CN110606952B - 有机多孔材料催化二氧化硫与环氧化合物共聚的方法 - Google Patents

有机多孔材料催化二氧化硫与环氧化合物共聚的方法 Download PDF

Info

Publication number
CN110606952B
CN110606952B CN201910795773.6A CN201910795773A CN110606952B CN 110606952 B CN110606952 B CN 110606952B CN 201910795773 A CN201910795773 A CN 201910795773A CN 110606952 B CN110606952 B CN 110606952B
Authority
CN
China
Prior art keywords
organic porous
porous material
sulfur dioxide
copolymerization
epoxy compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910795773.6A
Other languages
English (en)
Other versions
CN110606952A (zh
Inventor
陕绍云
李珍
贾庆明
支云飞
苏红莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201910795773.6A priority Critical patent/CN110606952B/zh
Publication of CN110606952A publication Critical patent/CN110606952A/zh
Application granted granted Critical
Publication of CN110606952B publication Critical patent/CN110606952B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/26Polythioesters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

本发明公开了一种有机多孔材料催化二氧化硫与环氧化合物共聚的方法;采用有机多孔材料催化二氧化硫与环氧化合物共聚制备含硫高分子功能材料;本发明首次提出采用有机多孔材料作为非金属催化剂,催化二氧化硫与环氧化合物共聚;相比其他催化剂,该有机多孔材料作为非金属催化剂,其具有骨架密度低、合成手段多样、比表面积大、化学稳定性好等优势,且所涉及的制备方法简单,成本低廉,绿色环保,在共聚过程中催化剂用量少活性高,反应温度温和。

Description

有机多孔材料催化二氧化硫与环氧化合物共聚的方法
技术领域
本发明涉及高分子材料制备技术,具体是一种非金属有机多孔材料催化二氧化硫与环氧化合物共聚的方法。
背景技术
二氧化硫(SO2)的过度排放已经严重危害人类健康和生态环境,固硫脱硫技术加快SO2减排项目的建设,但是脱硫后硫的利用被局限于防腐剂、漂白剂、制备硫酸和小分子化合物等方面,尤其是以SO2为原料合成其他功能材料的应用少之又少。近年来有研究者提出使用环氧化物及其他单体与SO2共聚形成含硫高分子材料,使SO2有效的资源化利用。但是在该共聚体系中,单体难以与SO2形成聚合物或产物分子量低等原因,导致SO2共聚难以实现工业化。在1998年Ayusman Sen课题组采用钯配合物与磷配体催化剂催化乙烯、丙烯和环戊烯与SO2交替共聚,并且发现钯配合物催化剂在环戊烯与SO2共聚反应中催化性能最好,但是此催化剂中有机磷毒性和腐蚀性大、分离回收难、污染严重,在工业应用上受到很大限制;随后人们发现SO2在戊二酸锌催化剂催化下可以与环氧丙烷发生共聚,并且聚丙烯亚硫酸盐(PPS)分子量很高,虽然戊二酸锌催化剂催化剂活性高,但有机锌催化剂对空气中的水十分敏感,因此存在制备与保存的难度。对于不同的反应单体,催化剂的选择性和活性需要提高,因此如何制备既保持高活性和高选择性,又能重复回收使用的绿色非金属催化剂是研究的关键。
近十年来,有机多孔材料作为催化剂被广泛应用在各个领域中。有机多孔材料是一种纯有机元素组成的材料,其具有规整的孔结构,大的比表面积,结构可调控等性质,对提高催化能力起到很重要的作用。2008年,Mckeown小组报道了首例微孔、无定形结构的基于金属酞菁骨架的有机多孔材料,并采用有机多孔材料作为催化剂,以空气中的氧作为氧化剂,将硫化物氧化成元素硫,发现催化剂的催化活性随温度的增加而增加,且可以回收使用。2011年,T.Nguyen小组合成了一系列二酰亚胺键连接的基于金属-卟啉骨架的有机多孔材料,通过后修饰的方式,他们将成功将Fe、Mn等金属离子引入材料,得到了具有催化功能的有机孔材料,并将此材料催化苯乙稀的环氧化反应,介孔的存在使该材料均显示出比均相催化剂高的催化活性。Son小组合成了基于氮杂环卡宾骨架的有机多孔材料,并使用有机催化剂功能化此材料得到T-IM材料,T-IM材料在催化二氧化碳对环氧化合物的插入加成反应中表现出很好的催化活性,并且可以循环使用多次仍具有活性。有机多孔材料往往具有很好的催化性能,稳定性和可修饰性且绿色环保,从而可以很好地弥补传统催化剂的这些缺点。有机多孔材料不仅可以提供丰富的催化活性位点,而且其丰富的和相互交叉的孔道结构有利于底物的传质,在构建时可以很容易引入一些功能化基团,从而可以实现其在催化领域的应用。所以近十年以来,有机多孔材料在催化领域中取得了巨大的发展。
随着有机多孔材料在催化应用上的日趋成熟,结合其简单高效的合成方式、多样性的构筑方式及高效的催化性能,越来越受到研究者的青睐。本发明首次采用非金属有机多孔材料催化二氧化硫与环氧化合物共聚,有机多孔材料的高的比表面积和相互贯通的孔道结构,有利于底物与催化活性位点的结合和底物的传质,其催化共聚得到的产物聚亚硫酸酯立构规整度较高,分子量大,且其制备过程简单易操作。本发明以非金属的有机多孔材料为催化体系,使其高效催化二氧化硫和环氧化合物共聚,且共聚产物具有较高的分子量。
发明内容
本发明的目的在于解决目前环氧化合物和二氧化硫共聚反应条件苛刻,传统催化剂催化活性低且不环保,以环氧化合物和二氧化硫为单体,利用有机多孔材料为非金属绿色催化剂,在较温和的条件下制备环氧化合物与二氧化硫共聚物。
本发明有机多孔材料催化二氧化硫与环氧化合物共聚制备含硫高分子功能材料的方法,其具体步骤如下:
(1)将环氧化合物与非金属有机多孔材料依次加入到高压反应釜;然后将纯度为99.0%的氮气通入高压反应釜,与釜内空气置换2~3次后,再通入纯度为99.0%的二氧化硫,设置反应温度为50~100℃,进行反应;
(2)反应4~48h后降温,采用二氯甲烷溶解得到的产物,并加入甲醇进行沉淀,过滤后得到白色沉淀,再用甲醇洗涤3~4次,将洗涤后的沉淀室温下真空干燥8~24h,即得到二氧化硫与环氧化合物的共聚物,聚亚硫酸酯。
所述非金属有机多孔材料可以是超交联有机多孔聚合物(HCPs)、自聚微孔聚合物(PIMs)、共价有机骨架多孔聚合物(COFs)和共轭微孔聚合物(CMPs)中的一种,或两种及以上;HCPs是一类由聚合物片段间密集的交联而产生的有机多孔材料,它具有高度交联化的网状结构,且其只含有微孔;PIMs是一类采用刚性、非线性的有机单体通过不可逆的反应聚合而成的有机多孔材料,它具有刚性高分子链组成的无定形微孔结构;COFs是一类由共价键连接,且具有结晶性和孔隙度的有机多孔材料;CMPs是一类具有共轭骨架结构的有机多孔材料。
所述共价有机骨架多孔聚合物为嗪类、亚胺类、硼类及其衍生物作为单体反应生成的有机多孔材料,或者是三嗪基共价有机骨架材料和多孔芳香骨架材料。
所述环氧化合物与有机多孔材料的摩尔比为1:100~1:2000。
所述环氧化合物为环氧环己烷、环氧丙烷、1,2-环氧环戊烷、1,2-二甲基环氧乙烷等中的一种或任意比几种。
用傅里叶变换红外光谱学(FTIR),核磁H谱图表征所得产品,可发现二氧化硫存在于主链上。
与现有的技术相比,本发明具有如下优点:
(1)本发明首次采用非金属的有机多孔材料作为催化剂,使得二氧化硫与环氧化合物共聚反应温度相对温和,且大大缩短了反应时间,不仅提高了聚合产物的产率,而且提高了聚合产物结构的立构规整度。
(2)本发明制备方法简单,操作容易,催化剂用量少且可分离回收重复使用,反应温度温和,成本低,产率高,易实现绿色工业化生产。
附图说明
图1是实施例1所制备的有机多孔材料傅里叶变换红外光谱学(FTIR)图;
图2是实施例2所制备的聚亚硫酸酯傅里叶变换红外光谱学(FTIR)图;
图3是实施例4所制备的聚亚硫酸酯1H NM谱图;
图4是实施例6所制备的有机多孔材料傅里叶变换红外光谱学(FTIR)图;
图5是实施例8所制备的聚亚硫酸酯1H NM谱图;
图6是实施例10所制备的聚亚硫酸酯TG曲线图;
图7是实施例10所制备的有机多孔材料TG曲线图。
具体实施方式
下面通过实施例和附图对本发明作进一步详细说明,但本发明的保护范围不局限于所述内容。
实施例1:
(1)在50mL三口烧瓶内依次加入0.3g三聚氰胺、0.5g对苯二甲醛和10mL溶剂二甲基亚砜后将三口烧瓶置于油浴锅140℃加热回流反应48h;
(2)反应结束后将混合物冷却至室温,交替用丙酮和二甲基亚砜反复洗涤3次,最后60℃真空干燥箱干燥24h,得到焦黄色固体粉末即PIMs,采用傅里叶变换红外光谱学(FTIR)表征所得产品,如图1所示;
(3)将10mL的环氧环己烷和661.0mg的有机多孔材料催化剂PIMs依次加入到50mL高压反应釜;然后将纯度为99.0%的氮气通入高压反应釜,反复通入3次氮气后,再向高压反应釜通入纯度为99.0%的二氧化硫;
(4)通入完毕后关闭进出口阀,设置转速为280 r/min,温度为50℃,反应时间为40h;
(5)采用二氯甲烷溶解得到的产物,并加入甲醇进行沉淀,过滤后得到白色沉淀,再用甲醇洗涤3次,将洗涤后的沉淀放置真空干燥箱内,室温下真空干燥8h,即得到二氧化硫与环氧化合物的共聚物。
实施例2:
(1)在50mL三口烧瓶内依次加入0.3g三聚氰胺、0.5g对苯二甲醛和10mL溶剂二甲基亚砜后将三口烧瓶置于油浴锅180℃加热回流冷凝48h;
(2)反应结束后将混合物冷却至室温,交替用丙酮和二甲基亚砜反复洗涤3次,最后70℃真空干燥箱干燥12h得到焦黄色固体粉末即PIMs;
(3)将20mL的环氧环己烷和264.5mg的有机多孔材料催化剂依次加入到50mL高压反应釜;然后将纯度为99.0%的氮气通入高压反应釜,反复通入3次氮气后,再向高压反应釜通入纯度为99.0%的二氧化硫;
(4)通入完毕后关闭进出口阀,设置转速为280 r/min,温度为60℃,反应时间为35h;
(5)采用二氯甲烷溶解得到的产物,并加入甲醇进行沉淀,过滤后得到白色沉淀,再用甲醇洗涤3次,将洗涤后的沉淀放置真空干燥箱内,室温下真空干燥10h,即得到二氧化硫与环氧化合物的共聚物;采用傅里叶变换红外光谱学(FTIR)表征所得产品,如图2可发现二氧化硫存在于主链上。
实施例3:
(1)先称量0.01g 对苯二甲醛和0.02g四聚氰胺(4-苯胺)-甲烷,加入到10mL的Pyrex管中,随后加入溶剂3mL 1,4-二氧六环,超声,使单体均匀分布到溶剂当中,然后将Pyrex管放入到液氮当中冷冻,抽真空,火焰密封;
(2)将封管的Pyrex管放在120℃烘箱加热3天,反应完成后,打开Pyrex管,交替用1,4-二氧六环和四氢呋喃反复洗涤3次后,将产物浸泡在四氢呋喃24h,最后100℃干燥箱干燥12小时得黄色粉末即可得COFs;
(3)将25mL的环氧环己烷与208.5mg有机多孔材料催化剂COFs依次加入到50mL高压反应釜;然后将纯度为99.0%的氮气通入高压反应釜,反复通入3次氮气后,再向高压反应釜通入纯度为99.0%的二氧化硫;
(4)通入完毕后关闭进出口阀,设置转速为280 r/min,温度为70℃,反应时间为25h;
(5)采用二氯甲烷溶解得到的产物,并加入甲醇进行沉淀,过滤后得到白色沉淀,再用甲醇洗涤4次,将洗涤后的沉淀放置真空干燥箱内,室温下真空干燥24h,即得到二氧化硫与环氧化合物的共聚物。
实施例4:
(1)在50mL三口烧瓶内依次加入0.3g 1,3,5-三乙炔基苯、0.6g二碘苯、0.1g催化剂三苯基膦钯和混合溶剂5mL甲苯和5mL三乙胺,然后将混合反应物加热至80℃,在氮气条件下搅拌72h;
(2)反应结束后将混合物冷却至室温,交替用丙酮和甲醇反复洗涤3次后,将产物在甲醇中索氏提取24h,最后70℃真空干燥箱干燥24h,得到棕色固体粉末即CMPs;
(3)将20mL的环氧环己烷与260.9mg有机多孔材料催化剂CMPs依次加入到50mL高压反应釜;然后将纯度为99.0%的氮气通入高压反应釜,反复通入3次氮气后,再向高压反应釜通入纯度为99.0%的二氧化硫;
(4)通入完毕后关闭进出口阀,设置转速为280 r/min,温度为80℃,反应时间为15h;
(5)采用二氯甲烷溶解得到的产物,并加入甲醇进行沉淀,过滤后得到白色沉淀,再用甲醇洗涤4次,将洗涤后的沉淀放置真空干燥箱内,室温下真空干燥24h,即得到二氧化硫与环氧化合物的共聚物,采用1H NM谱图表征所得产品,如图3。
实施例5:
(1)在50mL三口烧瓶内依次加入0.3g 1,3,5-三乙炔基苯、0.6g二碘苯、0.1g催化剂三苯基膦钯和混合溶剂5mL甲苯和5mL三乙胺,然后将混合反应物加热至80℃,在氮气条件下搅拌72h;
(2)反应结束后将混合物冷却至室温,交替用丙酮和甲醇反复洗涤3次后将产物在甲醇中索氏提取24小时,最后70℃真空干燥箱干燥24h,得到棕色固体粉末即CMPs;
(3)将25mL环氧环己烷与81.5mg有机多孔材料催化剂CMPs依次加入到50mL高压反应釜;然后将纯度为99.0%的氮气通入高压反应釜,反复通入3次氮气后,再向高压反应釜通入纯度为99.0%的二氧化硫;
(4)通入完毕后关闭进出口阀,设置转速为280 r/min,温度为90℃,反应时间为10h;
(5)采用二氯甲烷溶解得到的产物,并加入甲醇进行沉淀,过滤后得到白色沉淀,再用甲醇洗涤4次,将洗涤后的沉淀放置真空干燥箱内,室温下真空干燥8h,即得到二氧化硫与环氧化合物的共聚物。
实施例6:
(1)先称量0.03g 1,4-苯二硼酸,加入到10mL的Pyrex管中,随后加入溶剂0.5mL1,4二氧六环和0.5mL均三甲苯,超声,使单体均匀分布到溶剂当中,然后将Pyrex管放入到液氮当中冷冻,抽真空,火焰密封;
(2)将封管的Pyrex管放在120℃烘箱加热3天,反应完成后,打开Pyrex管,交替用丙酮和四氢呋喃反复洗涤3次,最后60℃干燥箱干燥24小时即可得COFs,采用傅里叶变换红外光谱学(FTIR)表征所得产品,如图4所示;
(3)将10mL的环氧丙烷与1320.4mg的有机多孔材料催化剂COFs依次加入到50mL高压反应釜;然后将纯度为99.0%的氮气通入高压反应釜,反复通入3次氮气后,再向高压反应釜通入纯度为99.0%的二氧化硫;
(4)通入完毕后关闭进出口阀,设置转速为280 r/min,温度为100℃,反应时间为8h;
(5)采用二氯甲烷溶解得到的产物,并加入甲醇进行沉淀,过滤后得到白色沉淀,再用甲醇洗涤4次,将洗涤后的沉淀放置真空干燥箱内,室温下真空干燥12h,即得到二氧化硫与环氧化合物的共聚物。
实施例7:
(1)在50mL三口烧瓶内依次加入1.5g苯、4.6g甲缩醛、9.0g催化剂氯化铁和20mL交联剂1,2-二氯乙烷后将三口烧瓶置于水浴锅40℃搅拌5h,然后再80℃反应24h;
(2)反应结束后将混合物冷却至室温,用甲醇反复洗涤3次后将产物在甲醇中索氏提取24小时,最后60℃真空干燥箱干燥24h得到棕色固体粉末即HCPs;
(3)将20mL的1,2-环氧环戊烷与39.4mg的有机多孔材料催化剂HCPs依次加入到50mL高压反应釜;然后将纯度为99.0%的氮气通入高压反应釜,反复通入3次氮气后,再向高压反应釜通入纯度为99.0%的二氧化硫;
(4)通入完毕后关闭进出口阀,设置转速为280 r/min,温度为50℃,反应时间为45h;
(5)采用二氯甲烷溶解得到的产物,并加入甲醇进行沉淀,过滤后得到白色沉淀,再用甲醇洗涤3次,将洗涤后的沉淀放置真空干燥箱内,室温下真空干燥16h,即得到二氧化硫与环氧化合物的共聚物。
实施例8:
(1)先称量0.01g 对苯二甲醛和0.02g四聚氰胺(4-苯胺)-甲烷,加入到10mL的Pyrex管中,随后加入溶剂3mL 1,4-二氧六环,超声,使单体均匀分布到溶剂当中,然后将Pyrex管放入到液氮当中冷冻,抽真空,火焰密封;
(2)将封管的Pyrex管放在120℃烘箱加热3天,反应完成后,打开Pyrex管,交替用1,4-二氧六环和四氢呋喃反复洗涤3次后,将产物浸泡在四氢呋喃24h,最后100℃干燥箱干燥12小时得黄色粉末即可得COFs;
(3)将10mL的环氧丙烷与60.3mg的有机多孔材料催化剂COFs依次加入到50mL高压反应釜;然后将纯度为99.0%的氮气通入高压反应釜,反复通入3次氮气后,再向高压反应釜通入纯度为99.0%的二氧化硫;
(4)通入完毕后关闭进出口阀,设置转速为280 r/min,温度为80℃,反应时间为20h;
(5)采用二氯甲烷溶解得到的产物,并加入甲醇进行沉淀,过滤后得到白色沉淀,再用甲醇洗涤4次,将洗涤后的沉淀放置真空干燥箱内,室温下真空干燥12h,即得到二氧化硫与环氧化合物的共聚物。采用1H NM谱图表征所得产品,如图5。
实施例9:
(1)在50mL三口烧瓶内依次加入1.5g苯、4.6g甲缩醛、9.0g催化剂氯化铁和20mL交联剂1,2-二氯乙烷后将三口烧瓶置于水浴锅40℃搅拌5h,然后再80℃反应24h;
(2)反应结束后将混合物冷却至室温,用甲醇反复洗涤3次后将产物在甲醇中索氏提取24小时,最后60℃真空干燥箱干燥24h得,到棕色固体粉末即HCPs;
(3)将10mL的1,2-二甲基环氧乙烷与19.2mg的有机多孔材料催化剂HCPs依次加入到50mL高压反应釜;然后将纯度为99.0%的氮气通入高压反应釜,反复通入3次氮气后,再向高压反应釜通入纯度为99.0%的二氧化硫;
(3)通入完毕后关闭进出口阀,设置转速为280 r/min,温度为100℃,反应时间为10h;
(4)采用二氯甲烷溶解得到的产物,并加入甲醇进行沉淀,过滤后得到白色沉淀,再用甲醇洗涤4次,将洗涤后的沉淀放置真空干燥箱内,室温下真空干燥24h,即得到二氧化硫与环氧化合物的共聚物。
实施例10:
(1)在50mL三口烧瓶内依次加入0.3g三聚氰胺、0.5g对苯二甲醛和10mL溶剂二甲基亚砜后将三口烧瓶置于油浴锅180℃加热回流冷凝72h;
(2)反应结束后将混合物冷却至室温,交替用丙酮和二甲基亚砜反复洗涤3次,最后90℃真空干燥箱干燥6h得到焦黄色固体粉末即有机多孔材料PIMs,图6是有机多孔材料TG曲线图;
(3)将20mL的环氧丙烷和环氧环己烷的混合物(质量比2:1)和173.5mg的有机多孔材料催化剂依次加入到50mL高压反应釜;然后将纯度为99.0%的氮气通入高压反应釜,反复通入3次氮气后,再向高压反应釜通入纯度为99.0%的二氧化硫;
(4)通入完毕后关闭进出口阀,设置转速为280 r/min,温度为50℃,反应时间为6h;
(5)采用二氯甲烷溶解得到的产物,并加入甲醇进行沉淀,过滤后得到白色沉淀,再用甲醇洗涤3次,将洗涤后的沉淀放置真空干燥箱内,室温下真空干燥8h,即得到二氧化硫与环氧化合物的共聚物;采用热重分析表征所得产品,如图7所示。
以上列举的仅是本发明的具体实施例。显然本发明不限于以上实施例,还可以有许多变化。在功能高分子领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变化,作为催化剂的有机多孔材料不限于以上列举的几种类型,可以是两种或者两种以上类型混合的有机多孔材料;聚合单体可以是环氧环戊烷、1,2-二甲基环氧乙烷等,甚至反应单体为两种或者两种以上的环氧化合物混合物等,均应认为是本发明的保护范围。

Claims (3)

1.一种有机多孔材料催化二氧化硫与环氧化合物共聚的方法,其特征在于,采用非金属有机多孔材料催化二氧化硫与环氧化合物共聚,具体步骤如下:
(1)将环氧化合物与非金属有机多孔材料依次加入到高压反应釜;然后将纯度为99.0%的氮气通入高压反应釜,与釜内空气置换2~3次后,再通入纯度为99.0%的二氧化硫,设置反应温度为50~100℃,进行反应;
(2)反应4~48h后降温,采用二氯甲烷溶解得到的产物,并加入甲醇进行沉淀,过滤后得到白色沉淀,再用甲醇洗涤3~4次,将洗涤后的沉淀室温下真空干燥8~24h,即得到二氧化硫与环氧化合物的共聚物,聚亚硫酸酯;
所述非金属有机多孔材料是超交联有机多孔聚合物、自聚微孔聚合物、共价有机骨架多孔聚合物和共轭微孔聚合物中的一种或任意比几种。
2.根据权利要求1所述的有机多孔材料催化二氧化硫与环氧化合物共聚的方法,其特征在于:步骤(2)中有机多孔材料与环氧化合物的摩尔比为1:100~1:2000。
3.根据权利要求1所述的有机多孔材料催化二氧化硫与环氧化合物共聚的方法,其特征在于:环氧化合物为环氧环己烷、环氧丙烷、1,2-环氧环戊烷、1,2-二甲基环氧乙烷中的一种或任意比几种。
CN201910795773.6A 2019-08-27 2019-08-27 有机多孔材料催化二氧化硫与环氧化合物共聚的方法 Active CN110606952B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910795773.6A CN110606952B (zh) 2019-08-27 2019-08-27 有机多孔材料催化二氧化硫与环氧化合物共聚的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910795773.6A CN110606952B (zh) 2019-08-27 2019-08-27 有机多孔材料催化二氧化硫与环氧化合物共聚的方法

Publications (2)

Publication Number Publication Date
CN110606952A CN110606952A (zh) 2019-12-24
CN110606952B true CN110606952B (zh) 2021-07-02

Family

ID=68890505

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910795773.6A Active CN110606952B (zh) 2019-08-27 2019-08-27 有机多孔材料催化二氧化硫与环氧化合物共聚的方法

Country Status (1)

Country Link
CN (1) CN110606952B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113698603B (zh) * 2021-08-21 2022-05-17 昆明理工大学 利用二氧化硫烟气制备含硫高分子功能材料的方法
CN115536803B (zh) * 2022-10-27 2023-07-11 大连理工大学 一种二氧化硫基聚亚硫酸酯型聚氨酯的制备方法
CN115536859B (zh) * 2022-11-30 2023-03-14 中山大学 一种基于双金属氧链的卟啉金属-有机框架材料及其制备方法与应用
CN116284822B (zh) * 2023-03-17 2024-04-19 昆明理工大学 超高交联离子聚合物无金属非均相催化剂的制备方法及其应用
CN116284780A (zh) * 2023-03-21 2023-06-23 大连理工大学 一种离子盐催化剂及其制备聚亚硫酸酯的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3657200A (en) * 1970-11-04 1972-04-18 Dow Chemical Co Copolymers of sulfur dioxide with allyl epoxyalkane ethers
JPH08245789A (ja) * 1995-03-13 1996-09-24 Nippon Zeon Co Ltd ポリサルファイト、製造方法、および解重合方法
CN101531672A (zh) * 2008-03-12 2009-09-16 安徽大学 具有纳米孔洞的金属-有机骨架材料及其制备方法、应用
CN105218819A (zh) * 2015-10-19 2016-01-06 昆明理工大学 一种二氧化硫与环氧化合物共聚物的制备方法
CN105218820A (zh) * 2015-10-19 2016-01-06 昆明理工大学 一种二氧化硫、二氧化碳与环氧化合物共聚物的制备方法
WO2019046404A1 (en) * 2017-08-31 2019-03-07 The Regents Of The University Of California ORGANOMETALLIC NETWORK BASED ON OPEN METALLIC ZIRCONIUM TEREPHTHALATE

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3657200A (en) * 1970-11-04 1972-04-18 Dow Chemical Co Copolymers of sulfur dioxide with allyl epoxyalkane ethers
JPH08245789A (ja) * 1995-03-13 1996-09-24 Nippon Zeon Co Ltd ポリサルファイト、製造方法、および解重合方法
CN101531672A (zh) * 2008-03-12 2009-09-16 安徽大学 具有纳米孔洞的金属-有机骨架材料及其制备方法、应用
CN105218819A (zh) * 2015-10-19 2016-01-06 昆明理工大学 一种二氧化硫与环氧化合物共聚物的制备方法
CN105218820A (zh) * 2015-10-19 2016-01-06 昆明理工大学 一种二氧化硫、二氧化碳与环氧化合物共聚物的制备方法
WO2019046404A1 (en) * 2017-08-31 2019-03-07 The Regents Of The University Of California ORGANOMETALLIC NETWORK BASED ON OPEN METALLIC ZIRCONIUM TEREPHTHALATE

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Bifunctional Metal-Free Porous Organic Framework Heterogeneous Catalyst for Efficient CO2 Conversion under Mild and Cocatalyst-Free Conditions;Dingxuan Ma et al.;《ACS Sustainable Chem. Eng.》;20180928;第6卷;第15050-15055页 *
Copolymerization of ethylene oxide and sulfur dioxide initiated by Lewis bases;Zbigniew FIorjanczyk et al.;《Makromol. Chem.》;19931231;第194卷;第2605-2613页 *
Covalent Triazine Frameworks as Heterogeneous Catalysts for the Synthesis of Cyclic and Linear Carbonates from Carbon Dioxide and Epoxides;J. Roeser et al.;《ChemSusChem》;20120816;第5卷(第9期);第1793-1799页 *
Melamine-based mesoporous organic polymers as metal-Free heterogeneous catalyst: Effect of hydroxyl on CO2 capture and conversion;Nan Zhang et al.;《Journal of CO2 Utilization》;第9-14页;20170913;第22卷;第9-14页 *
Salen型催化剂催化SO_2与环氧化合物共聚反应的研究;支云飞;《中国博士学位论文全文数据库 工程科技Ⅰ辑》;20190315(第03期);B014-7 *

Also Published As

Publication number Publication date
CN110606952A (zh) 2019-12-24

Similar Documents

Publication Publication Date Title
CN110606952B (zh) 有机多孔材料催化二氧化硫与环氧化合物共聚的方法
US8859452B2 (en) Metal cyanide complex catalyst and its preparation and application
CN107739439B (zh) 一种超支化聚硫醚的制备方法
CN109988290B (zh) 一种低聚金属卟啉配合物和聚碳酸酯的制备方法
CN103333329B (zh) 一种二氧化碳和α-蒎烯衍生物共聚制备聚碳酸酯的方法
CN102775594A (zh) 一种四羧酸二酐化合物、环氧丙烷、二氧化碳交联三元共聚物及其制备方法
CN115612081B (zh) 一种环状聚(l-丙交酯)的制备方法
CN115286781B (zh) 一种吸电子基聚碳酸酯醚多元醇及其高效制备方法
Zhang et al. Functionalized microporous organic nanotube networks as a new platform for highly efficient heterogeneous catalysis
Li et al. Novel melamine-based porous organic materials as metal-free catalysts for copolymerization of SO2 with epoxide
CN112851924B (zh) 一种可循环的含氮聚碳酸酯塑料的合成方法
CN108192058A (zh) 一种多级孔聚合物、制备和在吸附和/或转化二氧化碳中的应用
KR100722380B1 (ko) 지방족 폴리카보네이트 중합용 촉매의 제조 방법 및 이를사용한 지방족 폴리카보네이트의 중합 방법
CN110938184A (zh) 一种基于有机醛和三聚氰胺的希夫碱型生物基多孔材料及其制备方法
Ding et al. Macrocycle-based topological azo-polymers: facile synthesis and unusual photoresponsive properties
Shi et al. Synthesis of amphiphilic polycyclooctene-graft–poly (ethylene glycol) copolymers by ring-opening metathesis polymerization
CN111944134B (zh) 一种高分子量不饱和聚酯的制备方法及其产品
Liu et al. Heterogeneous catalysts based on built-in N-heterocyclic carbenes with high removability, recoverability and reusability for ring-opening polymerization of cyclic esters
Tong et al. New strategies for synthesis of amino‐functionalized poly (propylene carbonate) over SalenCo (III) Cl catalyst
Liu et al. SalenCr catalyst immobilized on amino-functionalized cellulose for the copolymerization of SO2 with cyclohexene oxide
CN111848932A (zh) 一种卟啉基多孔聚合物的制备及其用于苯乙烯氧化催化的应用
US11312812B2 (en) Process for producing elastomers
Cheng et al. ZnO/SiO2-modified rare-earth-metal ternary catalyst bearing quaternary ammonium salts for synthesis of high molecular weight poly (propylene carbonate)
CN105482092A (zh) 二氧化碳基聚合物的合成方法
CN114437330B (zh) 用于环状单体序列共聚合反应的催化剂体系和制备嵌段聚酯的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Shaanxi-Shaoyun

Inventor after: Li Zhen

Inventor after: Jia Qingming

Inventor after: Zhi Yunfei

Inventor after: Su Hongying

Inventor before: Jia Qingming

Inventor before: Li Zhen

Inventor before: Shaanxi-Shaoyun

Inventor before: Zhi Yunfei

Inventor before: Su Hongying

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant