CN110620146A - Field plate structure and semiconductor device - Google Patents
Field plate structure and semiconductor device Download PDFInfo
- Publication number
- CN110620146A CN110620146A CN201910907838.1A CN201910907838A CN110620146A CN 110620146 A CN110620146 A CN 110620146A CN 201910907838 A CN201910907838 A CN 201910907838A CN 110620146 A CN110620146 A CN 110620146A
- Authority
- CN
- China
- Prior art keywords
- field plate
- dielectric layer
- insulating dielectric
- vertical wall
- plate structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 50
- 239000004020 conductor Substances 0.000 claims abstract description 129
- 239000000463 material Substances 0.000 claims description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 239000007769 metal material Substances 0.000 claims description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 4
- 229920005591 polysilicon Polymers 0.000 claims description 4
- 239000004642 Polyimide Substances 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 51
- 238000010168 coupling process Methods 0.000 description 14
- 238000005859 coupling reaction Methods 0.000 description 14
- 230000008878 coupling Effects 0.000 description 13
- 238000002161 passivation Methods 0.000 description 13
- 238000009792 diffusion process Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- 238000009825 accumulation Methods 0.000 description 8
- 230000005684 electric field Effects 0.000 description 6
- 230000002708 enhancing effect Effects 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/111—Field plates
- H10D64/112—Field plates comprising multiple field plate segments
Landscapes
- Electrodes Of Semiconductors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
本发明提供了一种场板结构及半导体器件,涉及半导体器件的技术领域,包括相连接的第一绝缘电介质层和第二绝缘电介质层,其中,第二绝缘电介质层的底端设置有墙底场板,第二绝缘电介质层的上表面插入有竖墙导体,且竖墙导体与墙底场板围成用于收集电荷的收集腔,第二绝缘电介质层的上表面还设置有用于将电荷引入收集腔的引导场板。本发明可以有效提高半导体器件的稳定性。
The invention provides a field plate structure and a semiconductor device, relating to the technical field of semiconductor devices, comprising a connected first insulating dielectric layer and a second insulating dielectric layer, wherein the bottom end of the second insulating dielectric layer is provided with a wall bottom A field plate, a vertical wall conductor is inserted into the upper surface of the second insulating dielectric layer, and the vertical wall conductor and the field plate at the bottom of the wall form a collection cavity for collecting charges, and the upper surface of the second insulating dielectric layer is also provided with a Guided field plate introduced into the collection chamber. The invention can effectively improve the stability of semiconductor devices.
Description
技术领域technical field
本发明涉及半导体器件的技术领域,尤其是涉及一种场板结构及半导体器件。The invention relates to the technical field of semiconductor devices, in particular to a field plate structure and a semiconductor device.
背景技术Background technique
现有技术中,半导体器件芯片边缘的终端结构通常采用场板结构来稳定半导体器件表面的电荷以及阻挡外部可动电荷的进入。但是,发明人经研究发现,现有技术的场板结构在场板之间存在缝隙,当场板两端存在电势差时,可动电荷将不能被屏蔽,并在缝隙中,沿着高电势到低电势的方向自由移动,最终进入到场板结构中,随着时间的积累,将会降低半导体器件的稳定性。In the prior art, the terminal structure at the edge of the semiconductor device chip usually adopts a field plate structure to stabilize the charge on the surface of the semiconductor device and block the entry of external mobile charges. However, the inventors have found through research that there are gaps between the field plates in the prior art field plate structure. When there is a potential difference between the two ends of the field plate, the movable charges will not be shielded, and in the gap, along the high potential to the low potential The direction of free movement, and finally into the field plate structure, with the accumulation of time, will reduce the stability of semiconductor devices.
发明内容Contents of the invention
本发明的目的在于提供一种场板结构及半导体器件,可以有效提高半导体器件的稳定性。The purpose of the present invention is to provide a field plate structure and a semiconductor device, which can effectively improve the stability of the semiconductor device.
第一方面,本发明提供了一种场板结构,其中,包括相连接的第一绝缘电介质层和第二绝缘电介质层,所述第二绝缘电介质层的底端设置有墙底场板,所述第二绝缘电介质层的上表面插入有竖墙导体,且所述竖墙导体与所述墙底场板围成用于收集电荷的收集腔,所述第二绝缘电介质层的上表面还设置有用于将电荷引入所述收集腔的引导场板。In a first aspect, the present invention provides a field plate structure, which includes a connected first insulating dielectric layer and a second insulating dielectric layer, and the bottom end of the second insulating dielectric layer is provided with a wall bottom field plate, so A vertical wall conductor is inserted into the upper surface of the second insulating dielectric layer, and the vertical wall conductor and the field plate at the bottom of the wall form a collection cavity for collecting charges, and the upper surface of the second insulating dielectric layer is further provided with There are guided field plates for introducing charge into the collection cavity.
进一步的,所述引导场板与所述竖墙导体在所述第二绝缘电介质层的上表面按照第一预设间隔排布。Further, the guide field plate and the vertical wall conductors are arranged at a first preset interval on the upper surface of the second insulating dielectric layer.
进一步的,所述引导场板与所述墙底场板在竖直方向上的重叠长度小于或等于所述第二绝缘电介质层的厚度的两倍。Further, the overlapping length of the guide field plate and the wall bottom field plate in the vertical direction is less than or equal to twice the thickness of the second insulating dielectric layer.
进一步的,所述引导场板包括第一导电板和第二导电板,以及连接所述第一导电板和所述第二导电板的导体柱。Further, the guiding field plate includes a first conductive plate and a second conductive plate, and a conductor post connecting the first conductive plate and the second conductive plate.
进一步的,所述第一导电板设置在所述第二绝缘电介质层的上表面;Further, the first conductive plate is arranged on the upper surface of the second insulating dielectric layer;
所述第一导电板与所述竖墙导体在所述第二绝缘电介质层的上表面按照第二预设间隔排布,其中,所述第二预设间隔大于所述第二绝缘电介质层的厚度的两倍;The first conductive plate and the vertical wall conductors are arranged on the upper surface of the second insulating dielectric layer according to a second preset interval, wherein the second preset interval is greater than that of the second insulating dielectric layer twice the thickness;
所述第二导电板设置在所述第二绝缘电介质层的底端。The second conductive plate is disposed on the bottom end of the second insulating dielectric layer.
进一步的,所述引导场板的一端通过导体柱与所述墙底场板相连接,所述引导场板的另一端与所述导体柱在水平方面的距离大于或等于所述第二绝缘电介质层的厚度。Further, one end of the guided field plate is connected to the field plate at the bottom of the wall through a conductor post, and the horizontal distance between the other end of the guided field plate and the conductor post is greater than or equal to that of the second insulating dielectric layer thickness.
进一步的,所述引导场板设置在所述竖墙导体的一侧或两侧。Further, the guide field plate is arranged on one side or both sides of the vertical wall conductor.
进一步的,所述竖墙导体包括T型竖墙导体和/或I型竖墙导体;Further, the vertical wall conductors include T-shaped vertical wall conductors and/or I-shaped vertical wall conductors;
所述竖墙导体的材质包括多晶硅材质和/或金属材质。The material of the vertical wall conductors includes polysilicon material and/or metal material.
进一步的,所述第一绝缘电介质层和所述第二绝缘电介质层均包括氧化电介质层;Further, both the first insulating dielectric layer and the second insulating dielectric layer include an oxide dielectric layer;
所述第一绝缘电介质层中的氧化电介质层的材质包括二氧化硅材质;The material of the oxidized dielectric layer in the first insulating dielectric layer includes silicon dioxide material;
所述第二绝缘电介质层中的氧化电介质层的材质包括硼磷硅材质或聚酰亚胺材质。The material of the oxidized dielectric layer in the second insulating dielectric layer includes borophosphosilicate material or polyimide material.
第二方面,本发明提供了一种半导体器件,其中,包括横向变掺杂终端装置和场限环终端装置;In a second aspect, the present invention provides a semiconductor device, which includes a lateral variable doping termination device and a field limiting ring termination device;
所述横向变掺杂终端装置和所述场限环终端装置均采用第一方面所述的场板结构。Both the lateral variable doping termination device and the field limiting ring termination device adopt the field plate structure described in the first aspect.
本发明实施例带来了以下有益效果:Embodiments of the present invention bring the following beneficial effects:
本发明提供了一种场板结构及半导体器件,包括相连接的第一绝缘电介质层和第二绝缘电介质层,其中,第二绝缘电介质层的底端设置有墙底场板,第二绝缘电介质层的上表面插入有竖墙导体,且竖墙导体与墙底场板围成用于收集电荷的收集腔,第二绝缘电介质层的上表面还设置有用于将电荷引入收集腔的引导场板。在本实施例提供的上述方式中,通过竖墙导体与墙底场在第二绝缘电介质层围成了用于收集电荷的收集腔,再由设置在第二绝缘电介质层的上表面的引导场板将电荷引入收集腔,上述方式能够将电荷收集在收集腔内,与现有技术的电荷可以在场板缝隙之间自由移动相比,本实施例通过收集腔将电荷稳定在收集腔内,可以有效提高半导体器件的稳定性。The invention provides a field plate structure and a semiconductor device, comprising a first insulating dielectric layer and a second insulating dielectric layer connected, wherein, the bottom end of the second insulating dielectric layer is provided with a field plate at the bottom of the wall, and the second insulating dielectric layer The upper surface of the layer is inserted with a vertical wall conductor, and the vertical wall conductor and the field plate at the bottom of the wall form a collection cavity for collecting charges, and the upper surface of the second insulating dielectric layer is also provided with a guide field plate for introducing charges into the collection cavity . In the above method provided by this embodiment, the second insulating dielectric layer encloses a collection cavity for collecting charges by the vertical wall conductors and the field at the bottom of the wall, and then the guiding field arranged on the upper surface of the second insulating dielectric layer The plate introduces the charge into the collection chamber, and the above method can collect the charge in the collection chamber. Compared with the prior art that the charge can move freely between the field plate gaps, this embodiment stabilizes the charge in the collection chamber through the collection chamber, which can Effectively improve the stability of semiconductor devices.
附图说明Description of drawings
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the specific embodiments of the present invention or the technical solutions in the prior art, the following will briefly introduce the accompanying drawings that need to be used in the description of the specific embodiments or prior art. Obviously, the accompanying drawings in the following description The drawings show some implementations of the present invention, and those skilled in the art can also obtain other drawings based on these drawings without creative work.
图1为本发明实施例一提供的一种场板结构示意图;FIG. 1 is a schematic diagram of a field plate structure provided by Embodiment 1 of the present invention;
图2为本发明实施例一提供的引导场板设置在竖墙导体一侧的第一种结构示意图;Fig. 2 is a schematic diagram of the first structure of the guide field plate provided on the side of the vertical wall conductor provided by the first embodiment of the present invention;
图3为本发明实施例一提供的引导场板设置在竖墙导体两侧的第一种结构示意图;Fig. 3 is a schematic diagram of the first structure in which the guide field plate is arranged on both sides of the vertical wall conductor provided by the first embodiment of the present invention;
图4为本发明实施例一提供的引导场板设置在竖墙导体一侧的第二种结构示意图;Fig. 4 is a schematic diagram of the second structure in which the guided field plate is arranged on the side of the vertical wall conductor provided by Embodiment 1 of the present invention;
图5为本发明实施例一提供的引导场板设置在竖墙导体两侧的第二种结构示意图;Fig. 5 is a schematic diagram of the second structure in which the guide field plate is arranged on both sides of the vertical wall conductor provided by the first embodiment of the present invention;
图6为本发明实施例一提供的引导场板设置在竖墙导体一侧的第三种结构示意图;Fig. 6 is a schematic diagram of a third structure in which the guided field plate is arranged on the side of the vertical wall conductor provided by Embodiment 1 of the present invention;
图7为本发明实施例一提供的引导场板设置在竖墙导体两侧的第四种结构示意图;7 is a schematic diagram of a fourth structure in which the guide field plate is arranged on both sides of the vertical wall conductor provided by Embodiment 1 of the present invention;
图8为本发明实施例二提供的一种半导体器件示意图;FIG. 8 is a schematic diagram of a semiconductor device provided by Embodiment 2 of the present invention;
图9为本发明实施例二提供的一种场板结构应用在横向变掺杂终端装置的结构示意图;FIG. 9 is a schematic structural diagram of a field plate structure applied to a lateral variable doping termination device provided by Embodiment 2 of the present invention;
图10为本发明实施例二提供的一种场板结构应用在横向变掺杂终端装置的结构示意图;FIG. 10 is a schematic structural diagram of a field plate structure applied to a lateral variable doping terminal device provided by Embodiment 2 of the present invention;
图11为本发明实施例二提供的一种场板结构应用在横向变掺杂终端装置的结构示意图;FIG. 11 is a schematic structural diagram of a field plate structure applied to a laterally variable doping termination device provided by Embodiment 2 of the present invention;
图12为本发明实施例二提供的一种场板结构应用在横向变掺杂终端装置的结构示意图;FIG. 12 is a schematic structural diagram of a field plate structure applied to a laterally variable doping termination device provided by Embodiment 2 of the present invention;
图13为本发明实施例二提供的一种场板结构应用在横向变掺杂终端装置的结构示意图;FIG. 13 is a schematic structural diagram of a field plate structure applied to a lateral variable doping termination device provided by Embodiment 2 of the present invention;
图14为本发明实施例二提供的一种场板结构应用在横向变掺杂终端装置的结构示意图;FIG. 14 is a schematic structural diagram of a field plate structure applied to a lateral variable doping termination device provided by Embodiment 2 of the present invention;
图15为本发明实施例二提供的一种场板结构应用在场限环终端装置的结构示意图;FIG. 15 is a schematic structural diagram of a field plate structure provided in Embodiment 2 of the present invention applied to a field limiting ring terminal device;
图16为本发明实施例二提供的一种场板结构应用在场限环终端装置的结构示意图;FIG. 16 is a schematic structural diagram of a field plate structure applied to a field limiting ring terminal device provided by Embodiment 2 of the present invention;
图17为本发明实施例二提供的一种场板结构应用在场限环终端装置的结构示意图;Fig. 17 is a schematic structural diagram of a field plate structure provided in Embodiment 2 of the present invention applied to a field limiting ring terminal device;
图18为本发明实施例二提供的一种场板结构应用在场限环终端装置的结构示意图;FIG. 18 is a schematic structural diagram of a field plate structure applied to a field limiting ring terminal device provided by Embodiment 2 of the present invention;
图19为本发明实施例二提供的一种场板结构应用在场限环终端装置的结构示意图;FIG. 19 is a schematic structural diagram of a field plate structure applied in a field limiting ring terminal device provided by Embodiment 2 of the present invention;
图20为本发明实施例二提供的一种场板结构应用在场限环终端装置的结构示意图;FIG. 20 is a schematic structural diagram of a field plate structure applied to a field limiting ring terminal device provided by Embodiment 2 of the present invention;
图21为本发明实施例二提供的一种场板结构应用在横向变掺杂终端装置的结构示意图;FIG. 21 is a schematic structural diagram of a field plate structure applied to a lateral variable doping termination device provided by Embodiment 2 of the present invention;
图22为本发明实施例二提供的一种场板结构应用在横向变掺杂终端装置的结构示意图;22 is a schematic structural diagram of a field plate structure applied to a laterally variable doping terminal device provided by Embodiment 2 of the present invention;
图23为本发明实施例二提供的一种场板结构应用在横向变掺杂终端装置的结构示意图;FIG. 23 is a schematic structural diagram of a field plate structure applied to a laterally variable doping termination device provided by Embodiment 2 of the present invention;
图24为本发明实施例二提供的一种场板结构应用在横向变掺杂终端装置的结构示意图;FIG. 24 is a schematic structural diagram of a field plate structure applied to a laterally variable doping termination device provided by Embodiment 2 of the present invention;
图25为本发明实施例二提供的一种场板结构应用在横向变掺杂终端装置的结构示意图;FIG. 25 is a schematic structural diagram of a field plate structure applied to a lateral variable doping termination device provided by Embodiment 2 of the present invention;
图26为本发明实施例二提供的一种场板结构应用在横向变掺杂终端装置的结构示意图;FIG. 26 is a schematic structural diagram of a field plate structure applied to a lateral variable doping termination device provided by Embodiment 2 of the present invention;
图27为本发明实施例二提供的一种场板结构应用在横向变掺杂终端装置的结构示意图;FIG. 27 is a schematic structural diagram of a field plate structure applied to a laterally variable doping termination device provided by Embodiment 2 of the present invention;
图28为本发明实施例二提供的一种场板结构应用在横向变掺杂终端装置的结构示意图;FIG. 28 is a schematic structural diagram of a field plate structure applied to a lateral variable doping termination device provided by Embodiment 2 of the present invention;
图29为本发明实施例二提供的一种场板结构应用在横向变掺杂终端装置的结构示意图;FIG. 29 is a schematic structural diagram of a field plate structure applied to a lateral variable doping termination device provided by Embodiment 2 of the present invention;
图30为本发明实施例二提供的一种场板结构应用在横向变掺杂终端装置的结构示意图;FIG. 30 is a schematic structural diagram of a field plate structure applied to a laterally variable doping termination device provided by Embodiment 2 of the present invention;
图31为本发明实施例二提供的一种场板结构应用在场限环终端装置的结构示意图;Fig. 31 is a schematic structural diagram of a field plate structure applied in a field limiting ring terminal device according to Embodiment 2 of the present invention;
图32为本发明实施例二提供的一种场板结构应用在场限环终端装置的结构示意图;Fig. 32 is a schematic structural diagram of a field plate structure applied in a field limiting ring terminal device according to Embodiment 2 of the present invention;
图33为本发明实施例二提供的一种场板结构应用在场限环终端装置的结构示意图;Fig. 33 is a schematic structural diagram of a field plate structure applied in a field limiting ring terminal device according to Embodiment 2 of the present invention;
图34为本发明实施例二提供的一种场板结构应用在场限环终端装置的结构示意图;Fig. 34 is a schematic structural diagram of a field plate structure applied in a field limiting ring terminal device according to Embodiment 2 of the present invention;
图35为本发明实施例二提供的一种场板结构应用在场限环终端装置的结构示意图;FIG. 35 is a schematic structural diagram of a field plate structure applied in a field limiting ring terminal device according to Embodiment 2 of the present invention;
图36为本发明实施例二提供的一种场板结构应用在场限环终端装置的结构示意图;FIG. 36 is a schematic structural diagram of a field plate structure applied to a field limiting ring terminal device according to Embodiment 2 of the present invention;
图37为本发明实施例二提供的一种场板结构应用在横向变掺杂终端装置的结构示意图;FIG. 37 is a schematic structural diagram of a field plate structure applied to a lateral variable doping terminal device provided by Embodiment 2 of the present invention;
图38为本发明实施例二提供的一种场板结构应用在横向变掺杂终端装置的结构示意图;FIG. 38 is a schematic structural diagram of a field plate structure applied to a lateral variable doping termination device provided by Embodiment 2 of the present invention;
图39为本发明实施例二提供的一种场板结构应用在横向变掺杂终端装置的结构示意图;FIG. 39 is a schematic structural diagram of a field plate structure applied to a lateral variable doping termination device provided by Embodiment 2 of the present invention;
图40为本发明实施例二提供的一种场板结构应用在横向变掺杂终端装置的结构示意图;FIG. 40 is a schematic structural diagram of a field plate structure applied to a lateral variable doping termination device provided by Embodiment 2 of the present invention;
图41为本发明实施例二提供的一种场板结构应用在横向变掺杂终端装置的结构示意图;FIG. 41 is a schematic structural diagram of a field plate structure applied to a lateral variable doping termination device provided by Embodiment 2 of the present invention;
图42为本发明实施例二提供的一种场板结构应用在场限环终端装置的结构示意图;Fig. 42 is a schematic structural diagram of a field plate structure applied in a field limiting ring terminal device according to Embodiment 2 of the present invention;
图43为本发明实施例二提供的一种场板结构应用在场限环终端装置的结构示意图;FIG. 43 is a schematic structural diagram of a field plate structure applied to a field limiting ring terminal device according to Embodiment 2 of the present invention;
图44为本发明实施例二提供的一种场板结构应用在场限环终端装置的结构示意图;Fig. 44 is a schematic structural diagram of a field plate structure applied in a field limiting ring terminal device according to Embodiment 2 of the present invention;
图45为本发明实施例二提供的一种场板结构应用在场限环终端装置的结构示意图;Fig. 45 is a schematic structural diagram of a field plate structure applied in a field limiting ring terminal device according to Embodiment 2 of the present invention;
图46为本发明实施例二提供的一种场板结构应用在场限环终端装置的结构示意图。FIG. 46 is a schematic structural diagram of a field plate structure provided in Embodiment 2 of the present invention applied to a field limiting ring terminal device.
图标:1-半导体;2-第一绝缘电介质层;3-第二绝缘电介质层;4-墙底场板;5-竖墙导体;6-引导场板;7-收集腔;8-扩散区;9-P+区;10-第一导电板;11-场限环;12-场板;13-绝缘电介质层;14-耦合场板;15-第二导电板;100-半导体器件;200-横向变掺杂终端装置;300-场限环终端装置;400-场板结构。Icons: 1-semiconductor; 2-first insulating dielectric layer; 3-second insulating dielectric layer; 4-wall bottom field plate; 5-vertical wall conductor; 6-guided field plate; 7-collection cavity; 8-diffusion zone ; 9-P+ region; 10-first conductive plate; 11-field limiting ring; 12-field plate; 13-insulating dielectric layer; 14-coupling field plate; 15-second conductive plate; Lateral variable doping termination device; 300-field limiting ring termination device; 400-field plate structure.
具体实施方式Detailed ways
下面将结合实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below in conjunction with the embodiments. Obviously, the described embodiments are part of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
为了改善现有技术中,电荷在场板两端存在电势时,可以在场板缝隙中自由移动,进而进入到场板结构中,造成降低半导体器件稳定性的问题,本发明提供了一种场板结构及半导体器件,包括相连接的第一绝缘电介质层和第二绝缘电介质层,其中,第二绝缘电介质层的底端设置有墙底场板,第二绝缘电介质层的上表面插入有竖墙导体,且竖墙导体与墙底场板围成用于收集电荷的收集腔,第二绝缘电介质层的上表面还设置有用于将电荷引入收集腔的引导场板,该技术通过竖墙导体与墙底场在第二绝缘电介质层围成了用于收集电荷的收集腔,再由设置在第二绝缘电介质层的上表面的引导场板将电荷引入收集腔,通过收集腔将电荷稳定在收集腔内,可以有效提高半导体器件的稳定性。In order to improve the prior art, when there is a potential at both ends of the field plate, the charge can move freely in the gap of the field plate, and then enter the field plate structure, causing the problem of reducing the stability of the semiconductor device. The present invention provides a field plate structure and A semiconductor device comprising a connected first insulating dielectric layer and a second insulating dielectric layer, wherein the bottom end of the second insulating dielectric layer is provided with a field plate at the bottom of the wall, and the upper surface of the second insulating dielectric layer is inserted with a vertical wall conductor, And the vertical wall conductor and the field plate at the bottom of the wall form a collection cavity for collecting charges, and the upper surface of the second insulating dielectric layer is also provided with a guide field plate for introducing charges into the collection cavity. The field surrounds a collection cavity for collecting charges in the second insulating dielectric layer, and then the charge is introduced into the collection cavity by the guiding field plate arranged on the upper surface of the second insulating dielectric layer, and the charge is stabilized in the collection cavity through the collection cavity , can effectively improve the stability of semiconductor devices.
为便于对本实施例进行理解,首先对本发明实施例所公开的一种场板结构进行详细介绍。To facilitate the understanding of this embodiment, a field plate structure disclosed in this embodiment of the present invention is firstly introduced in detail.
实施例一:Embodiment one:
参照图1所示的一种场板结构示意图,包括相连接的第一绝缘电介质层2和第二绝缘电介质层3,第二绝缘电介质层3的底端设置有墙底场板4,第二绝缘电介质层3的上表面插入有竖墙导体5,且竖墙导体5与墙底场板4围成用于收集电荷的收集腔7,第二绝缘电介质层3的上表面还设置有用于将电荷引入收集腔7的引导场板6。Referring to a schematic diagram of a field plate structure shown in FIG. 1 , it includes a first insulating dielectric layer 2 and a second insulating dielectric layer 3 connected to each other. The bottom end of the second insulating dielectric layer 3 is provided with a field plate 4 at the bottom of the wall. The upper surface of the insulating dielectric layer 3 is inserted with a vertical wall conductor 5, and the vertical wall conductor 5 and the field plate 4 at the bottom of the wall form a collection chamber 7 for collecting charges, and the upper surface of the second insulating dielectric layer 3 is also provided with a Charges are introduced into the guiding field plate 6 of the collection chamber 7 .
在一种具体的实施方式中,第一绝缘电介质层2、第二绝缘电介质层3和引导场板6均采用光刻、刻蚀工艺制作,该工艺简单可以降低制作难度。引导场板6具有吸附电荷的作用,引导场板6与收集腔7相邻,同时竖墙导体5与电荷相互感应,可以将电荷引入收集腔7内。In a specific implementation manner, the first insulating dielectric layer 2 , the second insulating dielectric layer 3 and the guiding field plate 6 are all manufactured by photolithography and etching processes, which are simple and can reduce manufacturing difficulty. The guide field plate 6 has the function of absorbing charges, and the guide field plate 6 is adjacent to the collection cavity 7 , and at the same time, the vertical wall conductor 5 and the charge interact with each other, so that the charge can be introduced into the collection cavity 7 .
另外,收集腔7的底部是导体场板,收集腔7内的可动电荷失去对硅表面的影响,场板结构还可以收集并束缚外界进来的可动电荷。场板结构应用的终端由多个场板结构构成,每个场板结构之间由竖墙导体5隔开,进而避免了可动电荷长距离移动所造成的高密度可动电荷的积累。In addition, the bottom of the collection chamber 7 is a conductor field plate, the movable charges in the collection chamber 7 lose their influence on the silicon surface, and the field plate structure can also collect and bind the movable charges coming in from the outside. The terminal of the field plate structure application is composed of multiple field plate structures, and each field plate structure is separated by vertical wall conductors 5, thereby avoiding the accumulation of high-density mobile charges caused by the long-distance movement of mobile charges.
在本实施例提供的上述方式中,通过竖墙导体5与墙底场在第二绝缘电介质层3围成了用于收集电荷的收集腔7,再由设置在第二绝缘电介质层3的上表面的引导场板6将电荷引入收集腔7,上述方式能够将电荷收集在收集腔7内,与现有技术的电荷可以在场板缝隙之间自由移动相比,本实施例通过收集腔7将电荷稳定在收集腔7内,可以有效提高半导体器件的稳定性。In the above method provided by this embodiment, the second insulating dielectric layer 3 encloses a collection cavity 7 for collecting charges by the vertical wall conductor 5 and the wall bottom field, and then the second insulating dielectric layer 3 is arranged on the second insulating dielectric layer 3. The guided field plate 6 on the surface introduces charges into the collection cavity 7. The above method can collect the charges in the collection cavity 7. Compared with the prior art that the charges can move freely between the field plate gaps, this embodiment uses the collection cavity 7 to The charges are stabilized in the collecting cavity 7, which can effectively improve the stability of the semiconductor device.
在具体实施时,引导场板6设置在竖墙导体5的一侧或两侧,根据引导场板6的设置方式的不同,场板结构包括以下三种结构:In specific implementation, the guide field plate 6 is arranged on one side or both sides of the vertical wall conductor 5, and according to the different arrangement methods of the guide field plate 6, the structure of the guide field plate includes the following three structures:
(1)参照图2所示的引导场板6设置在竖墙导体5的一侧和图3所示的引导场板6设置在竖墙导体5两侧的第一种结构示意图,引导场板6与竖墙导体5在第二绝缘电介质层3的上表面按照第一预设间隔排布。(1) With reference to the guide field plate 6 shown in FIG. 2 being arranged on one side of the vertical wall conductor 5 and the first structural schematic diagram in which the guide field plate 6 shown in FIG. 3 is arranged on both sides of the vertical wall conductor 5, the guide field plate 6 and vertical wall conductors 5 are arranged on the upper surface of the second insulating dielectric layer 3 according to a first preset interval.
其中,引导场板6与墙底场板4在竖直方向上的重叠长度小于或等于第二绝缘电介质层3的厚度的两倍。Wherein, the overlapping length of the guide field plate 6 and the wall bottom field plate 4 in the vertical direction is less than or equal to twice the thickness of the second insulating dielectric layer 3 .
(2)参照图4所示的引导场板6设置在竖墙导体5的一侧和图5所示的引导场板6设置在竖墙导体5两侧的第二种结构示意图,引导场板6包括第一导电板10和第二导电板15,以及连接第一导电板10和第二导电板15的导体柱。第一导电板10设置在第二绝缘电介质层3的上表面;第一导电板10与竖墙导体5在第二绝缘电介质层3的上表面按照第二预设间隔排布,其中,第二预设间隔大于第二绝缘电介质层3的厚度的两倍;第二导电板15设置在第二绝缘电介质层3的底端。(2) With reference to the guide field plate 6 shown in Figure 4 being arranged on one side of the vertical wall conductor 5 and the second structural schematic diagram of the guide field plate 6 shown in Figure 5 being arranged on both sides of the vertical wall conductor 5, the guide field plate 6 includes a first conductive plate 10 and a second conductive plate 15, and a conductor column connecting the first conductive plate 10 and the second conductive plate 15. The first conductive plate 10 is arranged on the upper surface of the second insulating dielectric layer 3; the first conductive plate 10 and the vertical wall conductor 5 are arranged according to a second preset interval on the upper surface of the second insulating dielectric layer 3, wherein the second The preset interval is greater than twice the thickness of the second insulating dielectric layer 3 ; the second conductive plate 15 is arranged at the bottom end of the second insulating dielectric layer 3 .
(3)参照图6所示的引导场板6设置在竖墙导体5的一侧和图7所示的引导场板6设置在竖墙导体5两侧的第三种结构示意图,引导场板6的一端通过导体柱与墙底场板4相连接,引导场板6的另一端与导体柱在水平方面的距离大于或等于第二绝缘电介质层3的厚度。(3) With reference to the guide field plate 6 shown in Figure 6 being arranged on one side of the vertical wall conductor 5 and the third structural schematic diagram in which the guide field plate 6 shown in Figure 7 is arranged on both sides of the vertical wall conductor 5, the guide field plate One end of 6 is connected to the field plate 4 at the bottom of the wall through a conductor post, and the horizontal distance between the other end of the guide field plate 6 and the conductor post is greater than or equal to the thickness of the second insulating dielectric layer 3 .
在本实施例提供的上述方式中,可以根据不同结构的场板结构对电荷进行收集,进而提高半导体器件的稳定性。In the above manner provided by this embodiment, charges can be collected according to field plate structures of different structures, thereby improving the stability of the semiconductor device.
在具体实施时,竖墙导体5包括T型竖墙导体5和/或I型竖墙导体5。竖墙导体5的材质包括多晶硅材质和/或金属材质。In a specific implementation, the vertical wall conductor 5 includes a T-shaped vertical wall conductor 5 and/or an I-shaped vertical wall conductor 5 . The material of the vertical wall conductor 5 includes polysilicon material and/or metal material.
第一绝缘电介质层2和第二绝缘电介质层3均包括氧化电介质层。Both the first insulating dielectric layer 2 and the second insulating dielectric layer 3 include an oxide dielectric layer.
第一绝缘电介质层2中的氧化电介质层的材质包括二氧化硅材质。The material of the oxidized dielectric layer in the first insulating dielectric layer 2 includes silicon dioxide material.
第二绝缘电介质层3中的氧化电介质层的材质包括硼磷硅材质或聚酰亚胺材质。The material of the oxidized dielectric layer in the second insulating dielectric layer 3 includes borophosphosilicate material or polyimide material.
在本实施例提供的上述方式中,通过使用氧化电介质层以及多晶硅材质和/或金属材质,可以降低场板结构的工艺难度。In the above manner provided by this embodiment, by using the oxidized dielectric layer and polysilicon material and/or metal material, the process difficulty of the field plate structure can be reduced.
实施例二:Embodiment two:
参照图8所示的一种半导体器件100示意图,包括横向变掺杂终端装置200和场限环终端装置300。Referring to a schematic diagram of a semiconductor device 100 shown in FIG. 8 , it includes a lateral variable doping termination device 200 and a field limiting ring termination device 300 .
横向变掺杂终端装置200和场限环终端装置300均采用实施例一的场板结构400。Both the lateral variable doping termination device 200 and the field limiting ring termination device 300 adopt the field plate structure 400 of the first embodiment.
在本实施例提供的上述方式中,通过竖墙导体5与墙底场在第二绝缘电介质层3围成了用于收集电荷的收集腔7,再由设置在第二绝缘电介质层3的上表面的引导场板6将电荷引入收集腔7,上述方式能够将电荷收集在收集腔7内,与现有技术的电荷可以在场板缝隙之间自由移动相比,本实施例通过收集腔7将电荷稳定在收集腔7内,可以有效提高半导体器件的稳定性。In the above method provided by this embodiment, the second insulating dielectric layer 3 encloses a collection cavity 7 for collecting charges by the vertical wall conductor 5 and the wall bottom field, and then the second insulating dielectric layer 3 is arranged on the second insulating dielectric layer 3. The guided field plate 6 on the surface introduces charges into the collection cavity 7. The above method can collect the charges in the collection cavity 7. Compared with the prior art that the charges can move freely between the field plate gaps, this embodiment uses the collection cavity 7 to The charges are stabilized in the collecting cavity 7, which can effectively improve the stability of the semiconductor device.
在一种具体的实施方式中,图2所示的引导场板6设置在竖墙导体5的一侧的场板结构400可以应用在横向变掺杂终端装置200,其应用结构参照图9所示,是常规浮空场板12按照间距设置在扩散区8上面的第一绝缘电介质层2上面。如图10所示,在常规浮空场板12上面,以浮空场板12为墙底场板增加竖墙导体5,竖墙导体5切断第二绝缘电介质层3,将第二绝缘电介质层3分成若干小段,杜绝了可动电荷长距离移动,避免造成高密度可动电荷的积累。另外,可以在横向变掺杂终端装置200中靠近有源区一侧以及在横向变掺杂终端装置200的末端添加竖墙导体5,形成可动电荷的收集腔7,用于减少横向变掺杂终端装置200和芯片有源区可动电荷的数量。In a specific implementation, the field plate structure 400 in which the guided field plate 6 is arranged on one side of the vertical wall conductor 5 shown in FIG. As shown, the conventional floating field plates 12 are arranged on the first insulating dielectric layer 2 above the diffusion region 8 at intervals. As shown in Figure 10, above the conventional floating field plate 12, the vertical wall conductor 5 is added with the floating field plate 12 as the field plate at the bottom of the wall, and the vertical wall conductor 5 cuts off the second insulating dielectric layer 3, and the second insulating dielectric layer 3 is divided into several small sections, which prevents the long-distance movement of movable charges and avoids the accumulation of high-density movable charges. In addition, vertical wall conductors 5 can be added on the side near the active region of the lateral variable doping terminal device 200 and at the end of the lateral variable doping terminal device 200 to form a collecting cavity 7 for movable charges, which is used to reduce the lateral variable doping. Miscellaneous terminal device 200 and the amount of mobile charge in the active area of the chip.
在一种具体的实施方式中,图2所示的引导场板6设置在竖墙导体的一侧的场板结构400可以应用在横向变掺杂终端装置200,其应用结构参照图11所示,其中,场板结构400按照一定的间距重复放置,跨接在有源区边缘P+区9和扩散区8以及半导体1的表面上,在半导体表面上面形成多个可动电荷收集腔7的钝化结构。另外,也可以在横向变掺杂终端装置200中靠近有源区一侧以及在横向变掺杂终端装置200的末端添加竖墙导体5,形成可动电荷的收集腔7,用于减少横向变掺杂终端装置200和芯片有源区可动电荷的数量。In a specific implementation manner, the field plate structure 400 shown in FIG. 2 in which the guided field plate 6 is arranged on one side of the vertical wall conductor can be applied to the lateral variable doping terminal device 200, and its application structure is shown in FIG. 11 , wherein, the field plate structure 400 is placed repeatedly according to a certain interval, and bridges the P+ region 9 and the diffusion region 8 at the edge of the active region and the surface of the semiconductor 1, forming a plurality of blunt charge collection chambers 7 on the semiconductor surface. structure. In addition, vertical wall conductors 5 can also be added to the side of the lateral variable doping termination device 200 close to the active region and at the end of the lateral variable doping termination device 200 to form a mobile charge collection cavity 7 for reducing lateral variation. Doping the terminal device 200 and the amount of mobile charge in the active area of the chip.
在一种具体的实施方式中,图3所示的引导场板6设置在竖墙导体5的两侧的场板结构400可以应用在横向变掺杂终端装置200,其应用结构参照图12所示,其中,场板结构400按照一定的间距重复放置,跨接在有源区边缘P+区9和扩散区8以及半导体1的表面上,在半导体表面上面形成多个可动电荷收集腔7的钝化结构;也可以在横向变掺杂终端装置200中靠近有源区一侧以及在横向变掺杂终端装置200的末端添加竖墙导体5,形成可动电荷的收集腔7,用于减少横向变掺杂终端装置200和芯片有源区可动电荷的数量。In a specific implementation manner, the field plate structure 400 shown in FIG. 3 in which the guided field plate 6 is arranged on both sides of the vertical wall conductor 5 can be applied to the lateral variable doping termination device 200, and its application structure is shown in FIG. 12 As shown, wherein the field plate structure 400 is placed repeatedly according to a certain interval, spanning the P+ region 9 and the diffusion region 8 at the edge of the active region and the surface of the semiconductor 1, forming a plurality of movable charge collection cavities 7 on the surface of the semiconductor. passivation structure; it is also possible to add a vertical wall conductor 5 on the side near the active region in the lateral variable doping terminal device 200 and at the end of the lateral variable doping terminal device 200 to form a collecting cavity 7 for movable charges, which is used to reduce The amount of mobile charges in the doping termination device 200 and the active area of the chip can be varied laterally.
在一种具体的实施方式中,经进一步的改进,图3所示的引导场板6设置在竖墙导体5的两侧的场板结构400可以应用在横向变掺杂终端装置200,其应用结构参照图12和图13所示,其中,再增加一层绝缘电介质层13,在图3所示的场板结构400中引导场板6的上面,增加竖墙导体5切断绝缘电介质层13。通过相邻的竖墙导体5之间的电耦合,在绝缘电介质层13中也形成了多个可动电荷收集腔7;因此在半导体表面上面形成两层多个可动电荷收集腔7的钝化结构,用于减少横向变掺杂终端装置200和芯片有源区可动电荷的数量。In a specific implementation manner, after further improvement, the field plate structure 400 shown in FIG. The structure is shown in Figure 12 and Figure 13, wherein an insulating dielectric layer 13 is added to guide the field plate 6 above the field plate structure 400 shown in Figure 3, and vertical wall conductors 5 are added to cut off the insulating dielectric layer 13. Through the electrical coupling between the adjacent vertical wall conductors 5, a plurality of movable charge collection chambers 7 are also formed in the insulating dielectric layer 13; The structure is used to reduce the amount of movable charge in the laterally variable doping termination device 200 and the active region of the chip.
在一种具体的实施方式中,经进一步的改进,图3所示的引导场板6设置在竖墙导体5的两侧的场板结构400可以应用在横向变掺杂终端装置200,其应用结构参照图12和图14所示,其中,再增加一层绝缘电介质层13,在第二绝缘电介质层3和绝缘电介质层13中,形成纵向和横向级联结构,在半导体表面上面形成两层多个可动电荷收集腔7的钝化结构,用于减少横向变掺杂终端装置200和芯片有源区可动电荷的数量。进一步提高对可动电荷的收集能力。在此结构中,场板结构400的引导场板6,也可以中间分成左右2段,具有相同的效果。同样的做法,场板结构400可以在纵向上进行多层叠垒。In a specific implementation manner, after further improvement, the field plate structure 400 shown in FIG. The structure is shown in Figure 12 and Figure 14 with reference to, wherein, add a layer of insulating dielectric layer 13 again, in the second insulating dielectric layer 3 and insulating dielectric layer 13, form vertical and horizontal cascaded structure, form two layers above the semiconductor surface The passivation structure of multiple movable charge collection cavities 7 is used to reduce the quantity of movable charges in the laterally variable doping terminal device 200 and the active region of the chip. Further improve the ability to collect mobile charges. In this structure, the guide field plate 6 of the field plate structure 400 can also be divided into two sections, left and right, to achieve the same effect. In the same manner, the field plate structure 400 can be stacked in multiple layers in the vertical direction.
在一种具体的实施方式中,图2所示的引导场板6设置在竖墙导体5的一侧的场板结构400可以应用在场限环终端装置300,其应用结构参照图15所示,其中,在场限环终端装置300中,最外侧的场限环与装置的末端通常要设置成整个装置最宽的,用于提高耐压和耐压的稳定性,因为宽度比较大,场板结构400对可动电荷的收集能力也比较强。进一步,如图16在场限环11上面的场板12上面,以场板12为墙底场板增加竖墙导体5,竖墙导体5切断第二绝缘电介质层3,将第二绝缘电介质层3分成若干小段,杜绝了可动电荷长距离移动,造成高密度可动电荷的积累。In a specific implementation manner, the field plate structure 400 shown in FIG. 2 in which the guiding field plate 6 is arranged on one side of the vertical wall conductor 5 can be applied to the field limiting ring terminal device 300, and its application structure is shown in FIG. 15 , Among them, in the field-limiting ring terminal device 300, the outermost field-limiting ring and the end of the device are usually set to be the widest in the entire device to improve the withstand voltage and the stability of the withstand voltage, because the width is relatively large, and the field plate structure 400 has a relatively strong ability to collect movable charges. Further, as shown in Fig. 16, on the field plate 12 above the field limiting ring 11, a vertical wall conductor 5 is added with the field plate 12 as the field plate at the bottom of the wall, the vertical wall conductor 5 cuts off the second insulating dielectric layer 3, and the second insulating dielectric layer 3 Divided into several small segments, it prevents the long-distance movement of movable charges, resulting in the accumulation of high-density movable charges.
在一种具体的实施方式中,图2所示的引导场板6设置在竖墙导体5的一侧的场板结构400可以应用在场限环终端装置300,其应用结构参照图17所示,其中,场板结构400按照一定的间距,再结合场限环11的间距,调整场板结构400的横向距离进行重复放置,跨接在有源区边缘P+区9和场限环11排布区以及半导体1的表面上,在半导体表面上形成多个可动电荷收集腔7的钝化结构;也可以在场限环终端装置300中靠近有源区一侧以及在场限环终端装置300的末端添加竖墙导体5,形成可动电荷的收集腔7,用于减少场限环终端装置300和芯片有源区可动电荷的数量。In a specific implementation manner, the field plate structure 400 shown in FIG. 2 in which the guiding field plate 6 is arranged on one side of the vertical wall conductor 5 can be applied to the field limiting ring terminal device 300, and its application structure is shown in FIG. 17 , Among them, the field plate structure 400 is repeatedly placed according to a certain distance, combined with the distance of the field limiting ring 11, and the horizontal distance of the field plate structure 400 is adjusted to bridge the P+ region 9 at the edge of the active region and the arrangement area of the field limiting ring 11. And on the surface of the semiconductor 1, a passivation structure of a plurality of movable charge collection chambers 7 is formed on the semiconductor surface; it can also be added to the side near the active region in the field-limiting ring termination device 300 and at the end of the field-limiting ring termination device 300 The vertical wall conductors 5 form a mobile charge collection cavity 7 for reducing the quantity of mobile charges in the field limiting ring termination device 300 and the active area of the chip.
在一种具体的实施方式中,图3所示的引导场板6设置在竖墙导体5的两侧的场板结构400可以应用在场限环终端装置300,其应用结构参照图18所示,其中,场板结构400按照一定的间距,结合场限环11的间距,调整场板结构400的横向距离重复放置,跨接在有源区边缘P+区9和场限环11排布区以及半导体1的表面上,在半导体表面上面形成多个可动电荷收集腔7的钝化结构;也可以在场限环端装置中靠近有源区一侧以及在场限环终端装置300的末端添加竖墙导体5,形成可动电荷的收集腔7,用于减少场限环终端装置300和芯片有源区可动电荷的数量。In a specific implementation manner, the field plate structure 400 shown in FIG. 3 in which the guiding field plate 6 is arranged on both sides of the vertical wall conductor 5 can be applied to the field limiting ring termination device 300, and its application structure is shown in FIG. 18 , Among them, the field plate structure 400 is repeatedly placed according to a certain distance, combined with the distance of the field limiting ring 11, and the lateral distance of the field plate structure 400 is adjusted, and it bridges the P+ region 9 at the edge of the active region and the arrangement area of the field limiting ring 11 and the semiconductor 1, a passivation structure of multiple movable charge collection chambers 7 is formed on the semiconductor surface; vertical wall conductors can also be added on the side near the active region in the field limiting ring terminal device and at the end of the field limiting ring terminal device 300 5. A collecting chamber 7 for mobile charges is formed, which is used to reduce the quantity of mobile charges in the field limiting ring termination device 300 and the active area of the chip.
在一种具体的实施方式中,经进一步的改进,图3所示的引导场板6设置在竖墙导体5的两侧的场板结构400可以应用在场限环终端装置300,其应用结构参照图18和图19所示,其中,再增加一层绝缘电介质层13,场板结构400中引导场板6的上面,增加竖墙导体5切断绝缘电介质层13。通过相邻的竖墙导体5之间的电耦合,在绝缘电介质层13中也形成了多个可动电荷收集腔7;因此在半导体表面上面形成两层多个可动电荷收集腔7的钝化结构,用于减少场限环终端装置300和芯片有源区可动电荷的数量。In a specific embodiment, after further improvement, the field plate structure 400 shown in FIG. 3 in which the guide field plate 6 is arranged on both sides of the vertical wall conductor 5 can be applied to the field limiting ring termination device 300. For its application structure, refer to As shown in FIG. 18 and FIG. 19 , another layer of insulating dielectric layer 13 is added, the field plate structure 400 guides the upper surface of the field plate 6 , and vertical wall conductors 5 are added to cut off the insulating dielectric layer 13 . Through the electrical coupling between the adjacent vertical wall conductors 5, a plurality of movable charge collection chambers 7 are also formed in the insulating dielectric layer 13; The structure is used to reduce the amount of mobile charge in the field limiting ring termination device 300 and the active area of the chip.
在一种具体的实施方式中,经进一步的改进,图3所示的引导场板6设置在竖墙导体5的两侧的场板结构400可以应用在场限环终端装置300,其应用结构参照图18和图20所示,其中,再增加一层绝缘电介质层13,场板结构400在第二绝缘电介质层3和绝缘电介质层13中,形成纵向和横向级联结构。在半导体表面上面形成两层多个可动电荷收集腔7的钝化结构,用于减少横向变掺杂终端装置200和芯片有源区可动电荷的数量,进一步提高对可动电荷的收集能力。In a specific embodiment, after further improvement, the field plate structure 400 shown in FIG. 3 in which the guide field plate 6 is arranged on both sides of the vertical wall conductor 5 can be applied to the field limiting ring termination device 300. For its application structure, refer to As shown in FIG. 18 and FIG. 20 , an additional insulating dielectric layer 13 is added, and the field plate structure 400 forms a vertical and lateral cascaded structure in the second insulating dielectric layer 3 and the insulating dielectric layer 13 . A passivation structure with two layers of multiple movable charge collection cavities 7 is formed on the surface of the semiconductor, which is used to reduce the amount of movable charges in the lateral variable doping terminal device 200 and the active area of the chip, and further improve the ability to collect movable charges .
在一种具体的实施方式中,图4所示的引导场板6设置在竖墙导体5的一侧的场板结构400可以应用在横向变掺杂终端装置200,其应用结构参照图21所示,其中,浮空场板12按一定间距设置在第二绝缘电介质层3上面。进一步,如图22以浮空场板12为墙底场板增加竖墙导体5,竖墙导体5切断第二绝缘电介质层3,将第二绝缘电介质层3分成若干小段,杜绝了可动电荷长距离移动,造成高密度可动电荷的积累;也可以在横向变掺杂终端装置200中靠近有源区一侧以及在横向变掺杂终端装置200的末端添加竖墙导体5,形成可动电荷的收集腔7,用于减少横向变掺杂终端装置200和芯片有源区可动电荷的数量。In a specific implementation manner, the field plate structure 400 shown in FIG. 4 in which the guided field plate 6 is arranged on one side of the vertical wall conductor 5 can be applied to the lateral variable doping termination device 200, and its application structure is shown in FIG. 21 , wherein the floating field plates 12 are arranged on the second insulating dielectric layer 3 at a certain interval. Further, as shown in Figure 22, the vertical wall conductor 5 is added with the floating field plate 12 as the wall bottom field plate, and the vertical wall conductor 5 cuts off the second insulating dielectric layer 3, and divides the second insulating dielectric layer 3 into several small sections, eliminating the possibility of movable charges Long-distance movement causes the accumulation of high-density movable charges; it is also possible to add vertical wall conductors 5 on the side of the lateral variable doping terminal device 200 close to the active region and at the end of the lateral variable doping terminal device 200 to form a movable The charge collecting cavity 7 is used to reduce the amount of movable charge in the laterally variable doping terminal device 200 and the active area of the chip.
在一种具体的实施方式中,图4所示的引导场板6设置在竖墙导体5的一侧的场板结构400可以应用在横向变掺杂终端装置200,其应用结构参照图23所示,其中,场板结构400按照一定的间距重复放置,跨接在有源区边缘P+区9和扩散区8以及半导体1的表面上,在半导体表面上形成多个可动电荷收集腔7的钝化结构;也可以在横向变掺杂终端装置200中靠近有源区一侧以及在横向变掺杂终端装置200的末端添加竖墙导体5,形成可动电荷的收集腔7,用于减少横向变掺杂终端装置200和芯片有源区可动电荷的数量。In a specific implementation, the field plate structure 400 in which the guided field plate 6 is arranged on one side of the vertical wall conductor 5 shown in FIG. As shown, wherein, the field plate structure 400 is placed repeatedly according to a certain interval, spanning the P+ region 9 and the diffusion region 8 at the edge of the active region and the surface of the semiconductor 1, forming a plurality of movable charge collection cavities 7 on the semiconductor surface passivation structure; it is also possible to add a vertical wall conductor 5 on the side near the active region in the lateral variable doping terminal device 200 and at the end of the lateral variable doping terminal device 200 to form a collecting cavity 7 for movable charges, which is used to reduce The amount of mobile charges in the doping termination device 200 and the active area of the chip can be varied laterally.
在一种具体的实施方式中,图4所示的引导场板6设置在竖墙导体5的一侧的场板结构400可以应用在横向变掺杂终端装置200,其应用结构参照图24所示,其中,场板结构400通过电场耦合场板14按照一定的间距重复放置,跨接在有源区边缘P+区9和扩散区8以及半导体1的表面上,在半导体表面上形成多个可动电荷收集腔7的钝化结构;也可以在横向变掺杂终端装置200中靠近有源区一侧以及在横向变掺杂终端装置200的末端添加竖墙导体5,形成可动电荷的收集腔7,用于减少横向变掺杂终端装置200和芯片有源区可动电荷的数量。In a specific implementation manner, the field plate structure 400 shown in FIG. 4 in which the guided field plate 6 is arranged on one side of the vertical wall conductor 5 can be applied to the lateral variable doping termination device 200, and its application structure is shown in FIG. 24 As shown, the field plate structure 400 is repeatedly placed at a certain interval through the electric field coupling field plate 14, and bridges the P+ region 9 and the diffusion region 8 at the edge of the active region as well as the surface of the semiconductor 1, forming multiple possible structures on the semiconductor surface. The passivation structure of the mobile charge collection cavity 7; it is also possible to add vertical wall conductors 5 on the side close to the active region in the lateral variable doping terminal device 200 and at the end of the lateral variable doping terminal device 200 to form a collection of mobile charges The cavity 7 is used to reduce the amount of mobile charge in the laterally variable doping terminal device 200 and the active region of the chip.
在一种具体的实施方式中,经进一步的改进,图4所示的引导场板设置在竖墙导体5的一侧的场板结构400可以应用在横向变掺杂终端装置200,其应用结构参照图24和图25所示,其中,再增加一层绝缘电介质层13,在电场耦合场板14上面,增加竖墙导体5切断绝缘电介质层13。通过相邻的竖墙导体5之间的电耦合,在绝缘电介质层13中也形成了多个可动电荷收集腔7;因此在半导体表面上面形成两层多个可动电荷收集腔7的钝化结构,用于减少横向变掺杂终端装置200和芯片有源区可动电荷的数量。In a specific implementation manner, after further improvement, the field plate structure 400 shown in FIG. Referring to FIG. 24 and FIG. 25 , an insulating dielectric layer 13 is added, and a vertical wall conductor 5 is added to cut off the insulating dielectric layer 13 on the electric field coupling field plate 14 . Through the electrical coupling between the adjacent vertical wall conductors 5, a plurality of movable charge collection chambers 7 are also formed in the insulating dielectric layer 13; The structure is used to reduce the amount of movable charge in the laterally variable doping termination device 200 and the active region of the chip.
在一种具体的实施方式中,经进一步的改进,图4所示的引导场板设置在竖墙导体5的一侧的场板结构400可以应用在横向变掺杂终端装置200,其应用结构参照图24和图26所示,其中,在绝缘电介质层13中的竖墙导体5的一侧增加引导场板6,形成场板结构400,增强可动电荷收集腔7的电荷收集能力。用于减少横向变掺杂终端装置200和芯片有源区可动电荷的数量。In a specific implementation manner, after further improvement, the field plate structure 400 shown in FIG. Referring to FIG. 24 and FIG. 26 , a guide field plate 6 is added on one side of the vertical wall conductor 5 in the insulating dielectric layer 13 to form a field plate structure 400 to enhance the charge collection capability of the movable charge collection cavity 7 . It is used to reduce the amount of mobile charges in the laterally variable doping terminal device 200 and the active region of the chip.
在一种具体的实施方式中,图5所示的引导场板6设置在竖墙导体5的两侧的场板结构400可以应用在横向变掺杂终端装置200,其应用结构参照图27所示,其中,场板结构400按照一定的间距重复放置,跨接在有源区边缘P+区9和扩散区8以及半导体1的表面上,在半导体表面上形成多个可动电荷收集腔7的钝化结构;进一步,如图28所示,场板结构400通过电场耦合场板14按照一定的间距重复放置,跨接在有源区边缘P+区9和扩散区8以及半导体1的表面上,在半导体表面上形成多个可动电荷收集腔7的钝化结构;也可以在横向变掺杂终端装置200中靠近有源区一侧以及在横向变掺杂终端装置200的末端添加竖墙导体5,形成可动电荷的收集腔7,用于减少横向变掺杂终端装置200和芯片有源区可动电荷的数量。In a specific implementation manner, the field plate structure 400 shown in FIG. 5 in which the guided field plate 6 is arranged on both sides of the vertical wall conductor 5 can be applied to the lateral variable doping termination device 200, and its application structure is shown in FIG. 27 As shown, wherein, the field plate structure 400 is placed repeatedly according to a certain interval, spanning the P+ region 9 and the diffusion region 8 at the edge of the active region and the surface of the semiconductor 1, forming a plurality of movable charge collection cavities 7 on the semiconductor surface passivation structure; further, as shown in FIG. 28 , the field plate structure 400 is repeatedly placed at a certain interval through the electric field coupling field plate 14, and bridges the P+ region 9 and the diffusion region 8 at the edge of the active region and the surface of the semiconductor 1, A passivation structure of a plurality of movable charge collection chambers 7 is formed on the semiconductor surface; vertical wall conductors can also be added on the side near the active region in the lateral variable doping termination device 200 and at the end of the lateral variable doping termination device 200 5. A collecting chamber 7 for movable charges is formed to reduce the quantity of movable charges in the lateral variable doping terminal device 200 and the active region of the chip.
在一种具体的实施方式中,经进一步的改进,图5所示的引导场板6设置在竖墙导体5的一侧的场板结构400可以应用在横向变掺杂终端装置200,其应用结构参照图28和图29所示,其中,再增加一层绝缘电介质层13,在电场耦合场板14上面,增加竖墙导体5切断绝缘电介质层13。通过相邻的竖墙导体5之间的电耦合,在绝缘电介质层13中也形成了多个可动电荷收集腔7;进一步的改进结构,如图30,在绝缘电介质层13中的竖墙导体5的一侧或两侧增加引导场板6,形成所述场板结构400,进而增强可动电荷束收集腔7的电荷收集能力,用于减少横向变掺杂终端装置200和芯片有源区可动电荷的数量。In a specific implementation manner, after further improvement, the field plate structure 400 shown in FIG. The structure is shown in FIG. 28 and FIG. 29 , wherein an insulating dielectric layer 13 is added, and a vertical wall conductor 5 is added to cut off the insulating dielectric layer 13 on the electric field coupling field plate 14 . Through the electrical coupling between the adjacent vertical wall conductors 5, a plurality of movable charge collecting cavities 7 have also been formed in the insulating dielectric layer 13; A guide field plate 6 is added on one or both sides of the conductor 5 to form the field plate structure 400, thereby enhancing the charge collection capability of the movable charge beam collection cavity 7, and used to reduce the lateral variable doping terminal device 200 and chip active. The amount of movable charge in the region.
在一种具体的实施方式中,图4所示的引导场板设置在竖墙导体5的一侧的场板结构400可以应用在场限环终端装置300,其应用结构参照图31所示,其中,场板结构400应用在最外侧的场限环11的上部。进一步,如图32在常规场限环11上面的场板12上面,以场板12为墙底场板增加竖墙导体5,竖墙导体5切断第二绝缘电介质层3,将第二绝缘电介质层3分成若干小段,杜绝了可动电荷长距离移动,造成高密度可动电荷的积累;也可以在场限环终端装置300中靠近有源区一侧以及在场限环终端装置300的末端添加竖墙导体5,形成可动电荷的收集腔7,用于减少场限环终端装置300和芯片有源区可动电荷的数量。In a specific implementation manner, the field plate structure 400 shown in FIG. 4 in which the guided field plate is arranged on one side of the vertical wall conductor 5 can be applied to the field limiting ring termination device 300, and its application structure is shown in FIG. 31 , wherein , the field plate structure 400 is applied on the upper part of the outermost field limiting ring 11 . Further, as shown in Figure 32, on the field plate 12 above the conventional field limiting ring 11, a vertical wall conductor 5 is added with the field plate 12 as the field plate at the bottom of the wall, and the vertical wall conductor 5 cuts off the second insulating dielectric layer 3, and the second insulating dielectric layer Layer 3 is divided into several small sections, which prevents the long-distance movement of movable charges and causes the accumulation of high-density movable charges; it is also possible to add vertical rings on the side of the field-limiting ring terminal device 300 close to the active region and at the end of the field-limiting ring terminal device 300. The wall conductor 5 forms a mobile charge collecting cavity 7 for reducing the quantity of mobile charges in the field limiting ring termination device 300 and the active area of the chip.
在一种具体的实施方式中,图4所示的引导场板6设置在竖墙导体5的一侧的场板结构400可以应用在场限环终端装置300,其应用结构参照图33所示,其中,场板结构400按照一定的间距,结合场限环11的间距,调整场板结构400的横向距离重复放置,跨接在有源区边缘P+区9和场限环11排布区以及半导体1的表面上,在半导体表面上形成多个可动电荷收集腔7的钝化结构;也可以在场限环终端装置300中靠近有源区一侧以及在场限环终端装置300的末端添加竖墙导体5,形成可动电荷的收集腔7,用于减少场限环终端装置300和芯片有源区可动电荷的数量。In a specific implementation manner, the field plate structure 400 shown in FIG. 4 in which the guiding field plate 6 is arranged on one side of the vertical wall conductor 5 can be applied to the field limiting ring terminal device 300, and its application structure is shown in FIG. 33 . Among them, the field plate structure 400 is repeatedly placed according to a certain distance, combined with the distance of the field limiting ring 11, and the lateral distance of the field plate structure 400 is adjusted, and it bridges the P+ region 9 at the edge of the active region and the arrangement area of the field limiting ring 11 and the semiconductor 1, a passivation structure of a plurality of movable charge collection chambers 7 is formed on the semiconductor surface; vertical walls can also be added on the side of the field limiting ring termination device 300 close to the active region and at the end of the field limiting ring termination device 300 The conductor 5 forms a collecting chamber 7 for movable charges, which is used to reduce the quantity of movable charges of the field limiting ring termination device 300 and the active area of the chip.
在一种具体的实施方式中,图4所示的引导场板6设置在竖墙导体5的一侧的场板结构400可以应用在场限环终端装置300,其应用结构参照图34所示,其中,场板结构400通过电场耦合场板14按照一定的间距,结合场限环11的间距,调整场板结构400的横向距离重复放置,跨接在有源区边缘P+区9和场限环11排布区以及半导体1的表面上,在半导体表面上形成多个可动电荷收集腔7的钝化结构;也可以在场限环终端装置300中靠近有源区一侧以及在场限环终端装置300的末端添加竖墙导体5,形成可动电荷的收集腔7,用于减少场限环终端装置300和芯片有源区可动电荷的数量。In a specific implementation manner, the field plate structure 400 shown in FIG. 4 in which the guided field plate 6 is arranged on one side of the vertical wall conductor 5 can be applied to the field limiting ring terminal device 300, and its application structure is shown in FIG. 34 . Among them, the field plate structure 400 is placed repeatedly at a certain distance through the electric field coupling field plate 14, combined with the distance of the field limiting ring 11, adjusting the lateral distance of the field plate structure 400, and connecting the P+ region 9 and the field limiting ring at the edge of the active region. 11 On the arrangement area and the surface of the semiconductor 1, a passivation structure of a plurality of movable charge collection chambers 7 is formed on the semiconductor surface; it can also be near the active region side in the field limiting ring termination device 300 and in the field limiting ring termination device Vertical wall conductors 5 are added to the end of 300 to form a mobile charge collection cavity 7 for reducing the quantity of mobile charges in the field limiting ring termination device 300 and the active area of the chip.
在一种具体的实施方式中,经进一步的改进,图4所示的引导场板6设置在竖墙导体5的一侧的场板结构400可以应用在场限环终端装置300,其应用结构参照图34和图35所示,其中,再增加一层绝缘电介质层13,在电场耦合场板14上面,增加竖墙导体5切断绝缘电介质层13。通过相邻的竖墙导体5之间的电耦合,在绝缘电介质层13中也形成了多个可动电荷收集腔7;进一步的改进结构,如图36,在绝缘电介质层13中的竖墙导体5的一侧或两侧增加引导场板6,形成所述场板结构400,进而增强可动电荷束收集7的电荷收集能力。用于减少场限环终端装置300和芯片有源区可动电荷的数量。In a specific implementation, after further improvement, the field plate structure 400 shown in FIG. 4 in which the guided field plate 6 is arranged on one side of the vertical wall conductor 5 can be applied to the field limiting ring termination device 300. For the application structure, refer to As shown in FIG. 34 and FIG. 35 , an insulating dielectric layer 13 is added, and a vertical wall conductor 5 is added to cut off the insulating dielectric layer 13 on the electric field coupling field plate 14 . Through the electrical coupling between the adjacent vertical wall conductors 5, a plurality of movable charge collection cavities 7 have also been formed in the insulating dielectric layer 13; A guide field plate 6 is added to one or both sides of the conductor 5 to form the field plate structure 400 , thereby enhancing the charge collection capability of the movable charge beam collector 7 . It is used to reduce the amount of movable charge in the FCL termination device 300 and the active area of the chip.
在一种具体的实施方式中,图6所示的引导场板6设置在竖墙导体5的一侧的场板结构400可以应用在横向变掺杂终端装置200,其应用结构参照图37所示,其中,场板结构400应用在扩散区PN结的上面,浮空场板12按一定间距设置在扩散区8上面的第二绝缘电介质层3上面。进一步,如图38所示,在浮空场板12上面,以浮空场板12为墙底场板增加竖墙导体5,竖墙导体5切断第二绝缘电介质层3,将第二绝缘电介质层3分成若干小段,杜绝了可动电荷长距离移动,造成高密度可动电荷的积累;可以在横向变掺杂终端装置200中靠近有源区一侧以及在横向变掺杂终端装置200的末端添加竖墙导体5,形成可动电荷的收集腔7,用于减少横向变掺杂终端装置200和芯片有源区可动电荷的数量。In a specific implementation manner, the field plate structure 400 shown in FIG. 6 in which the guided field plate 6 is arranged on one side of the vertical wall conductor 5 can be applied to the lateral variable doping termination device 200, and its application structure is shown in FIG. 37 As shown, the field plate structure 400 is applied above the PN junction in the diffusion region, and the floating field plates 12 are arranged on the second insulating dielectric layer 3 above the diffusion region 8 at a certain interval. Further, as shown in FIG. 38, on the floating field plate 12, a vertical wall conductor 5 is added with the floating field plate 12 as the bottom field plate, and the vertical wall conductor 5 cuts off the second insulating dielectric layer 3, and the second insulating dielectric layer The layer 3 is divided into several small segments, which prevents the long-distance movement of movable charges, resulting in the accumulation of high-density movable charges; A vertical wall conductor 5 is added at the end to form a mobile charge collection chamber 7 for reducing the quantity of mobile charges in the laterally variable doping terminal device 200 and the active area of the chip.
在一种具体的实施方式中,图6所示的引导场板6设置在竖墙导体5的一侧的场板结构400可以应用在横向变掺杂终端装置200,其应用结构参照图39所示,其中,场板结构400按照一定的间距重复放置,跨接在有源区边缘P+区9和扩散区8以及半导体1的表面上,在半导体表面上形成多个可动电荷收集腔7的钝化结构;可以在横向变掺杂终端装置200中靠近有源区一侧以及在横向变掺杂终端装置200的末端添加竖墙导体5,形成可动电荷的收集腔7,用于减少横向变掺杂终端装置200和芯片有源区可动电荷的数量。In a specific implementation manner, the field plate structure 400 shown in FIG. 6 in which the guided field plate 6 is arranged on one side of the vertical wall conductor 5 can be applied to the lateral variable doping termination device 200, and its application structure is shown in FIG. 39 As shown, wherein, the field plate structure 400 is placed repeatedly according to a certain interval, spanning the P+ region 9 and the diffusion region 8 at the edge of the active region and the surface of the semiconductor 1, forming a plurality of movable charge collection cavities 7 on the semiconductor surface Passivation structure; vertical wall conductors 5 can be added to the side of the lateral variable doping terminal device 200 close to the active region and at the end of the lateral variable doping terminal device 200 to form a mobile charge collection cavity 7 for reducing lateral The amount of mobile charge in the doping termination device 200 and the active area of the chip is varied.
在一种具体的实施方式中,经进一步的改进,图6所示的引导场板6设置在竖墙导体5的一侧的场板结构400可以应用在横向变掺杂终端装置200,其应用结构参照图39和图40所示,其中,再增加一层绝缘电介质层13,在场板结构400的引导场板6上面,增加竖墙导体5切断绝缘电介质层13。通过相邻的竖墙导体5之间的电耦合,在绝缘电介质层13中也形成了多个可动电荷收集腔7;进一步的改进结构,如图41所示,在绝缘电介质层13中的竖墙导体5的一侧增加引导场板6,形成所述场板结构400,进而增强可动电荷收集腔7的电荷收集能力,用于减少横向变掺杂终端装置200和芯片有源区可动电荷的数量。In a specific implementation manner, after further improvement, the field plate structure 400 shown in FIG. The structure is shown in FIG. 39 and FIG. 40 , wherein an insulating dielectric layer 13 is added, and vertical wall conductors 5 are added to cut off the insulating dielectric layer 13 on the guide field plate 6 of the field plate structure 400 . Through the electrical coupling between the adjacent vertical wall conductors 5, a plurality of movable charge collecting cavities 7 are also formed in the insulating dielectric layer 13; further improved structures, as shown in Figure 41, in the insulating dielectric layer 13 One side of the vertical wall conductor 5 is added with a guide field plate 6 to form the field plate structure 400, thereby enhancing the charge collection capability of the movable charge collection cavity 7, and is used to reduce the lateral variable doping terminal device 200 and the active area of the chip. The amount of moving charge.
在一种具体的实施方式中,图6所示的引导场板6设置在竖墙导体5的一侧的场板结构400可以应用在场限环终端装置300,其应用结构参照图42所示,其中,场板结构400应用在最外侧的场限环11的上部。进一步,如图43在场限环11上面的场板12上面,以场板12为墙底场板增加竖墙导体5,竖墙导体5切断第二绝缘电介质层3,将第二绝缘电介质层3分成若干小段,杜绝了可动电荷长距离移动,造成高密度可动电荷的积累;最外侧的场限环与场限环终端装置300的末端通常要设置成最宽的,以增加场板结构400对可动电荷的收集能力。In a specific implementation manner, the field plate structure 400 shown in FIG. 6 in which the guided field plate 6 is arranged on one side of the vertical wall conductor 5 can be applied to the field limiting ring terminal device 300, and its application structure is shown in FIG. 42 , Wherein, the field plate structure 400 is applied on the upper part of the outermost field limiting ring 11 . Further, as shown in Figure 43, on the field plate 12 above the field limiting ring 11, a vertical wall conductor 5 is added with the field plate 12 as the field plate at the bottom of the wall, and the vertical wall conductor 5 cuts off the second insulating dielectric layer 3, and the second insulating dielectric layer 3 Divided into several small sections, it prevents the long-distance movement of movable charges, resulting in the accumulation of high-density movable charges; the outermost field-limiting ring and the end of the field-limiting ring terminal device 300 are usually set to the widest to increase the field plate structure 400 pairs of mobile charge collection capacity.
在一种具体的实施方式中,图6所示的引导场板6设置在竖墙导体5的一侧的场板结构400可以应用在场限环终端装置300,其应用结构参照图44所示,其中,场板结构400按照一定的间距,结合场限环11的间距,并调整场板结构400的横向距离重复放置,跨接在有源区边缘P+区9和场限环11排布区以及半导体1的表面上,在半导体表面上形成多个可动电荷收集腔7的钝化结构;也可以在场限环终端装置300中靠近有源区一侧以及在场限环终端装置300的末端添加竖墙导体5,形成可动电荷的收集腔7,用于减少场限环终端装置300和芯片有源区可动电荷的数量。In a specific implementation manner, the field plate structure 400 shown in FIG. 6 in which the guided field plate 6 is arranged on one side of the vertical wall conductor 5 can be applied to the field limiting ring terminal device 300, and its application structure is shown in FIG. 44 , Among them, the field plate structure 400 is repeatedly placed according to a certain distance, combined with the distance of the field limiting ring 11, and the lateral distance of the field plate structure 400 is adjusted, and bridged between the P+ region 9 at the edge of the active region and the arrangement area of the field limiting ring 11 and On the surface of the semiconductor 1, a passivation structure of a plurality of movable charge collection chambers 7 is formed on the semiconductor surface; it is also possible to add a vertical ring on the side near the active region in the field limiting ring termination device 300 and at the end of the field limiting ring termination device 300. The wall conductor 5 forms a mobile charge collecting cavity 7 for reducing the quantity of mobile charges in the field limiting ring termination device 300 and the active area of the chip.
在一种具体的实施方式中,经进一步的改进,图6所示的引导场板6设置在竖墙导体5的一侧的场板结构400可以应用在场限环终端装置300,其应用结构参照图44和45所示,其中,再增加一层绝缘电介质层13,在所述场板结构400的引导场板6上面,增加竖墙导体5切断绝缘电介质层13。通过相邻的竖墙导体5之间的电耦合,在绝缘电介质层13中也形成了多个可动电荷收集腔7;进一步的改进结构,如图46,在绝缘电介质层13中的竖墙导体5的一侧或两侧增加引导场板6,形成场板结构400,进而增强可动电荷收集腔7的电荷收集能力。同时在场限环终端装置300中的末端,也可添加竖墙导体5,形成可动电荷的收集腔7,用于减少场限环终端装置300可动电荷的数量。In a specific implementation, after further improvement, the field plate structure 400 shown in FIG. 6 in which the guided field plate 6 is arranged on one side of the vertical wall conductor 5 can be applied to the field limiting ring termination device 300. For its application structure, refer to As shown in FIGS. 44 and 45 , another layer of insulating dielectric layer 13 is added, and on the guide field plate 6 of the field plate structure 400 , vertical wall conductors 5 are added to cut off the insulating dielectric layer 13 . Through the electrical coupling between the adjacent vertical wall conductors 5, a plurality of movable charge collection cavities 7 have also been formed in the insulating dielectric layer 13; A guiding field plate 6 is added to one or both sides of the conductor 5 to form a field plate structure 400 , thereby enhancing the charge collection capability of the movable charge collection cavity 7 . At the same time, vertical wall conductors 5 can also be added at the end of the field-limiting ring termination device 300 to form a collection cavity 7 for movable charges, which is used to reduce the amount of movable charges in the field-limiting ring termination device 300 .
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than limiting them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: It is still possible to modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some or all of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the various embodiments of the present invention. scope.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910907838.1A CN110620146B (en) | 2019-09-24 | 2019-09-24 | Field plate structure and semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910907838.1A CN110620146B (en) | 2019-09-24 | 2019-09-24 | Field plate structure and semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110620146A true CN110620146A (en) | 2019-12-27 |
CN110620146B CN110620146B (en) | 2023-05-12 |
Family
ID=68924060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910907838.1A Active CN110620146B (en) | 2019-09-24 | 2019-09-24 | Field plate structure and semiconductor device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110620146B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113206146A (en) * | 2021-05-26 | 2021-08-03 | 吉林华微电子股份有限公司 | Semiconductor device terminal structure, manufacturing method and semiconductor device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080179671A1 (en) * | 2007-01-31 | 2008-07-31 | Kabushiki Kaisha Toshiba | Semiconductor apparatus |
CN101345254A (en) * | 2007-07-12 | 2009-01-14 | 富士电机电子技术株式会社 | Semiconductor device |
CN106653830A (en) * | 2015-10-28 | 2017-05-10 | 无锡华润上华半导体有限公司 | Semiconductor device voltage-withstanding structure |
CN107818964A (en) * | 2017-12-11 | 2018-03-20 | 四川九鼎智远知识产权运营有限公司 | A kind of voltage semiconductor device |
CN109216430A (en) * | 2017-06-30 | 2019-01-15 | 无锡华润华晶微电子有限公司 | Semiconductor transverse varying doping terminal structure and preparation method thereof |
-
2019
- 2019-09-24 CN CN201910907838.1A patent/CN110620146B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080179671A1 (en) * | 2007-01-31 | 2008-07-31 | Kabushiki Kaisha Toshiba | Semiconductor apparatus |
CN101345254A (en) * | 2007-07-12 | 2009-01-14 | 富士电机电子技术株式会社 | Semiconductor device |
CN106653830A (en) * | 2015-10-28 | 2017-05-10 | 无锡华润上华半导体有限公司 | Semiconductor device voltage-withstanding structure |
CN109216430A (en) * | 2017-06-30 | 2019-01-15 | 无锡华润华晶微电子有限公司 | Semiconductor transverse varying doping terminal structure and preparation method thereof |
CN107818964A (en) * | 2017-12-11 | 2018-03-20 | 四川九鼎智远知识产权运营有限公司 | A kind of voltage semiconductor device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113206146A (en) * | 2021-05-26 | 2021-08-03 | 吉林华微电子股份有限公司 | Semiconductor device terminal structure, manufacturing method and semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
CN110620146B (en) | 2023-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101752423B (en) | Groove type high-power MOS device and manufacturing method thereof | |
CN101719516B (en) | Low gate charge deep trench power MOS device and manufacturing method thereof | |
CN102263133A (en) | Low-gate charge low-on resistance deep trench power metal oxide semiconductor field effect transistor (MOSFET) device and manufacturing method | |
DE102007001643A1 (en) | Semiconductor device, e.g. ditch-metal oxide semiconductor field effect transistor, has insulator with normal strength value during insulation breakdown, where normal value is equal to or more than strength value during insulation breakdown | |
CN110676312A (en) | Shielded gate MOS device terminal structure and fabrication method with stepped oxide layer | |
CN105679810A (en) | Semiconductor structure suitable for charge coupled device and manufacturing method of semiconductor structure | |
CN110620146B (en) | Field plate structure and semiconductor device | |
CN109698129A (en) | The method of semiconductor device structure and the structure that is used for producing the semiconductor devices | |
CN110391302B (en) | Superjunction MOSFET structure and manufacturing method using shielded gate | |
CN110416309B (en) | A super junction power semiconductor device and a method for manufacturing the same | |
CN105006484A (en) | Super-junction semiconductor device and manufacture method thereof | |
CN208674122U (en) | A kind of superjunction IGBT with shield grid | |
CN101556967B (en) | Power semiconductor and manufacturing method thereof | |
CN108063159B (en) | Terminal structure of semiconductor power device, semiconductor power device and manufacturing method thereof | |
TW201731100A (en) | VDMOS and its manufacturing method | |
CN114975620B (en) | Low input capacitance trench IGBT device and preparation method thereof | |
US20220310802A1 (en) | Shield contact layout for power mosfets | |
EP4273933A1 (en) | Super junction mosfet device | |
CN116190438A (en) | An AlGaN/GaN vertical high electron mobility transistor and its manufacturing method | |
CN210156383U (en) | Super junction power semiconductor device | |
CN114497188A (en) | SGT device of high-reliability upper and lower structure | |
CN208861992U (en) | Insulated Gate Bipolar Transistor Device | |
CN116504812B (en) | A super junction IGBT power device | |
CN116525663B (en) | Trench power MOSFET device with gate-source terminal clamping structure and preparation method thereof | |
TWI851225B (en) | Semiconductor device and method of forming the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |