CN110581190B - 一种适应亚微米像素的utbb光电探测器、阵列和方法 - Google Patents

一种适应亚微米像素的utbb光电探测器、阵列和方法 Download PDF

Info

Publication number
CN110581190B
CN110581190B CN201910785417.6A CN201910785417A CN110581190B CN 110581190 B CN110581190 B CN 110581190B CN 201910785417 A CN201910785417 A CN 201910785417A CN 110581190 B CN110581190 B CN 110581190B
Authority
CN
China
Prior art keywords
layer
photodetector
tube
utbb
nmos tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910785417.6A
Other languages
English (en)
Other versions
CN110581190A (zh
Inventor
杜刚
刘力桥
刘晓彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201910785417.6A priority Critical patent/CN110581190B/zh
Publication of CN110581190A publication Critical patent/CN110581190A/zh
Application granted granted Critical
Publication of CN110581190B publication Critical patent/CN110581190B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本申请公开了一种适应亚微米像素的UTBB光电探测器、阵列和方法,包括:硅膜层、埋氧层、掺杂层和衬底,所述衬底、掺杂层、埋氧层和硅膜层依次从下至上设置;所述硅膜层包括相邻的一个NMOS管和一个PMOS管;所述掺杂层包括多个交替排列的N型掺杂区和P型掺杂区。所述NMOS管为一个像素单元,所述PMOS管为一个像素单元。通过在掺杂层采用横向电场,主动使信号电荷向像素内聚集,抑制串扰的能力更强,而且无需浅槽隔离,可以使像素单元进一步缩小。采用横向PN结感光结构,PN结的横向自建电场与埋氧层下垂直方向电场共同作用,使得光生电子可以漂移并聚集在埋氧层下方。横向电场的存在提高了光电转化效率,抑制了像素间串扰,使其更适合于亚微米像素。

Description

一种适应亚微米像素的UTBB光电探测器、阵列和方法
技术领域
本申请涉及硅基光电探测器领域,尤其涉及一种适应亚微米像素的UTBB光电探测器、阵列和方法。
背景技术
光电成像探测器广泛用于军事、医疗、汽车、移动设备等。现如今,在先进工业、汽车、医疗等领域对高分辨率大视场成像的需求越来越高,需要更小尺寸的像素单元。
目前主流光电成像探测器为CCD光电器件及CMOS-APS光电器件,CCD光电器件直接通过电荷转移进行光电探测,而CMOS-APS光电器件通过像素单元光电二极管收集电荷后转变为电压信号通过CMOS电路放大并读取。两种光电探测器件具有各自的优势和不足。
然而,由于器件本身结构限制,两种光电探测器单个像素单元均包含多个晶体管等器件结构,使得像素尺寸局限在微米量级以上无法进一步缩小。
使用单个晶体管,如超薄体及埋氧(Ultra-Thin Box and Body,UTBB)结构,实现光电探测单元可以有效降低像素单元尺寸,然而目前有采用UTBB结构作为图像传感器的方案需要采用浅槽隔离来抑制像素间的串扰,限制了像素单元的进一步缩小。
综上所述,需要提供一种尺寸小且能够抑制串扰的光电探测器、阵列和方法。
发明内容
为解决以上问题,本申请提出了一种适应亚微米像素的UTBB光电探测器、阵列和方法。
一方面,本申请提出了一种适应亚微米像素的UTBB光电探测器,包括:硅膜层、埋氧层、掺杂层和衬底,所述衬底、掺杂层、埋氧层和硅膜层依次从下至上设置;
所述硅膜层包括相邻的一个NMOS管和一个PMOS管;
所述掺杂层包括多个交替排列的N型掺杂区和P型掺杂区。
优选地,所述NMOS管为一个像素单元,所述PMOS管为一个像素单元;
所述NMOS管的源端和漏端被隔在NMOS管的沟道两端,NMOS管的栅端在NMOS管的沟道上;
所述PMOS管的源端和漏端被隔在PMOS管的沟道两端,PMOS管的栅端在PMOS管的沟道上。
优选地,所述NMOS管和所述PMOS管的沟道长度为20至100纳米,源端长度为20至90纳米,漏端长度为20至90纳米。
优选地,所述硅膜层的硅膜厚度为5至20纳米。
优选地,所述埋氧层厚度为10至30纳米。
优选地,所述掺杂层的深度为50至1000纳米,所述P型掺杂区和所述N型掺杂区的掺杂浓度为1×1016至1×1018立方厘米。
第二方面,本申请提出了一种适应亚微米像素的UTBB光电探测器阵列,包括:包括:由M×N个上述权利要求1-7任意一项所述的光电探测器组成的光电探测器阵列,其中M和N为大于等于2的自然数。
优选地,所述光电探测器阵列包括多列字线、多行位线、公共N型掺杂区电极和公共源极,其中,所有NMOS管的源极和PMOS管的源极与公共源极相连,掺杂层的所有N型掺杂区与所述公共N型掺杂区电极相连,每列光电探测器的栅极和与其对应的字线相连,每行光电探测器的漏极和与其对应的位线相连。
第三方面,本申请提出了一种适应亚微米像素的UTBB光电探测器的探测方法,包括:
对NMOS管栅端和漏端施加正电压,对PMOS管栅端和漏端施加负电压;
埋氧层与掺杂层之间聚集的正电荷量根据光照强度改变,从而改变NMOS管或PMOS管的阈值电压和漏端电流;
通过测量埋氧层上方硅膜层的漏端电流评估光照强度。
本申请的优点在于:通过在掺杂层采用横向电场,主动使信号电荷向像素内聚集,抑制串扰的能力更强,而且无需浅槽隔离,可以使像素单元进一步缩小。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选事实方案的目的,而并不认为是对本申请的限制。而且在整个附图中,用同样的参考符号表示相同的部件。在附图中:
图1是本申请提供的一种适应亚微米像素的UTBB光电探测器的结构图;
图2是本申请提供的一种适应亚微米像素的UTBB光电探测器阵列的结构图;
图3是本申请提供的一种适应亚微米像素的UTBB光电探测器的探测方法的步骤示意图;
图4是本申请提供的一种适应亚微米像素的UTBB光电探测器的探测方法的光照前后PN结与埋氧层界面处电势分布图;
图5是本申请提供的一种适应亚微米像素的UTBB光电探测器的探测方法的光照前后MOS管转移特性曲线图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
根据本申请的实施方式,提出一种适应亚微米像素的UTBB光电探测器,如图1所示,包括:硅膜层、埋氧层、掺杂层和衬底,所述衬底、掺杂层、埋氧层和硅膜层依次从下至上设置;
硅膜层包括相邻的一个NMOS管和一个PMOS管;
掺杂层包括多个交替排列的N型掺杂区和P型掺杂区。
NMOS管为一个像素单元,PMOS管为一个像素单元;
NMOS管的源端和漏端被隔在NMOS管的沟道两端,NMOS管的栅端在NMOS管的沟道上;
PMOS管的源端和漏端被隔在PMOS管的沟道两端,PMOS管的栅端在PMOS管的沟道上。
NMOS管和PMOS管的沟道长度为20至100纳米,源端长度为20至90纳米,漏端长度为20至90纳米。
硅膜层的硅膜厚度为5至20纳米。
硅膜厚度为沟道的厚度,沟道上方的是栅端,硅膜厚度不包括栅端的厚度。源端和漏端突出的部分是为了减小源端和漏端的电阻所做的源漏抬升,为UTBB工艺中常见的结构,所以硅膜厚度也不包括源端和漏端突出的部分。
埋氧层厚度为10至30纳米。
掺杂层的深度为50至1000纳米,P型掺杂区和N型掺杂区的掺杂浓度为1×1016至1×1018立方厘米。
掺杂层的P型掺杂区和N型掺杂区的掺杂浓度和面积可以分别调整。
P型掺杂区和N型掺杂区的位置可以互相交换。
掺杂层的P型掺杂区和N型掺杂区的位置与硅膜层的NMOS管和PMOS管在横向方向上的相对位置可以调整。
第二方面,本申请提出了一种适应亚微米像素的UTBB光电探测器阵列,如图2所示,包括:由M×N个光电探测器组成的光电探测器阵列,其中M和N为大于等于2的自然数。
光电探测器阵列包括多列字线、多行位线、公共N型掺杂区电极和公共源极,其中,所有NMOS管的源极和PMOS管的源极与公共源极相连,掺杂层的所有N型掺杂区与所述公共N型掺杂区电极相连,每列光电探测器的栅极和与其对应的字线相连,每行光电探测器的漏极和与其对应的位线相连。
如图2所示,所有NMOS管源极(端)和PMOS管源极接公共源极Vs,并置0电位,衬底中所有N型掺杂区接公共N型掺杂区电极Vn,每列器件栅极共接字线,每行器件漏极共接位线。器件复位时,所有字线置0电位,所有位线置0电位,N型掺杂区置负电位。信号收集时,所有字线和位线保持0电位,N型掺杂区置正电位。信号读取时,将所有位线的电压先置为+Vdd,依次选中连接NMOS管的字线,即奇数列字线,选中的字线电位置为+Vdd,通过位线读取每个NMOS管的信号电流。之后所有位线的电压置为-Vdd,依次选中连接PMOS管的字线,即偶数列字线,选中的字线电位置为-Vdd,通过位线读取每个PMOS管的信号电流。
第三方面,本申请提出了一种适应亚微米像素的UTBB光电探测器的探测方法,如图3所示,包括:
S101,对NMOS管栅端和漏端施加正电压,对PMOS管栅端和漏端施加负电压;
S102,埋氧层与掺杂层之间聚集的正电荷量根据光照强度改变,从而改变NMOS管或PMOS管的阈值电压和漏端电流;
S103,通过测量埋氧层上方硅膜层的漏端电流评估光照强度。
本申请实施例的光电探测方法主要分为复位、收集和读出三个过程。相应的电极偏置条件如表1所示。
表1
复位 收集 读取
NMOS管栅极电压 0 0 +Vdd
NMOS管漏极电压 0 0 +Vdd
NMOS管源极电压 0 0 0
PMOS管栅极电压 0 0 -Vdd
PMOS管漏极电压 0 0 -Vdd
PMOS管源极电压 0 0 0
N型掺杂区电压 Vreset +Vdd +Vdd
在复位阶段,MOS管的源、漏和栅极电压为零,使MOS管处于关断状态。在PN结的N端(N型掺杂区)施加一个复位脉冲信号Vreset(复位信号),将PN结正偏,正偏电流向浮置的P型掺杂区注入电荷并将P端(P型掺杂区)电压复位至初始电压。
PN结是由一个N型掺杂区和一个P型掺杂区紧密接触所构成的。
在收集阶段,将PN结的N端电压置为+Vdd(正电源电压),将PN结反偏,对器件(电探测器)进行曝光。入射光在器件下方的PN结中产生光生载流子,光生载流子在PN结自建电场的作用下分离。由于埋氧层上下存在电压差,埋氧层附近存在垂直方向的电场。进入P端的光生空穴在垂直方向电场的作用下在埋氧层下聚集。
在读取阶段,通过埋氧层上方MOSFET漏端电流来读出光信号。NMOS管的栅极和漏极均置正电压,PMOS管的栅极和漏极均置负电压。如图4所示,为光照前后PN结与埋氧层界面处电势分布。埋氧层下方聚集的空穴将埋氧层与衬底界面处的电势抬升,并通过埋氧层作用于上方MOS管器件沟道,使埋氧层形成类似于电容器的结构,使NMOS管沟道中的反型载流子增多,阈值电压减小。相应的,PMOS管件沟道中的反型载流子减少,阈值电压增大。
如图5所示,为光照前后MOS管转移特性曲线。其中,Vds为源端和漏端的电压。由于在不同的光照强度下,埋氧层下方衬底聚集的正电荷量不同,从而MOS管阈值电压不同,漏端电流不同。通过测量埋氧层上方MOS管漏端电流可以评估光照强度。
本申请的实施方式中,通过在掺杂层采用横向电场,主动使信号电荷向像素内聚集,抑制串扰的能力更强,而且无需浅槽隔离,可以使像素单元进一步缩小。与CMOS-APS光电器件阵列结构相比,本申请实施方式的阵列中,每个像素点仅需单个器件能完成感光功能,能有效减小像素单元尺寸。采用横向PN结感光结构,PN结的横向自建电场与埋氧层下垂直方向电场共同作用,使得光生电子可以漂移并聚集在埋氧层下方。横向电场的存在提高了光电转化效率,抑制了像素间串扰,使其更适合于亚微米像素。通过采用横向PN结感光并抑制串扰,节省了浅槽隔离的面积,使其更适合于亚微米像素。
以上所述,仅为本申请较佳的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (8)

1.一种适应亚微米像素的UTBB光电探测器,其特征在于,包括:硅膜层、埋氧层、掺杂层和衬底,所述衬底、掺杂层、埋氧层和硅膜层依次从下至上设置;
所述硅膜层包括相邻的一个NMOS管和一个PMOS管;
所述掺杂层包括多个交替排列的N型掺杂区和P型掺杂区;
所述埋氧层为一个整体;
所述NMOS管为一个像素单元,所述PMOS管为一个像素单元;
所述NMOS管的源端和漏端被隔在NMOS管的沟道两端,NMOS管的栅端在NMOS管的沟道上;
所述PMOS管的源端和漏端被隔在PMOS管的沟道两端,PMOS管的栅端在PMOS管的沟道上;
所述NMOS管的沟道与其中一个所述P型掺杂区相对应,与所述埋氧层共同形成一个电容器结构;
所述PMOS管的沟道与其中另一个所述P型掺杂区相对应,与所述埋氧层共同形成一个电容器结构。
2.如权利要求1所述的光电探测器,其特征在于,所述NMOS管和所述PMOS管的沟道长度为20至100纳米,源端长度为20至90纳米,漏端长度为20至90纳米。
3.如权利要求1所述的光电探测器,其特征在于,所述硅膜层的硅膜厚度为5至20纳米。
4.如权利要求1所述的光电探测器,其特征在于,所述埋氧层厚度为10至30纳米。
5.如权利要求1所述的光电探测器,其特征在于,所述掺杂层的深度为50至1000纳米,所述P型掺杂区和所述N型掺杂区的掺杂浓度为1×1016至1×1018/立方厘米。
6.一种适应亚微米像素的UTBB光电探测器阵列,其特征在于,包括:由M×N个上述权利要求1-5任意一项所述的光电探测器组成的光电探测器阵列,其中M和N为大于等于2的自然数。
7.如权利要求6所述的UTBB光电探测器阵列,其特征在于,所述光电探测器阵列包括多列字线、多行位线、公共N型掺杂区电极和公共源极,其中,所有NMOS管的源极和PMOS管的源极与公共源极相连,掺杂层的所有N型掺杂区与所述公共N型掺杂区电极相连,每列光电探测器的栅极和与其对应的字线相连,每行光电探测器的漏极和与其对应的位线相连。
8.一种适应亚微米像素的UTBB光电探测器的探测方法,其特征在于,通过权利要求1-5任一项所述的UTBB光电探测器实现,所述探测方法包括:
对NMOS管栅端和漏端施加正电压,对PMOS管栅端和漏端施加负电压;
埋氧层与掺杂层之间聚集的正电荷量根据光照强度改变,从而改变NMOS管或PMOS管的阈值电压和漏端电流;
通过测量埋氧层上方硅膜层的漏端电流评估光照强度。
CN201910785417.6A 2019-08-23 2019-08-23 一种适应亚微米像素的utbb光电探测器、阵列和方法 Active CN110581190B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910785417.6A CN110581190B (zh) 2019-08-23 2019-08-23 一种适应亚微米像素的utbb光电探测器、阵列和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910785417.6A CN110581190B (zh) 2019-08-23 2019-08-23 一种适应亚微米像素的utbb光电探测器、阵列和方法

Publications (2)

Publication Number Publication Date
CN110581190A CN110581190A (zh) 2019-12-17
CN110581190B true CN110581190B (zh) 2021-11-02

Family

ID=68812323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910785417.6A Active CN110581190B (zh) 2019-08-23 2019-08-23 一种适应亚微米像素的utbb光电探测器、阵列和方法

Country Status (1)

Country Link
CN (1) CN110581190B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113270509B (zh) * 2021-04-16 2022-09-30 中国航天科工集团第二研究院 一种面阵探测器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5859462A (en) * 1997-04-11 1999-01-12 Eastman Kodak Company Photogenerated carrier collection of a solid state image sensor array
KR100642760B1 (ko) * 2005-03-28 2006-11-10 삼성전자주식회사 이미지 센서 및 그 제조 방법
CN108666336B (zh) * 2018-05-29 2020-09-11 北京大学 一种utbb光电探测器阵列及其工作方法

Also Published As

Publication number Publication date
CN110581190A (zh) 2019-12-17

Similar Documents

Publication Publication Date Title
CN209389038U (zh) 图像传感器
KR100256835B1 (ko) 자동 블루밍 방지와 넓은 다이나믹 레인지를 갖는 단일 스플릿 게이트 mos 트랜지스터 액티브 화소 센서 셀
US8471310B2 (en) Image sensor pixels with back-gate-modulated vertical transistor
US6586789B1 (en) Pixel image sensor
US20090039397A1 (en) Image sensor structure
CN108666336B (zh) 一种utbb光电探测器阵列及其工作方法
US9425225B2 (en) Solid-state imaging device
JP4165250B2 (ja) 固体撮像装置
US8212327B2 (en) High fill-factor laser-treated semiconductor device on bulk material with single side contact scheme
US10418402B2 (en) Near ultraviolet photocell
KR100545801B1 (ko) 전자기 복사 탐지기, 이러한 탐지기를 사용하는 고감도 픽셀구조 및 이러한 탐지기 제조방법.
WO2022070655A1 (ja) フォトディテクタ、フォトディテクタアレイおよび駆動方法
WO2012011585A1 (ja) 光電変換セル及びアレイとその読み出し方法と回路
US10734432B2 (en) Imaging device
CN110581190B (zh) 一种适应亚微米像素的utbb光电探测器、阵列和方法
CN108493202B (zh) 一种适应亚微米像素的utbb光电探测元件及装置
CN111063702B (zh) 一种utbb光电探测器像素单元、阵列和方法
KR100790587B1 (ko) 커플링 캐패시터를 사용하는 핀드 포토다이오드를 포함하는이미지 센서 픽셀 및 그의 신호 감지 방법
CN108933149B (zh) 成像传感器像素及系统
JP3891125B2 (ja) 固体撮像装置
JP3919378B2 (ja) 受光素子及びそれを用いた光電変換装置
US20230387149A1 (en) Optical sensor
JP2020161739A (ja) 光検出器
JP2006173487A (ja) 撮像デバイス
JPS63224373A (ja) 増幅機能を有する受光素子およびその製作法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant