CN110616408A - 基于二维材料的多层金属纳米结构的制备方法 - Google Patents

基于二维材料的多层金属纳米结构的制备方法 Download PDF

Info

Publication number
CN110616408A
CN110616408A CN201910879303.8A CN201910879303A CN110616408A CN 110616408 A CN110616408 A CN 110616408A CN 201910879303 A CN201910879303 A CN 201910879303A CN 110616408 A CN110616408 A CN 110616408A
Authority
CN
China
Prior art keywords
metal
layer
dimensional material
aao
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910879303.8A
Other languages
English (en)
Other versions
CN110616408B (zh
Inventor
解意洋
胡良臣
王秋华
庞伟
董毅博
徐晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201910879303.8A priority Critical patent/CN110616408B/zh
Publication of CN110616408A publication Critical patent/CN110616408A/zh
Application granted granted Critical
Publication of CN110616408B publication Critical patent/CN110616408B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0005Separation of the coating from the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • C23C14/588Removal of material by mechanical treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了基于二维材料的多层金属纳米结构的制备方法,属于新型纳米结构加工领域。其制备过程主要分为三步:第一步:将超薄AAO模板转移到亲水处理后的衬底上。第二步:利用溅射的方法将金属均匀沉积到AAO模板孔洞中。第三步:用胶带粘掉衬底上的AAO模板并在上面转移一层h‑BN,在h‑BN上再次转移一层超薄AAO模板。第四步:将衬底放入溅射设备中再次沉积一层金属,并去除掉AAO模板,重复第三、四步工艺进行下一层纳米颗粒沉积。本发明工艺简单、成本较低;工艺重复性强,工艺参数好控制。可以大面积制备具有周期性的多层金属纳米结构阵列。

Description

基于二维材料的多层金属纳米结构的制备方法
技术领域
本发明涉及一种大规模制备周期性多层金属纳米结构的方法,属于新型纳米加工技术领域,可应用于生化传感、光电探测等器件中。
背景技术
金属纳米结构独特的纳米光学特性,使它在生化传感、光电器件等应用领域有着至关重要的作用。金属内部的自由电子在一定的外界光场作用下会产生表面等离子体共振,可以极大地增强纳米结构周围的电磁场,并使得金属纳米结构对附近的折射率变化十分敏感。多层金属结构由于其更小的金属纳米结构间距以及单位面积内更大的结构密度使得电磁场增强更加显著,对增强光吸收、生化传感等诸多领域有着重要作用。当今制备金属纳米结构的方法如纳米压印、电子束曝光等只是加工单层结构,结构密度较小且无法加工亚纳米级间隙。因此,我们发明了一种利用叠加的方法加工亚纳米级间隙、大密度的周期性纳米金属结构的方法。主要是利用阳极氧化铝薄膜(AAO)掩膜、PS球光刻、电子束曝光等技术制备单层周期性金属纳米结构并将单层结构叠加在一起,以六方氮化硼(h-BN)等二维材料做为上下两层之间的隔离层制备多层金属纳米结构。由于二维材料厚度小于1纳米,因此可以保证上下层之间金属纳米结构保持非常小的间距的同时不会产生接触,同时多层结构极大增加了单位面积内的纳米结构的密度,使得电磁场的增加更为显著。
发明内容
本发明的目的在于提供一种简单低成本的制备多层金属纳米结构的方法。该方法使用AAO模板等方法制备单层金属纳米结构并进行层层叠加,利用h-BN等二维材料做每两层金属纳米结构之间的隔离层。这种方法不仅工艺简单而且由于h-BN的厚度只有不到1纳米,可以制备密度高、金属结构间隙小的周期性多层金属纳米结构结构。
本发明采用的工艺方法其特征在于:以使用AAO掩膜制备金属纳米结构为例,首先将以PMMA做支撑层的超薄AAO模板浸泡在丙酮溶液中祛除PMMA;然后利用刚性衬底将AAO转移到水中清洗干净,用衬底捞起AAO模板并晾干;将样品放入溅射设备中溅射所需金属后祛除AAO模板;然后在金属结构上转移一层h-BN;根据所需的层数重复以上步骤。其中,
①刚性衬底为Si片或石英片。
②用于溅射金属结构的AAO模板孔的深径比最好大于1:5,金属厚度要小于孔的深度。
③去除第一层做好金属纳米结构的AAO模板时可以使用胶带撕下,由于金属结构厚度小于AAO模板孔径深度,所以金属纳米结构不会掉落。但在去除上层AAO模板是为防止胶带对h-BN和金属纳米结构的破坏性可以使用氢氧化钠或磷酸溶液去除AAO模板。
基于二维材料的多层金属纳米结构的制备方法,利用AAO掩膜制备双层金属结构,其特征在于:该方法包括如下步骤:步骤1在衬底上转移一层AAO模板做掩膜;步骤2通过在AAO模板上生长一层金属薄膜;步骤3剥离金属薄膜后进行快速退火得到周期性排列的纳米级金属纳米颗粒;步骤4在金属纳米颗粒上转移一层h-BN做隔离层;步骤5在六方氮化硼表面重新转移一层AAO模板并重复步骤2、步骤3得到第二层的金属纳米颗粒层。由于双通AAO模板的孔为周期性阵列,因此通过溅射金属薄膜剥离后依附在衬底上的纳米级金属颗粒为周期性金属阵列。制备单层金属结构的方法使AAO掩模、PS球光刻或电子束光刻。由于AAO模板不能和衬底完全紧密的贴在一起,溅射金属后在孔壁的地步会产生很薄的金属薄膜,利用快速退火使底层金属薄膜团聚得到独立的周期性金属阵列。用h-BN为隔离层,h-BN为二维绝缘材料,厚度小于1nm,使用h-BN将上下层金属结构隔离且双层金属间的间距非常小为亚纳米级间隙,更有效的增加电磁场强度。作为隔离层的二维材料为h-BN、石墨烯或二硫化钼。所使用的衬底是硅衬底,或石英蓝宝石刚性衬底,或者是PDMS柔性衬底。利用AAO制备金属纳米颗粒层数能够按照要求累加。金属生长的工艺是电子束蒸发,或者是磁控溅射。
本发明的创新之处在于利用AAO薄膜做掩膜,二维材料h-BN做隔离层制备多层金属纳米结构的方法。相比于单层金属结构,多层金属纳米结构对外部光场的反应更强,更高密度、间隙小的金属纳米结构会产生更加强烈表面等离子体共振,这种现象在提高生化传感器件的敏感度以及光电器件的光利用效率等方面有着重要作用。
附图说明
图1:AAO模板转移到衬底后的示意图
图2:溅射金属薄膜并剥离AAO后的示意图图
图3:在底层金属结构上转移一层六方氮化硼的俯视图。
图4:转移第二层AAO模板后的示意图。
图5:在h-BN上再次溅射剥离得到上层金属结构示意图。
图中:1、制作金属结构的衬底 2、500纳米厚的AAO薄膜 3、金属纳米颗粒结构 4、h-BN。
具体实施方式
利用本发明提出的利用AAO模板制备多层亚纳米间隙金属纳米结构的方法,具体实施方式如下所述:
S1、将超薄AAO模板放入丙酮溶液中浸泡15min用来去除PMMA支撑层。
S2、将Si片放入硫酸双氧水溶液中加热2min做亲水处理,防止AAO模板粘在Si片上。
S3、用转移Si片将AAO薄膜转移到清水中清洗掉残余的丙酮,而且由于水的表面张力会使AAO薄膜漂浮在水面上便于往衬底上转移。
S4、用衬底从水中捞起AAO薄膜并晾干后放入金属溅射设备中溅射金属薄膜。
S5、用胶带粘住AAO薄膜撕掉,由于金属厚度远小于AAO孔的深度,所以胶带不会破坏衬底上的金结构。
S6、将h-BN转移到去除AAO薄膜后的带有金属结构的衬底上。
S7、第二层金属结构制备重复S4-S6,在制备上层金属结构时为防止胶带破坏下层金属结构,可使用NaOH溶液去除AAO薄膜。

Claims (9)

1.基于二维材料的多层金属纳米结构的制备方法,利用AAO掩膜制备双层金属结构,其特征在于:该方法包括如下步骤:步骤1在衬底上转移一层AAO模板做掩膜;步骤2通过在AAO模板上生长一层金属薄膜;步骤3剥离金属薄膜后进行快速退火得到周期性排列的纳米级金属纳米颗粒;步骤4在金属纳米颗粒上转移一层h-BN做隔离层;步骤5在六方氮化硼表面重新转移一层AAO模板并重复步骤2、步骤3得到第二层的金属纳米颗粒层。
2.根据权利要求1所述的基于二维材料的多层金属纳米结构的制备方法,其特征在于:由于双通AAO模板的孔为周期性阵列,因此通过溅射金属薄膜剥离后依附在衬底上的纳米级金属颗粒为周期性金属阵列。
3.根据权利要求1所述的基于二维材料的多层金属纳米结构的制备方法,其特征在于:制备单层金属结构的方法使AAO掩模、PS球光刻或电子束光刻。
4.根据权利要求1所述的基于二维材料的多层金属纳米结构的制备方法,其特征在于:由于AAO模板不能和衬底完全紧密的贴在一起,溅射金属后在孔壁的地步会产生很薄的金属薄膜,利用快速退火使底层金属薄膜团聚得到独立的周期性金属阵列。
5.根据权利要求1所述的基于二维材料的多层金属纳米结构的制备方法,其特征在于:用h-BN为隔离层,h-BN为二维绝缘材料,厚度小于1nm,使用h-BN将上下层金属结构隔离且双层金属间的间距非常小为亚纳米级间隙,更有效的增加电磁场强度。
6.根据权利要求1所述的基于二维材料的多层金属纳米结构的制备方法,其特征在于:作为隔离层的二维材料为h-BN、石墨烯或二硫化钼。
7.根据权利要求1所述的基于二维材料的多层金属纳米结构的制备方法,其特征在于:所使用的衬底是硅衬底,或石英蓝宝石刚性衬底,或者是PDMS柔性衬底。
8.根据权利要求1所述的基于二维材料的多层金属纳米结构的制备方法,其特征在于:利用AAO制备金属纳米颗粒层数能够按照要求累加。
9.根据权利要求1所述的基于二维材料的多层金属纳米结构的制备方法,其特征在于:金属生长的工艺是电子束蒸发,或者是磁控溅射。
CN201910879303.8A 2019-09-18 2019-09-18 基于二维材料的多层金属纳米结构的制备方法 Active CN110616408B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910879303.8A CN110616408B (zh) 2019-09-18 2019-09-18 基于二维材料的多层金属纳米结构的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910879303.8A CN110616408B (zh) 2019-09-18 2019-09-18 基于二维材料的多层金属纳米结构的制备方法

Publications (2)

Publication Number Publication Date
CN110616408A true CN110616408A (zh) 2019-12-27
CN110616408B CN110616408B (zh) 2022-05-17

Family

ID=68923196

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910879303.8A Active CN110616408B (zh) 2019-09-18 2019-09-18 基于二维材料的多层金属纳米结构的制备方法

Country Status (1)

Country Link
CN (1) CN110616408B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111755579A (zh) * 2020-06-15 2020-10-09 西安电子科技大学 一种氧化锌基发光二极管及制造方法
CN114606466A (zh) * 2022-02-24 2022-06-10 北京工业大学 一种改善低成本可集成且大规模制备金属纳米颗粒方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101306795A (zh) * 2008-06-13 2008-11-19 中国科学院光电技术研究所 一种利用aao模板制作光波段人工复合结构材料
CN101325241A (zh) * 2007-06-12 2008-12-17 富士胶片株式会社 复合压电材料、超声波探头、超声波内窥镜和超声波诊断设备
CN102747320A (zh) * 2012-07-31 2012-10-24 武汉大学 贵金属纳米颗粒阵列的制备方法
CN104630772A (zh) * 2013-11-12 2015-05-20 中国科学院物理研究所 多层垛积金属纳米球阵列及其制备方法
CN108292694A (zh) * 2015-07-13 2018-07-17 科莱约纳诺公司 纳米线/纳米锥形状的发光二极管及光检测器
CN108417475A (zh) * 2018-01-27 2018-08-17 安徽师范大学 一种基于界面诱导生长的金属纳米结构阵列的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101325241A (zh) * 2007-06-12 2008-12-17 富士胶片株式会社 复合压电材料、超声波探头、超声波内窥镜和超声波诊断设备
CN101306795A (zh) * 2008-06-13 2008-11-19 中国科学院光电技术研究所 一种利用aao模板制作光波段人工复合结构材料
CN102747320A (zh) * 2012-07-31 2012-10-24 武汉大学 贵金属纳米颗粒阵列的制备方法
CN104630772A (zh) * 2013-11-12 2015-05-20 中国科学院物理研究所 多层垛积金属纳米球阵列及其制备方法
CN108292694A (zh) * 2015-07-13 2018-07-17 科莱约纳诺公司 纳米线/纳米锥形状的发光二极管及光检测器
CN108417475A (zh) * 2018-01-27 2018-08-17 安徽师范大学 一种基于界面诱导生长的金属纳米结构阵列的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111755579A (zh) * 2020-06-15 2020-10-09 西安电子科技大学 一种氧化锌基发光二极管及制造方法
CN114606466A (zh) * 2022-02-24 2022-06-10 北京工业大学 一种改善低成本可集成且大规模制备金属纳米颗粒方法

Also Published As

Publication number Publication date
CN110616408B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
Liang et al. Self‐assembly of colloidal spheres toward fabrication of hierarchical and periodic nanostructures for technological applications
Schranghamer et al. Review and comparison of layer transfer methods for two-dimensional materials for emerging applications
KR102513763B1 (ko) 그래핀의 제조 및 전사 방법
KR102109380B1 (ko) 절연기판상에 그래핀 단일층을 제조하는 방법
CN103868909B (zh) 蘑菇形阵列表面增强拉曼光谱活性基底及制备方法
CN105271103B (zh) 一种纳米结构阵列及其制备方法和用途
CN110616408B (zh) 基于二维材料的多层金属纳米结构的制备方法
CN108374153B (zh) 一种磁控溅射生长大面积、高度有序纳米颗粒的方法
CN102157642A (zh) 一种基于纳米压印的高出光效率led的制备方法
CN109795979B (zh) 具有内嵌金属环的纳米孔阵列结构的制备方法
JP2016055288A (ja) 選択的ナノ粒子組立システム及び方法
KR101878600B1 (ko) 광학 바이오센서를 위한 주기적 금속 나노 패턴의 제조 방법
Zhang et al. Wafer‐Scale Highly Ordered Anodic Aluminum Oxide by Soft Nanoimprinting Lithography for Optoelectronics Light Management
Asoh et al. Site-selective chemical etching of silicon using patterned silver catalyst
TW201940410A (zh) 利用奈米碳管膜轉移二維奈米材料的方法
CN110174818A (zh) 基板的纳米压印制备方法及其基板
Liu et al. Fabrication and characterization of highly ordered Au nanocone array-patterned glass with enhanced SERS and hydrophobicity
Jia et al. Ordered silicon nanowire arrays prepared by an improved nanospheres self-assembly in combination with Ag-assisted wet chemical etching
CN106220237A (zh) 一种单层有序二氧化硅纳米球阵列的制备方法
WO2011095217A1 (en) Method and process for metallic stamp replication for large area nanopatterns
KR101303988B1 (ko) 산화아연 나노로드를 이용한 금속 나노구조체 제조방법 및 그 응용
CN110891895A (zh) 通过选择性模板移除来进行微米和纳米制造的方法
Zhang et al. Graphene water transfer printing for 3D surface
CN111337471A (zh) 一种基于纳米压印和电化学沉积技术的sers基底的制备方法
CN104505408A (zh) 晶体硅纳米孔阵列材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant