菌体经过沉降区返回反应区,反应器上、下端之间配有循环泵4进行回流,上端连接收集气袋5来收集氢气,反应器主体1的出水经过溢流堰排出。该连续流生物制氢反应器的有效反应区高径比为7:1,有效反应区体积为1L。反应器的水力停留时间为8小时,回流比为6:1,运行5小时后即开始稳定产氢,最大氢气产率为2.2mol-氢气/mol-蔗糖,反应持续45天。
每1L的液体培养基A和废水培养液中均提供微量元素溶液和维生素溶液各8ml。其中,微量元素溶液含有3.0g/L的MgSO4·7H2O,0.1g/L的FeSO4·7H2O,0.1g/L的ZnSO4·7H2O,0.01g/L的H3BO3,0.1g/L的CaCl2·2H2O,0.01g/L的Na2MoO4·2H2O,0.1g/L的CoCl2·6H2O,0.024g/L的NiCl2·6H2O,0.025g/L的Na2WO4·2H2O,0.01g/L的CuSO4·5H2O,0.01g/L的KAl(SO4)2·12H2O,1.0g/L的NaCl。维生素溶液的组成为0.2g/L的维生素H,0.5g/L的维生素B1,0.5g/L的维生素B2,0.5g/L的维生素B5,1g/L的维生素B6,0.001g/L的维生素B12,0.025g/L的核黄素,0.02g/L的柠檬酸,0.01g/L的叶酸,0.5g/L的硫辛酸,0.5g/L的对氨基苯甲酸。
并且本实施例中摇床培养的方式还可以采用恒温室内的多通道磁力搅拌器搅拌培养的方式替代,培养条件为35℃、100r/min(2cm磁力搅拌子)。
具体实施方式2:本实施方式中提供了哈尔滨产乙醇杆菌YUAN-3在连续流生物制氢反应器培养方法,该方法操作步骤与具体实施方式1的主要区别为在步骤(四)中仅接种哈尔滨产乙醇杆菌YUAN-3的接种物,其余培养条件及步骤均相同,该方法的培养40小时后开始产氢气,最大氢气产率为1.62mol-氢气/mol-蔗糖。
具体实施方式1与具体实施方式2的产氢效果对比如下表,
由上表可知,将哈尔滨产乙醇杆菌YUAN-3和铜绿假单胞菌PqsL的自聚集颗粒污泥接种在连续流生物制氢反应器中,可显著缩短连续流生物制氢反应器的启动时间的同时,最大产氢速率明显增加,且对底物利用率没有不利影响。可知,自聚集颗粒污泥接种至连续流生物制氢反应器中是处理废水同时高效回收氢气和乙醇等能源的有效策略,在复杂环境如特殊基质、低pH值、低温或有氧环境等也可实现高效产氢,可进一步应用于实际生产。

Claims (10)

1.一种废水梯级能源回收的自聚集颗粒污泥构建方法,其特征在于:该方法的操作步骤为:
将哈尔滨产乙醇杆菌(Ethanoligenens harbinense)YUAN-3和铜绿假单胞菌(Pseudomonas aeruginosa)PqsL共培养形成的自聚集颗粒污泥接种至连续流生物制氢反应器中,35℃-37℃恒温共培养5小时后开始产氢产乙醇;所述的连续流生物制氢反应器的水力停留时间为6小时-12小时,回流比为6:1。
2.根据权利要求1所述的一种废水梯级能源回收的自聚集颗粒污泥构建方法,其特征在于:所述的铜绿假单胞菌PqsL培养操作步骤如下:将液体培养基A经高温高压蒸汽灭菌后,接种铜绿假单胞菌PqsL,然后在温度为35℃、转速为100rpm的恒温摇床里震荡培养6小时-12小时,得到淡黄色浑浊菌液,然后取100ml-300ml淡黄色浑浊菌液,12000r/h离心1分钟,弃上清液,得到铜绿假单胞菌PqsL的接种物。
3.根据权利要求2所述的一种废水梯级能源回收的自聚集颗粒污泥构建方法,其特征在于:所述的淡黄色浑浊菌液在波长600nm处吸光度为0.9-1.0。
4.根据权利要求2所述的一种废水梯级能源回收的自聚集颗粒污泥构建方法,其特征在于:每1L所述的液体培养基A由2.0g的蛋白胨,1.0g的酵母提取物,2.0g的NaCl组成。
5.根据权利要求1所述的一种废水梯级能源回收的自聚集颗粒污泥构建方法,其特征在于:所述的哈尔滨产乙醇杆菌YUAN-3培养操作步骤如下:将液体培养基B经纯度为99.99%的N2曝气和高温高压蒸汽灭菌后,接种哈尔滨产乙醇杆菌YUAN-3,在温度为35℃、转速为100rpm的恒温摇床里震荡培养24小时-48小时,得到伴有球状凝集颗粒的浑浊菌液,取100ml-300ml的浑浊菌液12000r/h离心1分钟,弃上清液,得到哈尔滨乙醇杆菌YUAN-3的接种物。
6.根据权利要求5所述的一种废水梯级能源回收的自聚集颗粒污泥构建方法,其特征在于:每1L所述的液体培养基B由5g-15g的葡萄糖,1.0g的牛肉膏,2.0g的NaCl,1.0g的K2HPO4,0.2g的MgCl2·6H2O,0.1g-0.5g的L-半胱氨酸组成。
7.根据权利要求1所述的一种废水梯级能源回收的自聚集颗粒污泥构建方法,其特征在于:所述的共培养自聚集颗粒污泥接种物的培养操作步骤如下:将废水培养液经高温高压蒸汽灭菌后,同时接种0.05g-0.1g哈尔滨产乙醇杆菌YUAN-3接种物和0.05g-0.1g铜绿假单胞菌PqsL接种物,在温度为35℃、转速为100rpm的恒温摇床里震荡培养24小时-48小时,得到伴有球状凝集颗粒的浑浊菌液,取100ml-300ml的浑浊菌液8000r/h离心5分钟,弃上清液,得到自聚集颗粒污泥接种物。
8.根据权利要求1所述的一种废水梯级能源回收的自聚集颗粒污泥构建方法,其特征在于:所述的连续流生物制氢反应器包括反应器主体(1)、进水瓶(2)、进水泵(3)、循环泵(4)、收集气袋(5)和填料(6),所述的反应器主体(1)通过进水泵(3)与进水瓶(2)连接,反应器主体(1)的上、下两端之间配有循环泵(4)进行回流,反应器主体(1)的上端连接收集气袋(5)用来收集反应器主体(1)内产生的氢气,多孔泡沫填料(6)填充在反应器主体(1)内,反应器主体(1)还设有溢流堰,反应器主体(1)的出水经过溢流堰排出;并且反应器主体(1)内设置有三相分离器,三相分离器用来分离上浮菌体、水和气体;
所述的反应器主体(1)为有机玻璃,反应器主体(1)的有效反应区高径比为7:1,有效反应区体积为1L;
所述的连续流生物制氢反应器的反应器主体(1)中装有pH为7的废水培养液,进水瓶(2)中装有pH为7-9的废水培养液。
9.根据权利要求8所述的一种废水梯级能源回收的自聚集颗粒污泥构建方法,其特征在于:每1L所述的反应器主体(1)中废水培养液中接种0.5-1g自聚集颗粒污泥接种物。
10.根据权利要求7、8或9的任意一项所述的一种废水梯级能源回收的自聚集颗粒污泥构建方法,其特征在于:每1L所述的废水培养液含有5g-15g的蔗糖,1.0g的牛肉膏,2.0g的蛋白胨,1.0g的酵母提取物,2.0g的NaCl,1.0g的K2HPO4,0.2g的MgCl2·6H2O,0.1g-0.5g的L-半胱氨酸。
CN201910906131.9A 2019-09-24 2019-09-24 一种废水梯级能源回收的自聚集颗粒污泥构建方法 Pending CN110628862A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910906131.9A CN110628862A (zh) 2019-09-24 2019-09-24 一种废水梯级能源回收的自聚集颗粒污泥构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910906131.9A CN110628862A (zh) 2019-09-24 2019-09-24 一种废水梯级能源回收的自聚集颗粒污泥构建方法

Publications (1)

Publication Number Publication Date
CN110628862A true CN110628862A (zh) 2019-12-31

Family

ID=68974141

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910906131.9A Pending CN110628862A (zh) 2019-09-24 2019-09-24 一种废水梯级能源回收的自聚集颗粒污泥构建方法

Country Status (1)

Country Link
CN (1) CN110628862A (zh)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1624109A (zh) * 2004-08-27 2005-06-08 哈尔滨工业大学 自絮凝产氢细菌及其筛选方法
WO2005069989A2 (en) * 2004-01-21 2005-08-04 The General Hospital Corporation Methods for identifying candidate compounds for treating, reducing, or preventing pathogenic infections
CN102153190A (zh) * 2011-03-07 2011-08-17 井冈山大学 自絮凝菌孢子快速培养好氧颗粒污泥的方法
CN102477451A (zh) * 2010-11-25 2012-05-30 上海工程技术大学 一种丁酸型混合培养生物制氢系统的制备的方法
CN104556398A (zh) * 2014-02-24 2015-04-29 安嘉露丹科技(北京)有限公司 微生物活水剂
KR20150088939A (ko) * 2014-01-24 2015-08-04 이화여자대학교 산학협력단 가스투과성을 향상시킨 혐기성 미생물 고정방법
CN106630418A (zh) * 2016-12-20 2017-05-10 江苏绿尚环保科技有限公司 一种工业废水处理工艺
CN107119103A (zh) * 2017-06-29 2017-09-01 哈尔滨工业大学 一种厌氧产氢菌与好氧菌呼吸互作好氧产氢方法
CN107244781A (zh) * 2017-06-27 2017-10-13 安徽比伦生活用纸有限公司 一种造纸废水的处理方法
CN107663529A (zh) * 2017-11-16 2018-02-06 中国石油大学(华东) 一种藻菌共培养提高光合微藻产氢量的方法
CN108928932A (zh) * 2018-07-12 2018-12-04 南通大学 一种基于混合菌群微生物燃料电池处理羊场废水的方法
WO2019018594A1 (en) * 2017-07-19 2019-01-24 The University Of North Carolina At Chapel Hill POTENTIATION OF THE ANTIBIOTIC EFFECT
CN109757107A (zh) * 2016-01-07 2019-05-14 埃斯库斯生物科技股份公司 用于通过施用微生物聚生体来提高乳产量的方法
CN110241140A (zh) * 2019-07-03 2019-09-17 江南大学 一种预处理提高餐厨垃圾和蓝藻混合产氢的方法
CN111148531A (zh) * 2017-09-08 2020-05-12 伊夫罗生物科学公司 细菌胞外囊泡

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005069989A2 (en) * 2004-01-21 2005-08-04 The General Hospital Corporation Methods for identifying candidate compounds for treating, reducing, or preventing pathogenic infections
CN1624109A (zh) * 2004-08-27 2005-06-08 哈尔滨工业大学 自絮凝产氢细菌及其筛选方法
CN102477451A (zh) * 2010-11-25 2012-05-30 上海工程技术大学 一种丁酸型混合培养生物制氢系统的制备的方法
CN102153190A (zh) * 2011-03-07 2011-08-17 井冈山大学 自絮凝菌孢子快速培养好氧颗粒污泥的方法
KR20150088939A (ko) * 2014-01-24 2015-08-04 이화여자대학교 산학협력단 가스투과성을 향상시킨 혐기성 미생물 고정방법
CN104556398A (zh) * 2014-02-24 2015-04-29 安嘉露丹科技(北京)有限公司 微生物活水剂
CN109757107A (zh) * 2016-01-07 2019-05-14 埃斯库斯生物科技股份公司 用于通过施用微生物聚生体来提高乳产量的方法
CN106630418A (zh) * 2016-12-20 2017-05-10 江苏绿尚环保科技有限公司 一种工业废水处理工艺
CN107244781A (zh) * 2017-06-27 2017-10-13 安徽比伦生活用纸有限公司 一种造纸废水的处理方法
CN107119103A (zh) * 2017-06-29 2017-09-01 哈尔滨工业大学 一种厌氧产氢菌与好氧菌呼吸互作好氧产氢方法
WO2019018594A1 (en) * 2017-07-19 2019-01-24 The University Of North Carolina At Chapel Hill POTENTIATION OF THE ANTIBIOTIC EFFECT
CN111148531A (zh) * 2017-09-08 2020-05-12 伊夫罗生物科学公司 细菌胞外囊泡
CN107663529A (zh) * 2017-11-16 2018-02-06 中国石油大学(华东) 一种藻菌共培养提高光合微藻产氢量的方法
CN108928932A (zh) * 2018-07-12 2018-12-04 南通大学 一种基于混合菌群微生物燃料电池处理羊场废水的方法
CN110241140A (zh) * 2019-07-03 2019-09-17 江南大学 一种预处理提高餐厨垃圾和蓝藻混合产氢的方法

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
DAVID A. D"ARGENIO等: "Autolysis and Autoaggregation in Pseudomonas aeruginosa Colony Morphology Mutants", 《JOURNAL OF BACTERIOLOGY》 *
DEFENGXING等: "Continuous hydrogen production of auto-aggregative Ethanoligenens harbinense YUAN-3 under non-sterile condition", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 *
HERBERT H. P. FANG等: "Characterization of a hydrogen-producing granular sludge", 《BIOTECHNOLOGY AND BIOENGINEERING》 *
LIN ZHOU等: "Detection of the Pseudomonas Quinolone Signal (PQS) by cyclic voltammetry and amperometry using a boron doped diamond electrode†", 《CHEM. COMMUN.》 *
于娜娇娃: "发酵产氢菌与好氧菌呼吸互作强化有氧产氢", 《中国知网》 *
曾涛涛等: "柠檬酸废水厌氧颗粒污泥微生物菌群结构解析", 《哈尔滨工业大学学报》 *
朱子倩: "群体感应系统调控异养硝化好氧反硝化机制研究", 《中国知网》 *
李华华等: "厌氧产氢颗粒污泥蛋白质组分析样品的高效制备方法", 《微生物学通报》 *
李真: "哈尔滨产乙醇杆菌基因表达调控机制及电子流定向调控强化产氢", 《中国知网》 *
苏海佳等: "好氧颗粒污泥技术及研究进展", 《化工进展》 *

Similar Documents

Publication Publication Date Title
Argun et al. Bio-hydrogen production by different operational modes of dark and photo-fermentation: an overview
CN88101266A (zh) 含糖类培养基的微生物发酵方法
CN110607337B (zh) 一种发酵产氢细菌和电活性细菌互养互作的产氢方法
CN102718325B (zh) 培养高密度油脂微藻处理酵母工业废水的方法
Jung et al. Biohydrogen and biomethane production from food waste using a two-stage dynamic membrane bioreactor (DMBR) system
CN1298861C (zh) 用氢代谢甲烷细菌生产维生素b12的方法
CN113233587B (zh) 一种用于污水深度净化的微藻培养池-人工湿地耦合系统和方法
CN112142199A (zh) 一种提高一体式部分反硝化-厌氧氨氧化耦合脱氮性能的装置及方法
CN111763694B (zh) 一种高温制氢与微藻产油耦合产能的方法
CN113105991B (zh) 一种微纳米气泡培养采收一体化微藻生物膜反应器及其微藻培养采收方法
KR101990059B1 (ko) 가스순환을 이용한 고순도 메탄 생산 장치 및 방법
CN100491270C (zh) 利用高浓度有机废水的制氢设备及其制氢方法
CN105524952A (zh) 一种利用剩余污泥发酵产酸并合成微生物油脂的方法
CN111573833A (zh) 一种高浓度氨氮有机废水产甲烷处理系统厌氧氨氧化耦合甲烷氧化工艺控制方法
CN114874941B (zh) 一株具有水解生淀粉能力的叶际类芽孢杆菌及其应用
CN103663839B (zh) 一种煤气化废水的处理和利用方法
CN110628862A (zh) 一种废水梯级能源回收的自聚集颗粒污泥构建方法
CN1321174C (zh) 工业化生物制氢菌种连续流培养及生物制氢系统强化方法
CN110408658A (zh) 一种利用白酒废水作为基质生产聚羟基烷酸酯的方法
CN101805757A (zh) 开放式全细胞回收循环发酵生产光学纯l-乳酸的方法
CN213895337U (zh) 一种提高反硝化-厌氧氨氧化耦合脱氮性能的装置
CN110511964B (zh) 一种基于微生物互养互作与电发酵耦合梯级产氢产乙醇的方法
CN104312899B (zh) 一种制备纳米硒的好氧‑厌氧间歇曝气反应器及其制备纳米硒的方法
CN110343643A (zh) 一株类球红细菌及其发酵产氢方法和应用
CN115403161B (zh) 一种微藻自絮凝颗粒、其制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20191231

RJ01 Rejection of invention patent application after publication