CN110618742A - PDB board and working method thereof - Google Patents
PDB board and working method thereof Download PDFInfo
- Publication number
- CN110618742A CN110618742A CN201910767423.9A CN201910767423A CN110618742A CN 110618742 A CN110618742 A CN 110618742A CN 201910767423 A CN201910767423 A CN 201910767423A CN 110618742 A CN110618742 A CN 110618742A
- Authority
- CN
- China
- Prior art keywords
- module
- delay time
- modules
- delay
- control module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 238000004891 communication Methods 0.000 claims description 6
- 238000013473 artificial intelligence Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/28—Supervision thereof, e.g. detecting power-supply failure by out of limits supervision
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Power Sources (AREA)
Abstract
本申请公开了一种PDB板及其工作方法,该PDB板包括N个并联连接的48V‑12V模块和一个延时控制模块,任一48V‑12V模块与延时控制模块通过PMBUS接口连接,任一48V‑12V模块的输入端与PSU连接,输出端与主板连接。延时控制模块用于在48V‑12V模块的指定寄存器中设置延时时间,并根据延时时间依次启动N个并联连接的48V‑12V模块。PDB板的工作方法包括:获取来自PSU的48V电压;利用延时控制模块依次在任一所述48V‑12V模块的指定寄存器中配置延时时间;根据延时时间依次启动N个并联连接的48V‑12V模块,获取12V电压;将12V电压发送至主板。通过本申请,能够实现分时启动,有效避免电流过冲现象,有利于提高PDB板输出电压的稳定性。
The application discloses a PDB board and its working method. The PDB board includes N 48V‑12V modules connected in parallel and a delay control module. Any 48V‑12V module is connected to the delay control module through a PMBUS interface. The input end of a 48V‑12V module is connected to the PSU, and the output end is connected to the motherboard. The delay control module is used to set the delay time in the designated register of the 48V-12V module, and start N parallel-connected 48V-12V modules in sequence according to the delay time. The working method of the PDB board includes: obtaining the 48V voltage from the PSU; using the delay control module to configure the delay time in the designated register of any one of the 48V-12V modules in turn; starting N parallel connected 48V- 12V module, obtain 12V voltage; send 12V voltage to the main board. Through the present application, time-sharing start can be realized, the phenomenon of current overshoot can be effectively avoided, and the stability of the output voltage of the PDB board can be improved.
Description
技术领域technical field
本申请涉及电源转换技术领域,特别是涉及一种PDB(Power DistributionBoard,配电板)板及其工作方法。The present application relates to the technical field of power conversion, in particular to a PDB (Power Distribution Board, power distribution board) board and a working method thereof.
背景技术Background technique
48V供电架构在通信、汽车电源、数据中心以及AI服务器领域的应用越来越广泛。48V供电架构应用于这些领域时,通常需要将48V电源转换为12V电源。以AI(ArtificialIntelligence,人工智能)服务器领域为例,通常采用8GPU(Graphics Processing Unit,图形处理器)甚至16GPU用于构建大规模的人工智能深度学习平台,GPU的功耗在服务器总功耗中占比达到70%,为满足供电需求,搭载这些GPU的服务器平台通常采用48V供电架构。具体地,PSU(Power Supply Unit,电源供应单元)输出48V DC(Direct Current,直流电源)给服务器,48V电源可直接供给GPU,但是GPU之外的零部件如CPU、内存、硬盘等所使用的电压低于48V,这就用到PDB板对48V电源进行降压获取到12V电源,再将12V电源接入CPU、内存以及硬盘等部件中。The 48V power supply architecture is more and more widely used in the fields of communication, automotive power supply, data center and AI server. When the 48V power supply architecture is applied in these fields, it is usually necessary to convert the 48V power supply to a 12V power supply. Taking the AI (Artificial Intelligence, artificial intelligence) server field as an example, 8GPU (Graphics Processing Unit, graphics processing unit) or even 16GPU is usually used to build a large-scale artificial intelligence deep learning platform, and the power consumption of GPU accounts for the total power consumption of the server. The ratio reaches 70%. In order to meet the power supply requirements, server platforms equipped with these GPUs usually adopt a 48V power supply architecture. Specifically, the PSU (Power Supply Unit, power supply unit) outputs 48V DC (Direct Current, DC power supply) to the server, and the 48V power supply can be directly supplied to the GPU, but components other than the GPU, such as CPU, memory, hard disk, etc. If the voltage is lower than 48V, the PDB board is used to step down the 48V power supply to obtain a 12V power supply, and then the 12V power supply is connected to the CPU, memory, hard disk and other components.
目前的PDB板,为输出较高的功率,通常采用多级48V-12V模块并联,多级48V-12V模块的输入端电压为48V,经PDB板处理后获取到12V电压。The current PDB board usually uses multi-level 48V-12V modules in parallel in order to output higher power. The input voltage of the multi-level 48V-12V module is 48V, and the 12V voltage is obtained after being processed by the PDB board.
然而,目前的PDB板在进行多级模块并联时,由于48V-12V模块间的个体差异,在软启动阶段会导致48V-12V模块内部各自的工作状态不完全同步,启动较慢的48V-12V模块会出现倒灌电流,而启动较快的48V-12V模块会输出较大的电流。因此,不同48V-12V模块的输出电流不均匀,输出电压稳定性较差,较大的输出电流甚至会引起电流过冲现象。However, when the current PDB boards are connected in parallel with multi-level modules, due to the individual differences between 48V-12V modules, the working states of the 48V-12V modules will not be completely synchronized during the soft start stage, and the slower 48V-12V modules will start. The module will have a backflow current, and the 48V-12V module that starts faster will output a larger current. Therefore, the output current of different 48V-12V modules is uneven, the output voltage stability is poor, and a large output current may even cause current overshoot.
发明内容Contents of the invention
本申请提供了一种PDB板及其工作方法,以解决现有技术中的PDB板输出电压稳定性较差,在启动过程中容易导致电流过冲的问题。The present application provides a PDB board and its working method, so as to solve the problem in the prior art that the output voltage stability of the PDB board is poor, and the current overshoot is easily caused during the startup process.
为了解决上述技术问题,本申请实施例公开了如下技术方案:In order to solve the above technical problems, the embodiment of the present application discloses the following technical solutions:
一种PDB板,所述PDB板包括:N个并联连接的48V-12V模块和一个延时控制模块,任一所述48V-12V模块与延时控制模块之间通过PMBUS(Power Management Bus,电源管理总线)接口通信连接,任一所述48V-12V模块的输入端与PSU连接,任一所述48V-12V模块的输出端与主板连接,其中N为自然数且N≥2;A kind of PDB board, described PDB board comprises: N 48V-12V modules connected in parallel and a delay control module, pass PMBUS (Power Management Bus, power supply between any described 48V-12V module and delay control module) Management bus) interface communication connection, the input end of any one of the 48V-12V modules is connected to the PSU, and the output end of any one of the 48V-12V modules is connected to the main board, wherein N is a natural number and N≥2;
所述48V-12V模块,用于将来自PSU的48V电压转换为12V电压,并传输至主板;The 48V-12V module is used to convert the 48V voltage from the PSU into a 12V voltage and transmit it to the main board;
所述延时控制模块,用于在所述48V-12V模块的指定寄存器中设置延时时间,并根据所述延时时间,依次启动N个并联连接的48V-12V模块,其中,依次启动的前后两个48V-12V模块延时时间的差值相等,且所述差值>一个48V-12V模块的上电时间。The delay control module is used to set the delay time in the designated register of the 48V-12V module, and start N parallel-connected 48V-12V modules sequentially according to the delay time, wherein the sequentially started The difference between the delay times of the two preceding and following 48V-12V modules is equal, and the difference is greater than the power-on time of one 48V-12V module.
可选地,所述延时控制模块包括:Optionally, the delay control module includes:
第一解锁单元,用于发送第一写保护解锁命令至所述48V-12V模块的指定寄存器;A first unlocking unit, configured to send a first write protection unlock command to a designated register of the 48V-12V module;
设置单元,用于在所述48V-12V模块的指定寄存器内设置延时时间,其中,第N个48V-12V模块的延时时间为:TN=T1+(N-1)*Δt,N为PDB板中48V-12V模块的总数量,T1为第一个48V-12V模块的延时时间,TN为第N个48V-12V模块的延时时间,Δt为前后两个48V-12V模块延时时间的差值;The setting unit is used to set the delay time in the designated register of the 48V-12V module, wherein the delay time of the Nth 48V-12V module is: T N =T 1 +(N-1)*Δt, N is the total number of 48V-12V modules in the PDB board, T 1 is the delay time of the first 48V-12V module, T N is the delay time of the Nth 48V-12V module, Δt is the two 48V- 12V module delay time difference;
写入单元,用于将所述延时时间写入所述48V-12V模块的指定寄存器中;A writing unit, configured to write the delay time into a designated register of the 48V-12V module;
第二解锁单元,用于发送第二写保护解锁命令至所述48V-12V模块的flash(非易失性存储器);The second unlocking unit is used to send the second write protection unlocking command to the flash (non-volatile memory) of the 48V-12V module;
保存单元,用于保存所述延时时间。A saving unit, configured to save the delay time.
可选地,所述48V-12V模块支持标准PMBUS协议。Optionally, the 48V-12V module supports the standard PMBUS protocol.
可选地,所述延时时间的差值为140ms。Optionally, the delay time difference is 140ms.
可选地,所述延时控制模块为BMC(Baseboard Management Controller,基板管理控制器)。Optionally, the delay control module is a BMC (Baseboard Management Controller, baseboard management controller).
一种PDB板的工作方法,所述PDB板包括:N个并联连接的48V-12V模块和一个延时控制模块,任一所述48V-12V模块与延时控制模块之间通过PMBUS接口通信连接,任一所述48V-12V模块的输入端与PSU连接,任一所述48V-12V模块的输出端与主板连接,其中N为自然数且N≥2,所述工作方法包括:A working method of a PDB board, the PDB board comprising: N parallel-connected 48V-12V modules and a delay control module, any of the 48V-12V modules and the delay control module are connected through a PMBUS interface communication , the input end of any one of the 48V-12V modules is connected to the PSU, the output end of any one of the 48V-12V modules is connected to the main board, wherein N is a natural number and N≥2, and the working methods include:
获取来自PSU的48V电压;Get 48V from the PSU;
利用延时控制模块,依次在任一所述48V-12V模块的指定寄存器中配置延时时间,其中,相邻的前后两个48V-12V模块延时时间的差值相等,且所述差值>一个48V-12V模块的上电时间;Use the delay control module to configure the delay time in the designated register of any one of the 48V-12V modules in turn, wherein the difference between the delay times of the two adjacent 48V-12V modules is equal, and the difference > The power-on time of a 48V-12V module;
根据所述延时时间,依次启动N个并联连接的48V-12V模块,获取12V电压;According to the delay time, N 48V-12V modules connected in parallel are sequentially started to obtain 12V voltage;
将所述12V电压发送至主板。Send the 12V voltage to the motherboard.
可选地,利用延时控制模块,依次在任一所述48V-12V模块的指定寄存器中配置延时时间的方法,包括:Optionally, using the delay control module, the method of configuring the delay time in the designated registers of any of the 48V-12V modules in turn includes:
利用延时控制模块,对第一个48V-12V模块的指定寄存器配置延时时间;Use the delay control module to configure the delay time for the designated register of the first 48V-12V module;
利用延时控制模块,依次对第一个48V-12V模块之后的48V-12V模块的指定寄存器配置相应的延时时间。Use the delay control module to sequentially configure the corresponding delay time for the designated registers of the 48V-12V modules after the first 48V-12V module.
可选地,所述利用延时控制模块,对第一个48V-12V模块的指定寄存器配置延时时间的方法,包括:Optionally, the method of using the delay control module to configure the delay time for the designated register of the first 48V-12V module includes:
所述延时控制模块发送第一写保护解锁命令至第一个48V-12V模块的指定寄存器;The delay control module sends the first write protection unlock command to the designated register of the first 48V-12V module;
所述延时控制模块向第一个48V-12V模块的指定寄存器中写入第一个48-12V模块的延时时间;The delay control module writes the delay time of the first 48-12V module into the designated register of the first 48V-12V module;
所述延时控制模块发送第二写保护解锁命令至第一个48V-12V模块的flash;The delay control module sends the second write protection unlock command to the flash of the first 48V-12V module;
保存第一个48V-12V模块的延时时间。Save the delay time of the first 48V-12V module.
可选地,利用延时控制模块,依次对第一个48V-12V模块之后的48V-12V模块的指定寄存器配置相应的开通时间的方法,包括:Optionally, using the delay control module to sequentially configure the corresponding turn-on time for the designated registers of the 48V-12V modules after the first 48V-12V module, including:
所述延时控制模块发送第一写保护解锁命令至第一个48V-12V模块之后的任一48V-12V模块的指定寄存器;The delay control module sends the first write protection unlock command to the designated register of any 48V-12V module after the first 48V-12V module;
根据公式TN=T1+(N-1)*Δt,依次计算第一个48V-12V模块之后的48V-12V模块的延时时间,其中,N为PDB板中48V-12V模块的总数量,T1为第一个48V-12V模块的延时时间,TN为第N个48V-12V模块的延时时间,Δt为前后两个48V-12V模块延时时间的差值;According to the formula T N =T 1 +(N-1)*Δt, calculate the delay time of the 48V-12V modules after the first 48V-12V module in turn, where N is the total number of 48V-12V modules in the PDB board , T 1 is the delay time of the first 48V-12V module, T N is the delay time of the Nth 48V-12V module, Δt is the difference between the delay time of the two 48V-12V modules before and after;
根据计算得出的第一个48V-12V模块之后的任一48V-12V模块的延时时间,所述延时控制模块向第一个48V-12V模块之后的任一48V-12V模块的指定寄存器中写入相应的开通时间;According to the calculated delay time of any 48V-12V module after the first 48V-12V module, the delay control module sends the specified register of any 48V-12V module after the first 48V-12V module Write the corresponding opening time in ;
所述延时控制模块发送第二写保护解锁命令至第一个48V-12V模块之后的任一48V-12V模块的flash;The delay control module sends the second write protection unlock command to the flash of any 48V-12V module after the first 48V-12V module;
保存第一个48V-12V模块之后的任一48V-12V模块的延时时间。Save the delay time of any 48V-12V module after the first 48V-12V module.
可选地,所述延时控制模块为BMC。Optionally, the delay control module is a BMC.
本申请的实施例提供的技术方案可以包括以下有益效果:The technical solutions provided by the embodiments of the present application may include the following beneficial effects:
本申请提供一种PDB板,该PDB板中包括:N个并联连接的48V-12V模块和一个延时控制模块,其中任一48V-12V模块与延时控制模块之间通过PMBUS接口通信连接,任一48V-12V模块的输入端与PSU连接,任一48V-12V模块的输出端与主板连接。48V-12V模块用于将来自PSU的48V电压转换为12V电压,并传输至主板;延时控制模块用于在48V-12V模块的指定寄存器中设置延时时间,并根据延时时间,依次启动N个并联连接的48V-12V模块。该PDB板通过设置一延时控制模块,利用延时时间将前后相邻的两个48V-12V模块的开通时间错开,实现相邻两个48V-12V模块的分时启动,从而避免出现倒灌电流所导致的电流过冲现象,有利于提高PDB板供电的稳定性。其中,依次启动的前后两个48V-12V模块延时时间的差值相等,且差值>一个48V-12V模块的上电时间,这种差值设置方法,能够保证后一个48V-12V模块上电的时候,前一个48V-12V模块已经上电完毕。The application provides a PDB board, which includes: N 48V-12V modules connected in parallel and a delay control module, wherein any 48V-12V module is connected to the delay control module through a PMBUS interface communication, The input end of any 48V-12V module is connected to the PSU, and the output end of any 48V-12V module is connected to the motherboard. The 48V-12V module is used to convert the 48V voltage from the PSU to 12V voltage and transmit it to the main board; the delay control module is used to set the delay time in the designated register of the 48V-12V module, and start in sequence according to the delay time N 48V-12V modules connected in parallel. By setting a delay control module, the PDB board uses the delay time to stagger the turn-on time of two adjacent 48V-12V modules, so as to realize the time-sharing start of two adjacent 48V-12V modules, thereby avoiding the occurrence of backflow current The resulting current overshoot phenomenon is conducive to improving the stability of the power supply of the PDB board. Among them, the difference between the delay times of the two 48V-12V modules before and after starting in sequence is equal, and the difference is greater than the power-on time of one 48V-12V module. This method of setting the difference can ensure that the next 48V-12V module When powering on, the previous 48V-12V module has been powered on.
本实施例中延时控制模块采用BMC,由于本实施例中的48V-12V模块支持标准PMBUS协议,BMC不仅可以对48V-12V模块内部的指定寄存器配置延时时间,还可以对48V-12V模块的电源电压、功耗、温度以及报警信息等进行监控,有利于及时获取48V-12V模块的运行状态信息,从而进一步提高48V-12V模块运行的稳定性。In this embodiment, the delay control module adopts BMC. Since the 48V-12V module in this embodiment supports the standard PMBUS protocol, the BMC can not only configure the delay time for the specified register inside the 48V-12V module, but also configure the delay time for the 48V-12V module Monitoring of the power supply voltage, power consumption, temperature and alarm information, etc., is conducive to obtaining the operating status information of the 48V-12V module in time, thereby further improving the stability of the 48V-12V module operation.
本申请还提供一种PDB板的工作方法,该工作方法适用于以上所述的PDB板。该工作方法包括:首先通过多级并联的48V-12V模块获取来自PSU的48V电压,然后利用延时控制模块,依次在任一48V-12V模块的指定寄存器中配置当前48V-12V模块的延时时间,然后根据所配置的延时时间,依次启动多个并联连接的48V-12V模块,最终获取12V电压,最后将所获取的12V电压发送至主板。本实施例利用延时控制模块依次对每个48V-12V模块进行延时时间的配置,使得N个48V-12V模块的启动时间依次错开,即在启动多个48V-12V模块时,第一个48V-12V模块会先启动并输出稳定的电压,然后第二个48V-12V模块启动,输出稳定的电压,直到第N个48V-12V模块启动,输出稳定的电压。这种对48V-12V模块内部的指定寄存器设置延时时间的方法,能够避免相邻两个48V-12V模块在电压调频过程中由于压差所导致的电流倒灌问题,进而避免电流过冲现象,有利于提高PDB板输出电压的稳定性。The present application also provides a working method of a PDB board, which is applicable to the above-mentioned PDB board. The working method includes: first obtain the 48V voltage from the PSU through multi-stage parallel 48V-12V modules, and then use the delay control module to configure the delay time of the current 48V-12V module in the designated register of any 48V-12V module in turn , and then start multiple parallel-connected 48V-12V modules sequentially according to the configured delay time, finally obtain 12V voltage, and finally send the obtained 12V voltage to the main board. In this embodiment, the delay control module is used to configure the delay time of each 48V-12V module in turn, so that the startup time of N 48V-12V modules is staggered in turn, that is, when starting multiple 48V-12V modules, the first The 48V-12V module will start first and output a stable voltage, then the second 48V-12V module will start and output a stable voltage until the Nth 48V-12V module starts and outputs a stable voltage. This method of setting the delay time for the specified register inside the 48V-12V module can avoid the current backflow problem caused by the voltage difference between two adjacent 48V-12V modules during the voltage frequency modulation process, thereby avoiding the current overshoot phenomenon. It is beneficial to improve the stability of the output voltage of the PDB board.
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the application.
附图说明Description of drawings
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments consistent with the application and together with the description serve to explain the principles of the application.
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present application or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, for those of ordinary skill in the art, In other words, other drawings can also be obtained from these drawings on the premise of not paying creative work.
图1为本申请实施例所提供的一种PDB板的结构示意图;Fig. 1 is the structural representation of a kind of PDB board provided by the embodiment of the present application;
图2为本申请实施例中延时控制模块的工作原理示意图;Fig. 2 is a schematic diagram of the working principle of the delay control module in the embodiment of the present application;
图3为本申请实施例所提供的一种PDB板的工作方法的流程示意图。FIG. 3 is a schematic flowchart of a working method of a PDB board provided by an embodiment of the present application.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本申请中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。In order to enable those skilled in the art to better understand the technical solutions in the present application, the technical solutions in the embodiments of the present application will be clearly and completely described below in conjunction with the drawings in the embodiments of the present application. Obviously, the described The embodiments are only some of the embodiments of the present application, but not all of them. Based on the embodiments in this application, all other embodiments obtained by persons of ordinary skill in the art without creative efforts shall fall within the scope of protection of this application.
为了更好地理解本申请,下面结合附图来详细解释本申请的实施方式。In order to better understand the present application, the implementation manner of the present application will be explained in detail below in conjunction with the accompanying drawings.
实施例一Embodiment one
参见图1,图1为本申请实施例所提供的一种PDB板的结构示意图。由图1可知,本实施例中的PDB板主要包括:多个并联连接的48V-12V模块以及一个延时控制模块,这里多个并联连接的48V-12V模块可以记为N个48V-12V模块,N为自然数且N≥2,即:一个PDB板中至少包括2个48V-12V模块。其中,N个48V-12V模块中的任一48V-12V模块与延时控制模块之间通过PMBUS接口通信连接,任一48V-12V模块的输入端连接PSU,用于获取来自PSU的48V电压,任一48V-12V模块的输出端连接主板,用于将转换后的12V电压为主板上的CPU、内存以及硬盘等供电。Referring to FIG. 1 , FIG. 1 is a schematic structural diagram of a PDB board provided by an embodiment of the present application. As can be seen from Figure 1, the PDB board in this embodiment mainly includes: multiple parallel-connected 48V-12V modules and a delay control module, where multiple parallel-connected 48V-12V modules can be recorded as N 48V-12V modules , N is a natural number and N≥2, that is, one PDB board includes at least two 48V-12V modules. Among them, any 48V-12V module among the N 48V-12V modules is connected to the delay control module through the PMBUS interface, and the input terminal of any 48V-12V module is connected to the PSU to obtain the 48V voltage from the PSU. The output end of any 48V-12V module is connected to the main board, which is used to supply power to the CPU, memory and hard disk on the main board with the converted 12V voltage.
本实施例中48V-12V模块用于将来自PSU的48V电压进行转换,将其转换为12V电压,并将转换后的12V电压传输至主板。延时控制模块用于在48V-12V模块的指定寄存器中设置延时时间,并根据设置的延时时间依次启动N个并联连接的48V-12V模块。其中,依次启动的前后两个48V-12V模块延时时间的差值相等,且该差值>一个48V-12V模块的上电时间。In this embodiment, the 48V-12V module is used to convert the 48V voltage from the PSU into a 12V voltage, and transmit the converted 12V voltage to the main board. The delay control module is used to set the delay time in the designated register of the 48V-12V module, and sequentially start N 48V-12V modules connected in parallel according to the set delay time. Wherein, the difference between the delay times of the two 48V-12V modules started sequentially is equal, and the difference is greater than the power-on time of one 48V-12V module.
一个48V-12V模块的工作过程包括:上电过程和恒压输出过程,上电过程即电压转换过程,其对应上电时间,也就是一个48V-12V模块从0V升至12V的时间。上电时间也即一个48V-12V模块的开启时间,本实施例中开启时间的起始时刻为48V-12V模块的接入时刻,开启时间的终止时刻为48V-12V模块开始进行恒压输出的时刻。延时时间的差值为依次启动前后两个相邻的48V-12V模块的间隔时间,本实施例中多个48V-12V模块的延时时间成等差数列,且该差值>一个48V-12V模块的上电时间,从而确保前一个48V-12V模块上电完成后,再对后一个48V-12V模块上电,使得前后两个48V-12V模块的开启时间错开。因此,本实施例中延时控制模块的设置,能够有效避免相邻两个48V-12V模块在电压调频过程中由于压差导致的电流倒灌问题,进而提高输出电压的稳定性。The working process of a 48V-12V module includes: power-on process and constant voltage output process. The power-on process is the voltage conversion process, which corresponds to the power-on time, which is the time for a 48V-12V module to rise from 0V to 12V. The power-on time is also the turn-on time of a 48V-12V module. In this embodiment, the start time of the turn-on time is the connection time of the 48V-12V module, and the end time of the turn-on time is when the 48V-12V module starts to output constant voltage. time. The difference of the delay time is the interval time between two adjacent 48V-12V modules before and after starting in sequence. In this embodiment, the delay times of multiple 48V-12V modules form an arithmetic sequence, and the difference is greater than one 48V-12V module. The power-on time of the 12V module ensures that after the previous 48V-12V module is powered on, the next 48V-12V module is powered on, so that the power-on time of the two 48V-12V modules is staggered. Therefore, the setting of the delay control module in this embodiment can effectively avoid the current backflow problem caused by the voltage difference between two adjacent 48V-12V modules during the voltage frequency modulation process, thereby improving the stability of the output voltage.
以PDB板中包括两个48V-12V模块为例,本实施例中延时控制模块的工作原理可以参见图2。图2中横坐标为时间,单位为毫秒ms,纵坐标为电压幅度,单位为伏特。两个48V-12V模块分别为:模块1和模块2,其中,模块1的延时时间为60ms,模块2的延时时间为200ms。由图2可知,通过延时控制模块设置模块1的延时时间为60ms后,模块1会在服务器开机后经过60ms进入上电过程,也就是PSU开启后经过60ms进入上电过程,上电完毕进行恒压输出;模块2会在模块1会在服务器开机后200ms进入上电过程,上电完毕进行恒压输出。Taking the PDB board including two 48V-12V modules as an example, the working principle of the delay control module in this embodiment can be referred to in FIG. 2 . In Fig. 2, the abscissa is time, the unit is millisecond ms, and the ordinate is voltage amplitude, the unit is volt. The two 48V-12V modules are respectively: module 1 and module 2, where the delay time of module 1 is 60ms, and the delay time of module 2 is 200ms. It can be seen from Figure 2 that after setting the delay time of module 1 to 60ms through the delay control module, module 1 will enter the power-on process after 60 ms after the server is turned on, that is, it will enter the power-on process after 60 ms after the PSU is turned on, and the power-on is complete Perform constant voltage output; module 2 will enter the power-on process 200ms after module 1 starts the server, and will perform constant voltage output after power-on.
进一步地,本实施例中延时控制模块所配置的延时时间的差值为140ms,该差值根据模块的上电时间来设定,且该差值大于上电时间。通常48V-12V模块的上电时间为100ms,本实施例取差值140ms,能够确保前后两个48V-12V模块有序上电,还能够预留40ms的buffer(缓冲时间),有利于进一步提高48V-12V模块上电的安全性和稳定性。Further, in this embodiment, the difference of the delay time configured by the delay control module is 140 ms, and the difference is set according to the power-on time of the module, and the difference is greater than the power-on time. Usually, the power-on time of the 48V-12V module is 100ms. In this embodiment, the difference is 140ms, which can ensure that the two 48V-12V modules are powered on in an orderly manner, and a buffer (buffer time) of 40ms can also be reserved, which is conducive to further improvement. The safety and stability of 48V-12V module power-on.
本实施例中延时控制模块主要包括:第一解锁单元、设置单元、写入单元、第二解锁单元以及保存单元五个部分。The delay control module in this embodiment mainly includes five parts: a first unlocking unit, a setting unit, a writing unit, a second unlocking unit and a saving unit.
其中,第一解锁单元用于发送第一写保护解锁命令至48V-12V模块的指定寄存器。48V-12V模块的指定寄存器接收到第一写保护解锁命令之后,设置单元和写入单元即可对48V-12V模块内的指定寄存器进行写操作。Wherein, the first unlocking unit is used to send the first write protection unlocking command to the designated register of the 48V-12V module. After the designated register of the 48V-12V module receives the first write protection unlocking command, the setting unit and the writing unit can write to the designated register in the 48V-12V module.
设置单元用于在48V-12V模块的指定寄存器内设置延时时间。其中,第一个48V-12V模块的延时时间设置为T1,第N个48V-12V模块的延时时间为:TN=T1+(N-1)*Δt,N为PDB板中48V-12V模块的总数量,TN为第N个48V-12V模块的延时时间,Δt为前后两个48V-12V模块延时时间的差值。以PDB板中包括三个并联连接的48V-12V模块为例,第一个48V-12V模块的延时时间设置为60ms,延时时间的差值预设为140ms,根据TN=T1+(N-1)*Δt,第二个48V-12V模块的延时时间为200ms,第三个48V-12V模块的延时时间为340ms。The setting unit is used to set the delay time in the designated register of the 48V-12V module. Among them, the delay time of the first 48V-12V module is set to T 1 , and the delay time of the Nth 48V-12V module is: T N =T 1 +(N-1)*Δt, N is the PDB board The total number of 48V-12V modules, T N is the delay time of the Nth 48V-12V module, Δt is the difference between the delay time of the two 48V-12V modules before and after. Take three 48V-12V modules connected in parallel in the PDB board as an example, the delay time of the first 48V-12V module is set to 60ms, and the difference of the delay time is preset to 140ms, according to T N = T 1 + (N-1)*Δt, the delay time of the second 48V-12V module is 200ms, and the delay time of the third 48V-12V module is 340ms.
写入单元用于将设置单元所设置的延时时间写入48V-12V模块的指定寄存器中。第二解锁单元用于发送第二写保护解锁命令至48V-12V模块的flash,48V-12V模块内部有两部分存储区域:一个是RAM,另一个是flash。RAM为易失性存储器,flash为非易失性存储器。通过第二解锁单元发送第二写保护解锁命令,能够将写入单元写入的参数从RAM存入flash,实现永久存储。The writing unit is used to write the delay time set by the setting unit into the designated register of the 48V-12V module. The second unlocking unit is used to send the second write protection unlocking command to the flash of the 48V-12V module. There are two storage areas inside the 48V-12V module: one is RAM and the other is flash. RAM is a volatile memory, and flash is a non-volatile memory. By sending the second write protection unlock command through the second unlocking unit, the parameters written by the writing unit can be stored in the flash from the RAM to realize permanent storage.
保存单元用于保存延时时间,以便于根据该延时时间依次启动N个并联连接的48-12V模块。The storage unit is used for storing the delay time, so as to sequentially start N 48-12V modules connected in parallel according to the delay time.
进一步地,本实施例中的延时控制模块采用一BMC来实现,BMC通过PMBUS接口分别与任一48V-12V模块连接。BMC不仅可以对48V-12V模块内部的指定寄存器配置延时时间,还可以对48V-12V模块的电源电压、功耗、温度以及报警信息等进行监控,有利于及时获取48V-12V模块的运行状态信息,从而进一步提高48V-12V模块运行的稳定性。Further, the delay control module in this embodiment is realized by a BMC, and the BMC is respectively connected to any 48V-12V module through the PMBUS interface. BMC can not only configure the delay time for the specified register inside the 48V-12V module, but also monitor the power supply voltage, power consumption, temperature and alarm information of the 48V-12V module, which is conducive to timely acquisition of the operating status of the 48V-12V module information, thereby further improving the stability of the 48V-12V module operation.
需要注意的是,本实施例中48V-12V模块支持标准PMBUS协议。PMBUS协议是一种用于电源管理的协议,由于本实施例中48V-12V模块支持标准PMBUS协议,48V-12V模块通过PMBUS协议,可以非常方便地读取48V-12V模块的电源电压、功耗、温度以及报警信息等。It should be noted that the 48V-12V module in this embodiment supports the standard PMBUS protocol. The PMBUS protocol is a protocol for power management. Since the 48V-12V module supports the standard PMBUS protocol in this embodiment, the 48V-12V module can easily read the power supply voltage and power consumption of the 48V-12V module through the PMBUS protocol. , temperature and alarm information, etc.
实施例二Embodiment two
在图1和图2所示实施例的基础之上参见图3,图3为本申请实施例所提供的一种PDB板的工作方法的流程示意图。由图3可知,本实施例中PDB板的工作方法包括如下步骤:Referring to FIG. 3 on the basis of the embodiments shown in FIG. 1 and FIG. 2 , FIG. 3 is a schematic flowchart of a working method of a PDB board provided by an embodiment of the present application. As can be seen from Figure 3, the working method of the PDB board in the present embodiment comprises the following steps:
S1:获取来自PSU的48V电压。S1: Get 48V from PSU.
即:多个并联连接的48V-12V模块均获取来自PSU的48V电压。That is: Multiple 48V-12V modules connected in parallel all get 48V from the PSU.
S2:利用延时控制模块,依次在任一48V-12V模块的指定寄存器中配置延时时间。S2: Use the delay control module to sequentially configure the delay time in the designated register of any 48V-12V module.
其中,相邻的前后两个48V-12V模块延时时间的差值相等,且差值>一个48V-12V模块的上电时间。本实施例中多个并联连接的48V-12V模块的延时时间成等差数列关系。Wherein, the difference between the delay times of two adjacent 48V-12V modules is equal, and the difference is greater than the power-on time of one 48V-12V module. In this embodiment, the delay times of multiple 48V-12V modules connected in parallel are in an arithmetic sequence relationship.
具体地,根据对第一个48V-12V模块和其余N-1个48V-12V模块的延时时间的配置方法的不同,步骤S2又包括如下过程:Specifically, according to the different configuration methods for the delay time of the first 48V-12V module and the remaining N-1 48V-12V modules, step S2 further includes the following process:
S21:利用延时控制模块,对第一个48V-12V模块的指定寄存器配置延时时间。S21: Use the delay control module to configure the delay time for the designated register of the first 48V-12V module.
具体地,步骤S21包括:Specifically, step S21 includes:
S211:延时控制模块发送第一写保护解锁命令至第一个48V-12V模块的指定寄存器。S211: The delay control module sends a first write protection unlock command to a designated register of the first 48V-12V module.
第一个48V-12V模块的指定寄存器获取到第一写保护解锁命令之后,即可执行步骤S212:延时控制模块向第一个48V-12V模块的指定寄存器中写入第一个48-12V模块的延时时间。本实施例中第一个48V-12V模块的延时时间,可以根据服务器系统及上电时序要求的不同进行设置,而不必进行计算,然后直接将预设的延时时间写入第一个48V-12V模块的指定寄存器中。由于整个服务器系统中包括多个板卡,不同的板卡之间存在一定的上电时序关系,本实施例通过控制第一个模块的延时时间,能够有效提高整个服务器板卡上电时序的准确性,从而提高服务器系统的稳定性。After the designated register of the first 48V-12V module obtains the first write protection unlock command, step S212 can be executed: the delay control module writes the first 48-12V to the designated register of the first 48V-12V module The delay time of the module. The delay time of the first 48V-12V module in this embodiment can be set according to the requirements of the server system and power-on sequence without calculation, and then directly write the preset delay time into the first 48V In the designated register of -12V module. Since the entire server system includes multiple boards, and there is a certain power-on sequence relationship between different boards, this embodiment can effectively improve the power-on timing of the entire server board by controlling the delay time of the first module. Accuracy, thereby improving the stability of the server system.
S213:延时控制模块发送第二写保护解锁命令至第一个48V-12V模块的flash。S213: The delay control module sends a second write protection unlock command to the flash of the first 48V-12V module.
Flash获取到第二写保护解锁命令之后,即可对预设的第一个48V-12V模块的延时时间进行保存。After the Flash obtains the second write protection unlock command, it can save the preset delay time of the first 48V-12V module.
延时控制模块向第一个48V-12V模块所发送的所有配置命令执行完毕后,执行步骤S214:保存第一个48V-12V模块的延时时间。After all configuration commands sent by the delay control module to the first 48V-12V module are executed, step S214 is executed: saving the delay time of the first 48V-12V module.
对第一个48V-12V模块的延时时间进行保存后,便于后续根据不同48V-12V模块的延时时间,依次有序启动N个48V-12V模块,从而确保所有并联连接的48V-12V模块的启动时间错开,避免发生电流过冲现象,有利于提高PDB板输出电压的稳定性。After saving the delay time of the first 48V-12V module, it is convenient to start N 48V-12V modules sequentially according to the delay time of different 48V-12V modules, so as to ensure that all 48V-12V modules connected in parallel The starting time of the PDB board is staggered to avoid the phenomenon of current overshoot, which is conducive to improving the stability of the output voltage of the PDB board.
S22:利用延时控制模块,依次对第一个48V-12V模块之后的48V-12V模块的指定寄存器配置相应的延时时间。S22: Using the delay control module, sequentially configure the corresponding delay time for the designated registers of the 48V-12V modules after the first 48V-12V module.
具体地,步骤S22包括:Specifically, step S22 includes:
S221:延时控制模块发送第一写保护解锁命令至第一个48V-12V模块之后的任一48V-12V模块的指定寄存器。S221: The delay control module sends a first write protection unlock command to a designated register of any 48V-12V module after the first 48V-12V module.
S222:根据公式TN=T1+(N-1)*Δt,依次计算第一个48V-12V模块之后的48V-12V模块的延时时间,其中,N为PDB板中48V-12V模块的总数量,T1为第一个48V-12V模块的延时时间,TN为第N个48V-12V模块的延时时间,Δt为前后两个48V-12V模块延时时间的差值。S222: According to the formula T N =T 1 +(N-1)*Δt, calculate the delay time of the 48V-12V module after the first 48V-12V module sequentially, wherein, N is the time delay of the 48V-12V module in the PDB board The total quantity, T 1 is the delay time of the first 48V-12V module, T N is the delay time of the Nth 48V-12V module, Δt is the difference between the delay time of the two 48V-12V modules before and after.
S223:根据计算得出的第一个48V-12V模块之后的任一48V-12V模块的延时时间,延时控制模块向第一个48V-12V模块之后的任一48V-12V模块的指定寄存器中写入相应的开通时间。S223: According to the calculated delay time of any 48V-12V module after the first 48V-12V module, the delay control module sends the specified register of any 48V-12V module after the first 48V-12V module Write the corresponding opening time in.
S224:延时控制模块发送第二写保护解锁命令至第一个48V-12V模块之后的任一48V-12V模块的flash。S224: The delay control module sends a second write protection unlock command to the flash of any 48V-12V module after the first 48V-12V module.
S225:保存第一个48V-12V模块之后的任一48V-12V模块的延时时间。S225: Save the delay time of any 48V-12V module after the first 48V-12V module.
本实施例中延时控制模块对第一个48V-12V模块之后的N-1个48V-12V模块进行延时时间配置的方法,是按照模块依次配置,也就是采用以上步骤S221-S225配置完第二个48V-12V模块之后,再采用以上步骤S221-S225配置48V-12V模块,直到N个48V-12V模块全部配置完毕为止。In this embodiment, the delay control module configures the delay time of the N-1 48V-12V modules after the first 48V-12V module, which is configured in sequence according to the modules, that is, the above steps S221-S225 are used to complete the configuration After the second 48V-12V module, use the above steps S221-S225 to configure the 48V-12V module until all the N 48V-12V modules are configured.
以上步骤S221-S225的原理与步骤S211-214基本相同,只是多出步骤S223,需要先计算当前正在配置的48V-12V模块的延时时间,再进行后续延时时间的写入步骤。The principles of steps S221-S225 above are basically the same as steps S211-214, except that step S223 is added, and the delay time of the 48V-12V module currently being configured needs to be calculated first, and then the subsequent delay time writing step is performed.
继续参见图3可知,利用延时控制模块依次在任一48V-12V模块的指定寄存器中配置延时时间之后,执行步骤S3:根据延时时间,依次启动N个并联连接的48V-12V模块,获取12V电压。Continuing to refer to Figure 3, we can see that after using the delay control module to sequentially configure the delay time in the designated register of any 48V-12V module, perform step S3: according to the delay time, sequentially start N 48V-12V modules connected in parallel to obtain 12V voltage.
根由于多个并联48V-12V模块的延时时间不同,执行步骤S3时即可实现分时启动,从而有效避免电流倒灌。Since the delay times of multiple parallel-connected 48V-12V modules are different, time-sharing startup can be realized when step S3 is executed, thereby effectively avoiding current backflow.
获取到12V电压后,执行步骤S4:将12V电压发送至主板。After the 12V voltage is obtained, step S4 is performed: sending the 12V voltage to the main board.
本实施例中未详细描述的部分可以参照图1-图2所示的实施例一,两个实施例之间可以互相参照,在此不再赘述。For parts not described in detail in this embodiment, reference may be made to Embodiment 1 shown in FIGS. 1-2 , and the two embodiments may refer to each other, so details are not repeated here.
以上所述仅是本申请的具体实施方式,使本领域技术人员能够理解或实现本申请。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above descriptions are only specific implementation manners of the present application, so that those skilled in the art can understand or implement the present application. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the application. Therefore, the present application will not be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910767423.9A CN110618742B (en) | 2019-08-20 | 2019-08-20 | PDB board and working method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910767423.9A CN110618742B (en) | 2019-08-20 | 2019-08-20 | PDB board and working method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110618742A true CN110618742A (en) | 2019-12-27 |
CN110618742B CN110618742B (en) | 2022-02-18 |
Family
ID=68922413
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910767423.9A Active CN110618742B (en) | 2019-08-20 | 2019-08-20 | PDB board and working method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110618742B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111740405A (en) * | 2020-05-29 | 2020-10-02 | 科华恒盛股份有限公司 | Starting control method, system and device of electrical equipment |
CN115061789A (en) * | 2022-06-09 | 2022-09-16 | 海光信息技术股份有限公司 | Transient current control method and related device |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060242462A1 (en) * | 2005-04-22 | 2006-10-26 | Dell Products L.P. | Power supply control in a server system |
CN101369136A (en) * | 2008-09-25 | 2009-02-18 | 浪潮电子信息产业股份有限公司 | A power distribution unit that can be powered on in time |
US20120072738A1 (en) * | 2010-09-21 | 2012-03-22 | Oracle International Corporation | Reducing latency when activating a power supply unit |
CN102749856A (en) * | 2012-05-30 | 2012-10-24 | 曙光信息产业(北京)有限公司 | Power-on sequential control circuit and method |
CN103064497A (en) * | 2011-10-21 | 2013-04-24 | 研祥智能科技股份有限公司 | Power source delayed power supply device, network main board and network host |
CN103728896A (en) * | 2012-10-10 | 2014-04-16 | 杭州华三通信技术有限公司 | Method and device for controlling power-on sequence of multiple channels of power supplies |
CN104281244A (en) * | 2013-07-04 | 2015-01-14 | 鸿富锦精密工业(深圳)有限公司 | Time-delay device and time-delay circuits |
CN104571442A (en) * | 2015-01-26 | 2015-04-29 | 浪潮电子信息产业股份有限公司 | Power platform-based memory board POWER-on time sequence control method |
CN104570774A (en) * | 2013-10-15 | 2015-04-29 | 深圳迈瑞生物医疗电子股份有限公司 | Method and system for powering on and off multiple electrical units |
CN106125818A (en) * | 2016-08-24 | 2016-11-16 | 泰利美信(苏州)医疗科技有限公司 | A kind of power-supply circuit and control method thereof |
CN107918477A (en) * | 2017-11-15 | 2018-04-17 | 曙光信息产业(北京)有限公司 | Whole machine cabinet power supplying system of server |
CN108663969A (en) * | 2018-05-15 | 2018-10-16 | 郑州云海信息技术有限公司 | A kind of SCM Based power panel sequential time delay module and method |
CN109885151A (en) * | 2019-01-31 | 2019-06-14 | 郑州云海信息技术有限公司 | A kind of server power monitoring method and system |
-
2019
- 2019-08-20 CN CN201910767423.9A patent/CN110618742B/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060242462A1 (en) * | 2005-04-22 | 2006-10-26 | Dell Products L.P. | Power supply control in a server system |
CN101369136A (en) * | 2008-09-25 | 2009-02-18 | 浪潮电子信息产业股份有限公司 | A power distribution unit that can be powered on in time |
US20120072738A1 (en) * | 2010-09-21 | 2012-03-22 | Oracle International Corporation | Reducing latency when activating a power supply unit |
CN103064497A (en) * | 2011-10-21 | 2013-04-24 | 研祥智能科技股份有限公司 | Power source delayed power supply device, network main board and network host |
CN102749856A (en) * | 2012-05-30 | 2012-10-24 | 曙光信息产业(北京)有限公司 | Power-on sequential control circuit and method |
CN103728896A (en) * | 2012-10-10 | 2014-04-16 | 杭州华三通信技术有限公司 | Method and device for controlling power-on sequence of multiple channels of power supplies |
CN104281244A (en) * | 2013-07-04 | 2015-01-14 | 鸿富锦精密工业(深圳)有限公司 | Time-delay device and time-delay circuits |
CN104570774A (en) * | 2013-10-15 | 2015-04-29 | 深圳迈瑞生物医疗电子股份有限公司 | Method and system for powering on and off multiple electrical units |
CN104571442A (en) * | 2015-01-26 | 2015-04-29 | 浪潮电子信息产业股份有限公司 | Power platform-based memory board POWER-on time sequence control method |
CN106125818A (en) * | 2016-08-24 | 2016-11-16 | 泰利美信(苏州)医疗科技有限公司 | A kind of power-supply circuit and control method thereof |
CN107918477A (en) * | 2017-11-15 | 2018-04-17 | 曙光信息产业(北京)有限公司 | Whole machine cabinet power supplying system of server |
CN108663969A (en) * | 2018-05-15 | 2018-10-16 | 郑州云海信息技术有限公司 | A kind of SCM Based power panel sequential time delay module and method |
CN109885151A (en) * | 2019-01-31 | 2019-06-14 | 郑州云海信息技术有限公司 | A kind of server power monitoring method and system |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111740405A (en) * | 2020-05-29 | 2020-10-02 | 科华恒盛股份有限公司 | Starting control method, system and device of electrical equipment |
CN115061789A (en) * | 2022-06-09 | 2022-09-16 | 海光信息技术股份有限公司 | Transient current control method and related device |
CN115061789B (en) * | 2022-06-09 | 2024-02-09 | 海光信息技术股份有限公司 | Transient current control method and related devices |
Also Published As
Publication number | Publication date |
---|---|
CN110618742B (en) | 2022-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11385985B2 (en) | Server power consumption management method and device | |
US8316255B2 (en) | Method and apparatus for responding to signals from a disabling device while in a disabled state | |
CN104571442A (en) | Power platform-based memory board POWER-on time sequence control method | |
TWI574148B (en) | Embedded controller for power-saving and method thereof | |
CN102201699A (en) | Distributed power supply system with digital power supply manager for providing digital closed loop power control | |
US9658667B2 (en) | Power supply system for an information handling system | |
US9395799B2 (en) | Power management techniques for USB interfaces | |
CN100565428C (en) | Computing machine and control method thereof | |
CN107346170A (en) | A kind of FPGA Heterogeneous Computings acceleration system and method | |
CN110618742A (en) | PDB board and working method thereof | |
US20140281634A1 (en) | Controlling power supply unit power consumption during idle state | |
JP2009510580A (en) | Power saving | |
CN109613970B (en) | Low-power-consumption processing method based on FPGA and DSP framework | |
CN111741518A (en) | WiFi chip circuit and WiFi device | |
TW201416844A (en) | Electronic system and power management method | |
JP2003054091A5 (en) | ||
CN113778210B (en) | MCU-based ACPI management method, system and equipment | |
CN105426334A (en) | Parallel type large-scale USB extension device, working method and system | |
CN106292987A (en) | A kind of processor power-off sequential control system and method | |
CN103186223B (en) | Detection method of computer device and external sub-board | |
CN116954339A (en) | Method and device for controlling power-on time sequence of server, electronic equipment and storage medium | |
CN1280688C (en) | Power management system for computer systems | |
CN115981450A (en) | Power supply control method, power supply management chip and storage medium | |
CN103984543A (en) | Method for implementing standby, hibernation and wake-up on domestic FeiTeng processor | |
CN100437474C (en) | System and method for regulating CPU frequency |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |