CN110585917A - 用于降解气相有机污染物的电极及其制备方法、降解气相有机污染物的方法及其装置 - Google Patents

用于降解气相有机污染物的电极及其制备方法、降解气相有机污染物的方法及其装置 Download PDF

Info

Publication number
CN110585917A
CN110585917A CN201910948323.6A CN201910948323A CN110585917A CN 110585917 A CN110585917 A CN 110585917A CN 201910948323 A CN201910948323 A CN 201910948323A CN 110585917 A CN110585917 A CN 110585917A
Authority
CN
China
Prior art keywords
electrode
gas
degrading
organic pollutants
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910948323.6A
Other languages
English (en)
Other versions
CN110585917B (zh
Inventor
张礼知
贾法龙
严义清
严方升
李普煊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan Puremate Environmental Protection Technology Co.,Ltd.
Original Assignee
Huazhong Normal University
Shenzhen Puremate Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong Normal University, Shenzhen Puremate Technology Co Ltd filed Critical Huazhong Normal University
Priority to CN201910948323.6A priority Critical patent/CN110585917B/zh
Priority to PCT/CN2019/113907 priority patent/WO2021062906A1/zh
Publication of CN110585917A publication Critical patent/CN110585917A/zh
Application granted granted Critical
Publication of CN110585917B publication Critical patent/CN110585917B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20769Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20784Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2094Tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/70Non-metallic catalysts, additives or dopants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/70Non-metallic catalysts, additives or dopants
    • B01D2255/702Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

本发明公开一种用于降解气相有机污染物的电极及其制备方法、降解气相有机污染物的方法及其装置。其中,所述用于降解气相有机污染物的电极的制备方法包括以下步骤:提供含有单原子金属的材料和碳材料电极;将所述含有单原子的材料涂覆于所述碳材料电极的表面,干燥,得到用于降解气相有机污染物的电极。本发明的技术方案能够解决相关技术中阳极电极材料存在的问题。

Description

用于降解气相有机污染物的电极及其制备方法、降解气相有 机污染物的方法及其装置
技术领域
本发明涉及降解有机污染物净化技术领域,特别涉及一种用于降解气相有机污染物的电极及其制备方法、降解气相有机污染物的方法及其装置。
背景技术
目前,针对挥发性气相有机污染物的降解方法通常采用电化学氧化法,该降解方法因无须投加任何化学试剂,操作简单且绿色环保而备受关注。电化学氧化法的核心技术是阳极电催化材料,相关技术中使用的阳极电极材料主要有硼掺杂金刚石、氧化铅及氧化锡三类,但是这些电极材料往往存在以下问题:硼掺杂金刚石的成本较高,难以得到广泛应用;氧化铅电极材料中使用过程中往往难以避免潜在的铅离子释放,易造成二次环境污染,其应用受到限制;氧化锡电极材料往往存在电极稳定性差,电极寿命短等问题。
发明内容
本发明的主要目的是提供一种用于降解气相有机污染物的电极及其制备方法,旨在解决相关技术中阳极电极材料存在的问题。
为实现上述目的,本发明提出的用于降解气相有机污染物的电极的制备方法,以下步骤:
提供含有单原子金属的材料和碳材料电极;
将所述含有单原子金属的材料涂覆于所述碳材料电极的表面,干燥,得到用于降解气相有机污染物的电极。
可选地,所述单原子催化剂是由以下步骤制备得到:
提供含有单原子金属的材料和碳载体;
将所述单原子金属材料负载于所述碳载体,得到单原子催化剂。
可选地,所述单原子金属的负载量范围为0.01%-20%。
可选地,所述单原子金属为锡、铬、锰、铅、钼、铟及钛中的至少一种。
可选地,所述碳载体为氮掺杂碳、氮化碳、活性炭、碳纳米管及石墨烯中的至少一种。
可选地,所述碳材料电极为碳纸电极、碳布电极、碳纤维布电极、碳颗粒布电极及活性炭布电极中的一种。
本发明还提出了一种用于降解气相有机污染物的电极,所述用于降解气相有机污染物的电极是由如前所述的用于降解气相有机污染物的电极的制备方法制备得到。
本发明还提出了一种降解气相有机污染物的装置,所述降解气相有机污染物的装置包括阳极、阴极、质子交换膜、阳极气流通道及阴极气流通道,所述质子交换膜设于所述阳极和所述阴极之间,所述阳极设于所述阳极气流通道内,所述阴极设于所述阴极气流通道内,所述阳极为如前所述的用于降解气相有机污染物的电极,所述阴极为负载氧化还原催化剂的电极。
本发明还提出了一种降解气相有机污染物的方法,应用于如前所述的降解气相有机污染物的装置,所述降解气相有机污染物的方法包括以下步骤:
将气相有机污染物通入阳极气流通道内,将含有饱和水蒸汽的空气通入阴极气流通道内,并在所述阳极和所述阴极之间施加0.5V-36V的电解电压,控制降解过程中的反应温度范围为5℃-70℃。
可选地,所述气相有机污染物为苯、甲苯、二甲苯、甲醛或其它VOC气体。
本发明采用碳材料电极为基体,单原子催化剂为活性成分制备得到用于降解气相有机污染物的电极。该制备方法简便,易于大规模生产。这里碳材料电极具有孔隙透气结构,稳定性较好,能够更好地吸附气相有机污染物,有利于污染物的降解;单原子催化剂表面能较高,易与水分子发生作用并在电压极化下高效产生活性氧物种,进而能够高效地降解气相有机物污染物,特别是挥发性有机污染物的降解,应用范围较广。同时,该单原子催化剂具有较好的稳定性,有助于提高降解效率。
附图说明
为了更清楚地说明本发明实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明实施例1中不同电解电压下苯的降解率变化示意图;
图2为本发明实施例1中在施加电压为2.8V的条件下苯降解率随电解时间的变化曲线图;
图3为本发明不同电解电压下甲苯的降解率变化示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
本发明提出一种用于降解气相有机污染物的电极的制备方法,该制备方法包括以下步骤:
提供含有单原子金属的材料和碳材料电极;
将含有单原子金属的材料涂覆于碳材料电极的表面,干燥,得到用于降解气相有机污染物的电极。
本发明采用碳材料电极为基体,单原子催化剂为活性成分制备得到用于降解气相有机污染物的电极。该制备方法简便,易于大规模生产。这里碳材料电极具有孔隙透气结构,稳定性较好,能够更好地吸附气相有机污染物,有利于污染物的降解;单原子催化剂表面能较高,易与水分子发生作用并在电压极化下高效产生活性氧物种,进而能够高效地降解气相有机物污染物,特别是挥发性有机污染物的降解,应用范围较广。同时,该单原子催化剂具有较好的稳定性,有助于提高降解效率。
可选地,单原子催化剂是由以下步骤制备得到:
提供含有单原子金属的材料和碳载体;
将单原子金属材料负载于碳载体,得到单原子催化剂。
这里采用将单原子金属材料负载于碳载体的表面得到单原子催化剂,碳载体具有较高的比表面积和吸附有机物的能力,有利于将挥发性有机物吸附至单原子催化剂的表面,从而使得挥发性有机物被单原子催化剂表面产生的活性物质快速降解。该单原子催化剂的操作简便,易于大规模合成,且得到的单原子催化剂活性较高,稳定性较好。
可选地,单原子金属的负载量范围为0.01%-20%。这里采用较少负载量的单原子金属,便可得到高活性的单原子催化剂,其材料成本大幅度降低。一般地,在制备单原子催化剂时,单原子金属的负载量为0.1%、1%、10%、15%或20%。优选单原子金属的负载量范围为0.5%-2%。
可选地,单原子金属为锡、铬、锰、铅、钼、铟及钛中的至少一种。在进行制备单原子催化剂时,单原子金属可选用这些中的一种或多种,制备得到的单原子催化剂均具有较高的活性和较好的稳定性。
可选地,碳载体为氮掺杂碳、氮化碳、活性炭、碳纳米管及石墨烯中的至少一种。在进行制备单原子催化剂时,碳载体可选用这些碳载体的一种或多种,这些碳载体均具有较高的比表面积和吸附有机物的能力,有利于将挥发性有机物吸附至单原子催化剂的表面,从而使得挥发性有机物被单原子催化剂表面产生的活性物质快速降解。
可选地,碳材料电极为碳纸电极、碳布电极、碳纤维布电极、碳颗粒布电极及活性炭布电极中的一种。这些碳材料电极均具有孔隙透气结构,稳定性较好,均能够更好地吸附气相有机污染物,有利于单原子催化剂的降解。在制备电极时,可选用其中的一种。
本发明还提出了一种用于降解气相有机污染物的电极,该用于降解气相有机污染物的电极是由如前所述的用于降解气相有机污染物的电极的制备方法制备得到。
本发明还提出了一种降解气相有机污染物的装置,该降解气相有机污染物的装置包括阳极、阴极、质子交换膜、阳极气流通道及阴极气流通道,质子交换膜设于阳极和阴极之间,阳极设于阳极气流通道内,阴极设于阴极气流通道内,阳极为如前所述的用于降解气相有机污染物的电极,阴极为负载氧化还原催化剂的电极。
本发明采用上述制备的电极作为阳极,即负载单原子催化剂的碳材料电极作为阳极,负载氧化还原催化剂的电极作为阴极,两个电极之间放置质子交换膜,并将阳极、质子交换膜及阴极三层材料夹紧,且阳极的表面设置有阳极气流通道,阴极的表面设置有阴极气流通道。同时将阳极和阴极通过导线分别连接直流电源的正极和负极,如此便可得到降解气相有机物的装置。
本发明还提出了一种降解气相有机污染物的方法,应用如前所述的降解气相有机污染物的装置,降解气相有机污染物的方法包括以下步骤:
将气相有机污染物通入阳极气流通道内,将含有饱和水蒸汽的空气通入阴极气流通道内,并在阳极和阴极之间施加0.5V-36V的电解电压,控制降解过程中的反应温度范围为5℃-70℃;
预设时间后监测阳极气流通道的出气口处气相有机污染物的浓度。
这里是将含气态污染物的空气连续不断地通入阳极气流通道30内和阴极气流通道40内。待气体稳定后,利用气相色谱仪检测阳极气流通道30和阴极气流通道40出气口处的气态污染物的浓度。当然地,也可以是检测经该装置处理后的空气中气态污染物的污染。
为了更高效地降解气相有机污染物,这里电解电压可选用2V、3V或4V,降解过程的反应温度控制在20℃-70℃范围内。
需要说明的是,这里气相有机污染物为苯、甲苯、二甲苯、甲醛或其它VOC气体。当然地,气相有机污染物还可以为其他挥发性有机污染物。
以下通过具体实施例对本发明用于降解气相有机污染物的电极及其制备方法进行详细说明。
实施例1
(1)单原子催化剂的制备:称取60克的2-甲基咪唑溶解于1升甲醇中,在搅拌下加入硝酸锌60克溶解于1升甲醇的溶液,并在室温下静置12小时。通过离心分离获得固体产物,并用甲醇多次洗涤。随后将此产物超声分散于1升甲醇中,加入乙酰丙酮锡20克,超声2个小时,随后离心分离并在50℃下真空干燥。将此产物在900℃下氩气气氛中热解1小时并自然冷却至室温,即制得单原子锡负载氮掺杂碳材料催化剂,其质量负载量为1.2%。
(2)电极的制备:将10mg单原子锡负载氮掺杂碳材料催化剂超声分散到5mL全氟磺酸-聚四氟乙烯共聚物和异丙醇的混合液中,然后将分散液喷涂到16平方厘米的碳纸电极表面制得阳极。
(3)降解气相有机污染物的装置的装配:以步骤(2)制备的电极为阳极,以负载了商业铂/碳催化剂的碳纸为阴极,两个电极之间放置质子交换膜(如Nafion 115),并把这三层材料夹紧,阳极的表面设置阳极气流通道,阴极的表面设置阴极气流通道。同时将阳极和阴极通过导线分别连接直流电源的正极和负极,如此便可得到降解气相有机物的装置。
(4)降解气相有机污染物的方法:将含有苯的气体通入反应装置中至饱和,有机物污染物苯的浓度为10ppm,以空气作平衡气,总流速为20mL/min。然后在阴极和阳极间施加电压,并监测稳定时出气口污染物的浓度。
实施例2
(1)单原子催化剂的制备:称取180克的2-甲基咪唑溶解于2升甲醇中,在搅拌下加入硝酸锌160克溶解于1升甲醇的溶液,并在室温下静置12小时。通过离心分离获得固体产物,并用甲醇多次洗涤。随后将此产物超声分散于2升甲醇中,加入乙酰丙酮铅30克,超声2个小时,随后离心分离并在50℃下真空干燥。将此产物在900℃下氩气气氛中热解2小时并自然冷却至室温,即制得单原子铅负载氮掺杂碳材料催化剂,其质量负载量为2.1%。
(2)电极的制备:将20mg单原子铅负载氮掺杂碳材料催化剂超声分散到5mL全氟磺酸-聚四氟乙烯共聚物和异丙醇的混合液中,然后将分散液喷涂到16平方厘米的碳纸电极表面制得阳极。
(3)降解气相有机污染物的装置的装配:以步骤(2)制备的电极为阳极,以负载了商业铂/碳催化剂的碳纸为阴极,两个电极之间放置质子交换膜(如Nafion 115),并把这三层材料夹紧,阳极的表面设置阳极气流通道,阴极的表面设置阴极气流通道。同时将阳极和阴极通过导线分别连接直流电源的正极和负极,如此便可得到降解气相有机物的装置。
(4)降解气相有机污染物的方法:将含有苯的气体通入反应装置中至饱和,有机物污染物苯的浓度为10ppm,以空气作平衡气,总流速为20mL/min。然后在阴极和阳极间施加电压,并监测稳定时出气口污染物的浓度。
实施例3
(1)单原子催化剂的制备:称取130克的2-甲基咪唑溶解于2升甲醇中,在搅拌下加入硝酸锌100克溶解于1升甲醇的溶液,并在室温下静置12小时。通过离心分离获得固体产物,并用甲醇多次洗涤。随后将此产物超声分散于1升甲醇中,加入乙酰丙酮钛52克,超声2个小时,随后离心分离并在50℃下真空干燥。将此产物在900℃下氩气气氛中热解2小时并自然冷却至室温,即制得单原子钛负载氮掺杂碳材料催化剂,其质量负载量为1.5%。。
(2)电极的制备:将30mg单原子钛负载氮掺杂碳材料催化剂超声分散到5mL全氟磺酸-聚四氟乙烯共聚物和异丙醇的混合液中,然后将分散液喷涂到16平方厘米的碳纸电极表面制得阳极。
(3)降解气相有机污染物的装置的装配:以步骤(2)制备的电极为阳极,以负载了商业铂/碳催化剂的碳纸为阴极,两个电极之间放置质子交换膜(如Nafion 115),并把这三层材料夹紧,阳极的表面设置阳极气流通道,阴极的表面设置阴极气流通道。同时将阳极和阴极通过导线分别连接直流电源的正极和负极,如此便可得到降解气相有机物的装置。
(4)降解气相有机污染物的方法:将含有苯的气体通入反应装置中至饱和,有机物污染物苯的浓度为10ppm,以空气作平衡气,总流速为20mL/min。然后在阴极和阳极间施加电压,并监测稳定时出气口污染物的浓度。
实施例4
(1)单原子催化剂的制备:称取160克的2-甲基咪唑溶解于2升甲醇中,在搅拌下加入硝酸锌130克溶解于1升甲醇的溶液,并在室温下静置12小时。通过离心分离获得固体产物,并用甲醇多次洗涤。随后将此产物超声分散于1升甲醇中,加入乙酰丙酮铬60克,超声2个小时,随后离心分离并在50℃下真空干燥。将此产物在900℃下氩气气氛中热解2小时并自然冷却至室温,即制得单原子铬负载氮掺杂碳材料催化剂,其质量负载量为1.8%,。
(2)电极的制备:将20mg单原子铬负载氮掺杂碳材料催化剂超声分散到5mL全氟磺酸-聚四氟乙烯共聚物和异丙醇的混合液中,然后将分散液喷涂到16平方厘米的碳纸电极表面制得阳极。
(3)降解气相有机污染物的装置的装配:以步骤(2)制备的电极为阳极,以负载了商业铂/碳催化剂的碳纸为阴极,两个电极之间放置质子交换膜(如Nafion 115),并把这三层材料夹紧,阳极的表面设置阳极气流通道,阴极的表面设置阴极气流通道。同时将阳极和阴极通过导线分别连接直流电源的正极和负极,如此便可得到降解气相有机物的装置。
(4)降解气相有机污染物的方法:将含有苯的气体通入反应装置中至饱和,有机物污染物苯的浓度为10ppm,以空气作平衡气,总流速为20mL/min。然后在阴极和阳极间施加电压,并监测稳定时出气口污染物的浓度。
在实施例1中,在阳极和阴极间施加不同的电压,则稳定时阳极气流通道的出气口处苯的浓度不同,也即苯的降解率不同,可参见图1,由图中可以看出,随着电解电压的增加,苯的降解率相对增大。且当施加2.8V的电压时,苯的降解率较高。同时监测在施加电压为2.8V的条件下,观察苯的降解率随电解时间的变化,具体结果见图2,由图中看出,在施加电压为2.8V的条件下,苯的降解率保持稳定。
此外,还将甲苯作为气相有机污染物做了试验,具体操作可参见上述苯监测的步骤,在此不再一一赘述。在阳极和阴极间施加不同的电压,则稳定时阳极气流通道的出气口处甲苯的浓度不同,也即甲苯的降解率变化可参见图3,由图3可以看出,随着电解电压的增加,甲苯的降解率相对增大。且当施加2.8V的电压时,甲苯的降解率较高。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (10)

1.一种用于降解气相有机污染物的电极的制备方法,其特征在于,所述用于降解气相有机污染物的电极的制备方法包括以下步骤:
提供含有单原子金属的材料和碳材料电极;
将所述含有单原子金属的材料涂覆于所述碳材料电极的表面,干燥,得到用于降解气相有机污染物的电极。
2.如权利要求1所述的用于降解气相有机污染物的电极的制备方法,其特征在于,所述单原子催化剂是由以下步骤制备得到:
提供含有单原子金属的材料和碳载体;
将所述含有单原子金属的材料负载于所述碳载体,得到单原子催化剂。
3.如权利要求2所述的用于降解气相有机污染物的电极的制备方法,其特征在于,所述单原子金属的负载量范围为0.01%-20%。
4.如权利要求2所述的用于降解气相有机污染物的电极的制备方法,其特征在于,所述单原子金属为锡、铬、锰、铅、钼、铟及钛中的至少一种。
5.如权利要求2所述的用于降解气相有机污染物的电极的制备方法,其特征在于,所述碳载体为氮掺杂碳、氮化碳、活性炭、碳纳米管及石墨烯中的至少一种。
6.如权利要求1至5中任一项所述的用于降解气相有机污染物的电极的制备方法,其特征在于,所述碳材料电极为碳纸电极、碳布电极、碳纤维布电极、碳颗粒布电极及活性炭布电极中的一种。
7.一种用于降解气相有机污染物的电极,其特征在于,所述用于降解气相有机污染物的电极是由如权利要求1至6中任一项所述的用于降解气相有机污染物的电极的制备方法制备得到。
8.一种降解气相有机污染物的装置,其特征在于,所述降解气相有机污染物的装置包括阳极、阴极、质子交换膜、阳极气流通道及阴极气流通道,所述质子交换膜设于所述阳极和所述阴极之间,所述阳极设于所述阳极气流通道内,所述阴极设于所述阴极气流通道内,所述阳极为如权利要求7所述的用于降解气相有机污染物的电极,所述阴极为负载氧化还原催化剂的电极。
9.一种降解气相有机污染物的方法,应用于如权利要求8所述的降解气相有机污染物的装置,其特征在于,所述降解气相有机污染物的方法包括以下步骤:
将气相有机污染物通入阳极气流通道内,将含有饱和水蒸汽的空气通入阴极气流通道内,并在所述阳极和所述阴极之间施加0.5V-36V的电解电压,控制降解过程中的反应温度范围为5℃-70℃。
10.如权利要求9所述的降解气相有机污染物的方法,其特征在于,所述气相有机污染物为苯、甲苯、二甲苯、甲醛或其它VOC气体。
CN201910948323.6A 2019-09-30 2019-09-30 用于降解气相有机污染物的电极及其制备方法、降解气相有机污染物的方法及其装置 Active CN110585917B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910948323.6A CN110585917B (zh) 2019-09-30 2019-09-30 用于降解气相有机污染物的电极及其制备方法、降解气相有机污染物的方法及其装置
PCT/CN2019/113907 WO2021062906A1 (zh) 2019-09-30 2019-10-29 用于降解气相有机污染物的电极及其制备方法、降解气相有机污染物的装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910948323.6A CN110585917B (zh) 2019-09-30 2019-09-30 用于降解气相有机污染物的电极及其制备方法、降解气相有机污染物的方法及其装置

Publications (2)

Publication Number Publication Date
CN110585917A true CN110585917A (zh) 2019-12-20
CN110585917B CN110585917B (zh) 2020-12-15

Family

ID=68865595

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910948323.6A Active CN110585917B (zh) 2019-09-30 2019-09-30 用于降解气相有机污染物的电极及其制备方法、降解气相有机污染物的方法及其装置

Country Status (2)

Country Link
CN (1) CN110585917B (zh)
WO (1) WO2021062906A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113019082A (zh) * 2021-01-11 2021-06-25 东莞市普锐美泰环保科技有限公司 电化学法降解气态有机污染物的装置及其方法
CN113082277A (zh) * 2021-04-26 2021-07-09 燕山大学 一种利用通电耦合等离子体处理有毒气体的系统和方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114377714B (zh) * 2022-01-10 2024-04-05 贵州大学 一种高可见光活性单原子钛负载的石墨相氮化碳及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004426A1 (ja) * 2005-07-04 2007-01-11 Mitsubishi Electric Corporation 揮発性有機化合物処理装置および揮発性有機化合物の処理方法
CN105776502A (zh) * 2016-01-06 2016-07-20 浙江工商大学 一种金属氧化物改性电极生物膜还原co2的方法
CN106732238A (zh) * 2016-11-09 2017-05-31 中国科学院生态环境研究中心 用于气‑固相电催化反应的反应器及其消除VOCs的方法
CN110026186A (zh) * 2019-04-30 2019-07-19 太原氦舶新材料有限责任公司 一种生物质活性炭负载的金属单原子催化剂及其制备和应用
CN110201688A (zh) * 2019-05-31 2019-09-06 大连理工大学 一种生物电化学与光电催化降解乙酸乙酯及甲苯气体的催化电极的制备及控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108630950A (zh) * 2018-04-17 2018-10-09 清华大学 单原子空气阴极、电池、电化学系统与生物电化学系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004426A1 (ja) * 2005-07-04 2007-01-11 Mitsubishi Electric Corporation 揮発性有機化合物処理装置および揮発性有機化合物の処理方法
CN105776502A (zh) * 2016-01-06 2016-07-20 浙江工商大学 一种金属氧化物改性电极生物膜还原co2的方法
CN106732238A (zh) * 2016-11-09 2017-05-31 中国科学院生态环境研究中心 用于气‑固相电催化反应的反应器及其消除VOCs的方法
CN110026186A (zh) * 2019-04-30 2019-07-19 太原氦舶新材料有限责任公司 一种生物质活性炭负载的金属单原子催化剂及其制备和应用
CN110201688A (zh) * 2019-05-31 2019-09-06 大连理工大学 一种生物电化学与光电催化降解乙酸乙酯及甲苯气体的催化电极的制备及控制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113019082A (zh) * 2021-01-11 2021-06-25 东莞市普锐美泰环保科技有限公司 电化学法降解气态有机污染物的装置及其方法
CN113019082B (zh) * 2021-01-11 2022-10-04 深圳市普瑞美泰环保科技有限公司 电化学法降解气态有机污染物的装置及其方法
CN113082277A (zh) * 2021-04-26 2021-07-09 燕山大学 一种利用通电耦合等离子体处理有毒气体的系统和方法

Also Published As

Publication number Publication date
WO2021062906A1 (zh) 2021-04-08
CN110585917B (zh) 2020-12-15

Similar Documents

Publication Publication Date Title
CN110585917B (zh) 用于降解气相有机污染物的电极及其制备方法、降解气相有机污染物的方法及其装置
Li et al. High‐performance direct methanol fuel cells with precious‐metal‐free cathode
CN110559853B (zh) 阳极和阴极同步电化学法去除气态污染物的方法及其装置
CN110585916B (zh) 电芬顿催化氧化去除气态污染物的方法及其装置
CN105377428B (zh) 燃料电池用电极催化剂、及使催化剂活化的方法
US10950869B2 (en) Fuel cell electrode catalyst and method for producing the same
US20070078052A1 (en) Methanol tolerant catalyst material
CN107930381B (zh) 一种光电催化膜耦合微生物燃料电池体系加快voc降解并产电的方法
JP5247129B2 (ja) 触媒体及びその製造方法
US20240058749A1 (en) Device and method for degrading gaseous organic pollutant through electrochemical process
JPWO2007114525A1 (ja) 燃料電池用電極触媒の製造方法
US11258072B2 (en) Catalyst layer for a fuel cell and method for the production thereof
CN111282410B (zh) 电化学法降解气态污染物的装置及其方法
US9887428B2 (en) Co-tolerant catalyst for PAFC
KR20180076957A (ko) 연료전지용 캐소드, 및 이를 포함하는 막전극접합체의 제조방법
CA2720866A1 (en) Gas decomposition apparatus and method for decomposing gas
Olson et al. Electrochemical Evaluation of Porous Non‐Platinum Oxygen Reduction Catalysts for Polymer Electrolyte Fuel Cells
CN101578726A (zh) 燃料电池触媒、燃料电池阴极与包含该阴极的高分子电解质燃料电池
US20090181285A1 (en) CO Tolerant Multicomponent Electrode Catalyst for Solid Polymer Fuel Cell
Ruiz-Camacho et al. Oxygen reduction reaction on Pt/C catalysts prepared by impregnation and liquid phase photo-deposition
JP2022138872A (ja) 燃料電池用電極触媒、その選定方法及びそれを備える燃料電池
JP2006202687A (ja) 金属クラスターの燃料電池用電極触媒
JP2013008650A (ja) 燃料電池触媒坦持体および燃料電池
JP5531313B2 (ja) 複合電極触媒とその製造方法
CN115532317B (zh) 一种Pd/ZIFs-8@Ti3C2Tx电催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20211118

Address after: 523000 6th floor, building 4, Haiyong Science Park, Xiawei Shenwo Industrial Zone, Zhutang village, Fenggang town, Dongguan City, Guangdong Province

Patentee after: Dongguan Puremate Environmental Protection Technology Co.,Ltd.

Address before: 430000, No.152, Luoyu Road, Wuhan City, Hubei Province

Patentee before: CENTRAL CHINA NORMAL University

Patentee before: Shenzhen Purui Meitai Environmental Protection Technology Co., Ltd

TR01 Transfer of patent right