CN110577955B - 梨bZIP家族新转录本PybZIPa及其重组表达载体的应用 - Google Patents

梨bZIP家族新转录本PybZIPa及其重组表达载体的应用 Download PDF

Info

Publication number
CN110577955B
CN110577955B CN201910935158.0A CN201910935158A CN110577955B CN 110577955 B CN110577955 B CN 110577955B CN 201910935158 A CN201910935158 A CN 201910935158A CN 110577955 B CN110577955 B CN 110577955B
Authority
CN
China
Prior art keywords
pybzipa
pear
anthocyanin
seq
artificial sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910935158.0A
Other languages
English (en)
Other versions
CN110577955A (zh
Inventor
吴俊�
刘海楠
谢智华
姚改芳
张绍铃
李甲明
张明月
赵可娇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Agricultural University
Original Assignee
Nanjing Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Agricultural University filed Critical Nanjing Agricultural University
Priority to CN201910935158.0A priority Critical patent/CN110577955B/zh
Publication of CN110577955A publication Critical patent/CN110577955A/zh
Application granted granted Critical
Publication of CN110577955B publication Critical patent/CN110577955B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/825Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving pigment biosynthesis

Abstract

本发明公开了梨bZIP家族新转录本PybZIPa及其重组表达载体的应用。PybZIPa转录因子核苷酸序列如SEQ ID No.1所示,其编码的氨基酸序列为序列表SEQ ID No.2所示。通过农杆菌介导的瞬时遗传转化法将PybZIPa转化烟草叶片、草莓和梨果实,经生物学功能验证,表明本发明提供的PyZIPa基因能够促进光诱导条件下的梨果皮花青苷的合成。

Description

梨bZIP家族新转录本PybZIPa及其重组表达载体的应用
技术领域
本发明属于植物分子基因工程技术领域,涉及梨bZIP家族新转录本PybZIPa及其重组表达载体的应用。
背景技术
我国栽培的亚洲梨类型中红皮梨资源相对较少,其着色容易受光照、温度等环境因素的影响,而这种受环境影响的着色不稳定,极大的影响红梨的商业价值。梨的红皮色泽是花青素积累的结果,其颜色类型和深浅由花青苷的生物合成水平和比例决定。光(包括光周期、光强和光质)是影响花青苷生物合成的重要环境因子。光照对花青素生物合成的影响已经在很多物种上报道:如荔枝(Litchi chinensis)(Wei et al.,2011)、葡萄(Vitis L.)(Azuma et al.,2012)、杨梅(Myrica rubra)(Niu et al.,2010)、越桔(Vaccinium spp.)(Uleberg et al.,2012)、覆盆子(Rubus idaeus)(Wang et al.,2009)等。在蔷薇科植物中,光照对花青苷的合成也具有重要意义,如在草莓(Kadomura-Ishikawa et al.,2013),桃(Jia et al.,2005;Ravaglia et al.,2013),梨(Bai et al.,2017;Feng et al.,2010),苹果(Sun et al.,2014;Takos et al.,2006;Takos et al.,2015;Feng et al.,2013)均有报道。光诱导的花青苷生物合成机制的研究已取得一定进展,如拟南芥CONSTITUTIVE PHOTOMORPHOGENIC1(COP1)(光信号转导途径的“中枢调节器”,抑制黑暗中的光形态建成)能够通过WD40结构域与上游光受体蛋白(如CRY1,CRY2,PHYA,PHYB和UVR8)互作,还通过泛素化降解下游基因(Kang et al.,2009;Ma et al.,2002;Wu et al.,2012),该基因的泛素化对于光形态建成(包括花青苷积累)具有重要影响。在COP1的众多下游基因中,LONG HYPOCOTYL 5(HY5,bZIP转录因子)与光形态建成、紫外抗性和花青苷合成直接相关(Lau et al.,2012;Stracke et al.,2010)。HY5通过与B-Box蛋白(BBXs)互作调控花青苷生物合成。不仅如此,HY5与BBXs还存在调控与被调控的关系(An et al.,2019;Yadav et al.,2019;Heng et al.,2019;Bai et al.,2014)。
光照影响着植物的多种代谢途径(Casati et al.,2011;Stushnoff et al.,2010;Kong et al.,2016),但光诱导的花青苷生物合成的调控网络尚不清楚。得益于功能基因组学、代谢组学、蛋白质组学和表观遗传学等先进技术的发展,多组学联合分析已经在植物生长(Persson et al.,2005;Sekhon et al.,2012;
Figure BDA0002221421240000011
et al.,2014)、环境响应(Caldana et al.,2011;Cho et al.,2008;Tan et al.,2015)和其他生物过程(Cho etal.,2016;Hirai et al.,2007;Gutierrez et al.,2008)得到应用。特别是转录组和代谢组的联合分析,二者的关联分析直接揭示了基因和代谢产物的关系,不仅在拟南芥中(Caldana et al.,2011;Hirai et al.,2007;Cohen et al.,2017;Hirai et al.,2004),还在柑橘(
Figure BDA0002221421240000021
et al.,2014;Tan et al.,2015;Lu et al.,2017)、葡萄(Agudelo-Romero et al.,2015;Fortes et al.,2011)、猕猴桃(Liu et al.,2018)、荔枝(Yun etal.,2016)和无花果(Wang et al.,2017)等果树上得到应用。梨花青苷生物合成机理虽然已经取得了一些进展,如花青苷合成基因(如ANS,DFR,UFGT等)和转录调控复合体(如MYB-bHLH-WD40,MYB-bHLH-ERF)(Zhang et al.,2011;Yao et al.,2017)。然而,在受光照影响的花青苷生物合成过程中,差异表达基因和差异代谢物联合分析鲜有报道。本发明涉及多组学联合分析(转录组和代谢组)挖掘梨光诱导的花青苷合成关键基因,并明确其调控的作用机制,为梨着色调控和遗传改良提供重要的基因资源。
发明内容
本发明旨在提供一种促进光诱导的花青苷合成的转录因子PybZIPa基因。
本发明的另一目的是提供该基因的应用。
本发明的目的可通过以下技术方案实现:
一种分离自‘满天红’梨具有调控果皮中光诱导的花青苷合成功能的PybZIPa转录因子,筛选自转录组和代谢组关联分析结果,是bZIP家族的新转录本,其核苷酸序列如SEQID No.1所示,包含765bp的开放阅读框;编码218个氨基酸,其编码的氨基酸序列如SEQ IDNo.2所示,等电点为5.58,分子量为24.3kDa。
含有本发明所述PybZIPa基因的重组表达载体。
所述的重组表达载体,优选pSAK277表达载体,所述PybZIPa基因的插入位点为EcoR I和Xba I之间。
含有本发明所述PybZIPa基因的宿主菌。
克隆本发明所述PybZIPa基因cDNA序列的引物对,上游引物PybZIPa-EcoR I-F序列如SEQ ID No.3所示,下游引物PybZIPa-Xba I-R序列如SEQ ID No.4所示。
本发明所述的PybZIPa基因促进光诱导的梨果皮花青苷合成的应用。本发明所述PybZIPa基因能够通过结合PyUFGT启动子上串联的G-box元件上调PyUFGT的表达,同时通过G-box元件调控花青苷合成相关转录因子PyMYB114,PyMYB10,PyBBX22的表达,另外还可以激活自身启动子的转录活性,最终促进光诱导的梨果皮花青苷合成。所述的PyUFGT、PyMYB114、PyMYB10、PyBBX22和PybZIPa基因启动子序列依次如SEQ ID No.5,SEQ ID No.6,SEQ ID No.7,SEQ ID No.8和SEQ ID No.9所示。
本发明所述的含有PybZIPa基因的重组表达载体在促进梨果皮花青苷合成中的应用。
有益效果
与现有技术相比,本发明具有以下优点和效果:
1.本发明PybZIPa基因筛选自‘满天红’果皮转录组和代谢组数据的联合分析结果,本发明PybZIPa是bZIP家族的新转录本,该新转录本与已经注释的花青苷调控相关bZIP家族成员的同源率仅31-32%,并且分别处在不同的染色体位置。较其他bZIP家族成员,本发明PybZIPa的表达对光诱导的花青苷合成具有更加强烈的响应。
2.本发明PybZIPa基因在促进光诱导的梨果实花青苷合成的应用,为红皮梨的分子育种提供新的基因资源,还拓展了光环境因子对梨果皮花青苷合成的调控机理,该遗传资源的开发利用有利于提高梨外观品质和市场价值。
3.通过农杆菌介导的瞬时转化方法,转录因子PybZIPa促进烟草叶片、梨果皮和草莓果实花青苷的积累,并经生物学功能验证,表明本发明克隆的PybZIPa具有通过调控花青苷合成结构基因和重要转录调控因子促进光诱导的梨果皮花青苷合成的功能。
附图说明
图1为‘满天红’梨套袋、去袋后的表型图和花青苷组分测定。‘满天红’梨在花后35天进行套袋处理(外黄内黑双层梨专用袋),于成熟前10天去袋。B1,B2,B3是去袋后第4,8,10天的果皮;A1,A2,A3是对应时期未去袋的果皮。A.‘满天红’梨套袋、去袋后的表型。B.‘满天红’梨套袋、去袋后花青苷含量变化和组分测定。
图2为‘满天红’梨套袋、去袋果皮中光响应和花青苷代谢通路基因的表达模式图。热图表明,去袋果皮中花青苷代谢通路基因显著高于未去袋果皮。
图3为PybZIPa以及花青苷结构基因和重要转录因子在‘满天红’梨套袋、去袋果皮中的表达模式图。花青苷结构基因包括:PyCHI,PyANS,PyUFGT;重要转录因子:PyMYB114,PyMYB10和PyBBX22。
图4为本发明PybZIPa的亚细胞定位与其他家族成员的比较分析图。A.本发明PybZIPa的染色体位置和亚细胞定位情况。B.拟南芥和蔷薇科果树HY5转录因子的系统发育树分析和保守结构域分析。
图5为本发明PybZIPa促进花青苷的积累和花青苷结构基因的表达。A.烟草叶片(I)、梨果皮(II)和草莓果实(III)着色的表型图。B.过表达PybZIPa后花青苷合成相关基因的表达模式图。注:Empty vector:pSAK277(空载)表型;PybZIPa OE:过表达PybZIPa表型。
图6通过双荧光素酶,酵母单杂交(Y1H)验证本发明PybZIPa对花青苷合成结构基因和重要转录调控因子的调控作用。A.双荧光素酶实验载体的构建,启动子作用元件分析和双荧光素酶的检测。B.酵母单杂结果图。
图7为本发明PybZIPa调控光诱导的花青苷合成调控模式图。梨果去袋后,PybZIPa强烈响应光照,并通过结合G-box元件调控花青苷合成结构基因和重要转录调控因子,同时还能够激活自身启动子,最终促进了梨果皮光诱导的花青苷合成。
具体实施方式
以下结合具体实施例对本发明做出详细的描述。根据以下的描述和这些实施例,本领域技术人员可以确定本发明的基本特征,并且在不偏离本发明精神和范围的情况下,可以对本发明做出各种改变和修改,以使其适用各种用途和条件。
实施例1本发明‘满天红’套袋、去袋果皮花青苷含量的变化
‘满天红’去袋组和套袋组果皮中总花青苷含量差异显着。随着光照时间的延长,去袋果皮红色逐渐加深,而套袋组果皮呈现淡黄色(图1A)。去袋果皮的花青苷含量持续上升,其花青苷的主要组分为矢车菊素半乳糖苷、矢车菊素葡萄糖苷、矢车菊素半乳糖苷和芍药素半乳糖苷(图1B)。我们选取去袋后第4、8和10天的果皮(未去袋果皮为对照组)进行RNA-seq分析,发现花青苷代谢结构基因和光响应因子在去袋和未去袋组果皮中差异表达(图2)。
实施例2本发明‘满天红’套袋、去袋组果皮中PybZIPa和花青苷相关基因的表达模式分析
通过RNA-seq数据和代谢组数据的联合分析筛选出了一个bZIP家族新转录本PybZIPa基因,该基因在‘满天红’的去袋组果皮中的表达量显著高于未去袋果(图3)。除此之外,花青苷代谢相关结构基因(PyCHI、PyF3'H、PyANS和PyUFGT)、重要转录调控因子(PyMYB114、PyMYB10和PyBBX22)的表达量也高于去袋组果皮(图3)。RT-qPCR分析PybZIPa所用的正向引物是5’-CTACAATCGCAAATGCCACC-3’(SEQ ID No.10),反向引物是5’-CACCCTGTTCCTTAGCAATCTC-3’(SEQ ID No.11);
PyCHI所用的正向引物是5’-AAGGATTCCGTCATCACAT-3’(SEQ ID No.12),反向引物是5’-GTCCCACCCAAATACCAT-3’(SEQ ID No.13);
PyF3'H所用的正向引物是5’-CCACATCTAGCCGTTGA-3’(SEQ ID No.14),5’-CCCACAGTTTAGGGTCTC-3’(SEQ ID No.15);
PyANS所用的正向引物是5’-AAGTATGCCAATGACCAGG-3’(SEQ ID No.16),5’-GCTCTTCAAGTCCACCAAC-3’(SEQ ID No.17);
PyUFGT所用的正向引物是5’-CCCGTTGTCGGTGTTGTT-3’(SEQ ID No.18),反向引物是5’-ATCCGCATAGTCGCTTGG-3’(SEQ ID No.19);
PyMYB114基因的正向引物是5’-CAAAAGCCACATCCGTCATAA-3’(SEQ ID No.20),反向引物是:5’-AGGTCTTCCCCTAACCCTAAACT-3’(SEQ ID No.21);
PyMYB10基因的正向引物是5’-CACAAACGTCGTCGTCAACAA-3’(SEQ ID No.22),反向引物是:5’-CCGACAGTCGATCATCAAACC-3’(SEQ ID No.23);
PyBBX22基因的正向引物是5’-AAGGTTCACAAAGCGAATAAGC-3’(SEQ ID No.24),反向引物是:5’-GAAGACGCCCCAACACAA-3’(SEQ ID No.25)。
表1为‘满天红’梨套袋、去袋果皮中的转录组差异表达情况。经差异表达分析,共获得1685个共有差异表达基因,其中包括一个bZIP家族新转录本——命名为PybZIPa。
表1‘满天红’梨套袋、去袋果皮中的转录组差异表达情况
Figure BDA0002221421240000051
Figure BDA0002221421240000061
实施例3本发明‘满天红’中PybZIPa基因的克隆和相关重组载体的构建
‘满天红’梨果皮RNA提取使用Plant Total RNA Isolation Kit Plus(成都福际生物技术有限公司,中国,RE-05022)(按照该试剂盒提供的操作说明书操作)。cDNA第一链的合成用First Script Strand cDNA Synthesis SuperMix(北京全式金生物(TransGenBiotech),中国,AE301-02)反转录试剂盒(按照该试剂盒提供的说明书操作)。经反转录得到的第一链cDNA用于PybZIPa基因全长的扩增。扩增基因引物对为PybZIPa-EcoR I-F:5’-actagtggatccaaagaattcATGTCAGTCCCAATCAGAGC-3’(SEQ ID No.3);PybZIPa-Xba I-R:5’-tcattaaagcaggactctagaCTTAACTGATCCTTGC-3’(SEQ ID No.4)。超保真DNA聚合酶
Figure BDA0002221421240000064
Super-Fidelity DNA Polymerase(诺唯赞生物科技公司,中国,P505-d1)用于PybZIPa基因全长的克隆。扩增的反应体系按照推荐体系:50μL反应体系包括200ng cDNA,25μL 2×Phanta Max Buffer,1μL 10mM dNTP,1μL Phanta Max Super-Fidelity DNA Polymerase(1U/μl),各2μL上述引物(10μM),加ddH2O补至50μL。PCR反应在Eppendorf PCR仪上进行,反应程序如下:95℃,预变性3分钟,95℃变性15秒,60℃退火15秒,72℃延伸60秒,35个热循环,72℃延伸10分钟,4℃保存。
用1%的琼脂糖凝胶电泳检测PCR产物,用FastPure Gel DNA Extraction MiniKit胶回收/DNA纯化试剂盒胶回收试剂盒(诺唯赞生物科技公司,中国,DC301)回收目标DNA片段,具体实验操作参照使用说明。使用重组酶
Figure BDA0002221421240000062
II One Step Cloning Kit(诺唯赞生物科技公司,中国,C112-01)进行目标DNA片段与双酶切线性化pSAK277载体(EcoR I/Xba I)的连接反应,按说明书步骤操作。连接反应体系总体积是10μL,包括2μL 5×CE II Buffer,50-200ng线性化载体,50-200ng目标插入片段,1μL
Figure BDA0002221421240000063
II。PCR仪控温37℃反应30min。反应产物直接用于大肠杆菌的转化,采用热击法(详见《分子克隆实验手册》第三版,科学出版社,2002)将上述反应产物转化至大肠杆菌(DH5α)感受态细胞中,在含有50mg/L壮观霉素(SP+)的LB固体平板中进行阳性克隆的筛选,挑取3-5个阳性克隆测序(由生工生物工程(上海)股份有限公司完成),测序正确的重组载体命名为pSAK-bZIPa。测序结果表明,PybZIPa基因全长为657bp,其核苷酸序列为SEQ ID No.1所示。
PyUFGT、PyMYB114、PyMYB10、PyBBX22和PybZIPa启动子克隆的模板是‘满天红’梨果皮的DNA(‘满天红’梨果皮DNA提取采用改良CTAB法),PyUFGT启动子扩增的正/反向引物序列是:5’-gtcgacggtatcgataagcttCCTTGTGGGTAATGGTTT-3’(SEQ ID No.26)/5’-agaactagtggatcccccgggAAATAACAGTGGGACCTA-3’(SEQ ID No.27);PyMYB114和PyMYB10启动子扩增的正/反向引物序列分别是:5’-gtcgacggtatcgataagcttTCATTAAAAATTGCTAATTACATTCTTAATATT-3’(SEQ ID No.28)/5’-agaactagtggatcccccgggTATTCCCAGCAAATTACTATCCTCC-3’(SEQ ID No.29);5’-gtcgacggtatcgataagcttAGTTAGTAGAATTATCTAAATATCTCTAACATGATG-3’(SEQ ID No.30)/5’-agaactagtggatcccccgggCTCGTATCTGCTAGCAGCTAAGCT-3’(SEQ IDNo.31)。
PyBBX22和PybZIPa启动子PCR扩增的正/反向引物序列是:5’-gtcgacggtatcgataagcttGTCGAAAATTGATAGGTGTGTGTGA-3’(SEQ ID No.32)/5’-agaactagtggatcccccgggCGGGGAGGATCCTGTTGACA-3’(SEQ ID No.33);5’-gtcgacggtatcgataagcttTCTTTTACATTGAAAAGGCCTTTCC-3’(SEQ ID No.34)/5’-agaactagtggatcccccgggGGCTGGCTTATGAGCTCTCTCTC-3’(SEQ ID No.35)。
PCR产物的回收同实施例3,回收纯化的DNA溶液与双酶切(Hind III/Sma I)的线性LUC0800载体的连接反应同实施例3,连接产物经热击法转化至大肠杆菌感受态细胞中,在含有50mg/L卡那霉素(K+)的LB固体平板中筛选阳性克隆,挑取3-5个阳性克隆测序(由生工生物工程(上海)股份有限公司完成)。测序结果表明,PyUFGT启动子序列含有3个串联的G-box元件,其核苷酸序列为SEQ ID No.5所示,构建重组载体分别命名为0800-PyUFGT。PyMYB114和PyMYB10启动子序列各含有1和2个G-box元件,其核苷酸序列为SEQ ID No.6和SEQ ID No.7所示,构建的重组载体分别命名为0800-PyMYB114;0800-PyMYB10;PyBBX22和PybZIPa启动子序列含有2和3个G-box元件,其核苷酸序列为SEQ ID No.8和SEQ ID No.9所示,构建的重组载体分别命名为为0800-PyBBX22;0800-PybZIPa。采用冻融法将上述重组载体转入农杆菌GV3101中。
实施例4本发明PybZIPa基因亚细胞定位、聚类分析及其瞬时表达。
为进一步研究PybZIPa,我们进行了亚细胞定位实验,结果表明PybZIPa定位于细胞核(图4A)。基于PybZIPa测序结果进行了聚类和保守结构域分析,结果表明PybZIPa含有典型的bZIP-like结构域,且与已经注释的HY5转录因子属不同分支(图4B)。进一步序列比对结果表明,本发明PybZIPa与已经注释的HY5转录因子的氨基酸序列同源性仅31-32%。
将pSAK-bZIPa重组载体经农杆菌介导的瞬时转化法分别注射到:烟草叶片、草莓‘Yellow wonder’5AF7(YW5AF7)果实(花后2周)以及接近成熟期的‘早酥’梨。以pSAK277空载为阴性对照。结果表明:空载没有色素沉积,PybZIPa则能够促进烟草叶片,梨果皮和草莓果实的花青苷积累(图5A)。过表达PybZIPa基因,使得‘早酥’梨果皮中花青苷合成结构基因上调表达,尤其是PyUFGT基因(图5B)。
实施例5双荧光素酶和酵母单杂交验证PybZIPa对PyUFGT基因的调控作用
为了验证PybZIPa对PyUFGT基因的调控作用,首先对PyUFGT基因的启动子进行分析(启动子顺式作用元件分析采用PlantCARE:http://bioinformatics.psb.ugent.be/ webtools/plantcare/html/),发现该启动子存在3个串联的G-box元件,利用双荧光素酶报告系统进行检测:采用农杆菌介导的瞬时转化法,将pASK-PybZIPa和0800-PyUFGT(按照10:1的比例)共转化至本氏烟草(Nicotiana benthamiana)叶片(转化方法参照Hellens etal.,2005),利用Dual-Luciferase Reporter(DLR)Assay Systems(Promega,E1910)进行萤光素酶检测(具体操作参见试剂盒说明书)(结果见图6A)。继而利用酵母单杂交系统做进一步验证:克隆参照实例3的方法并将PybZIPa CDs全长序列插入到pGADT7载体(Clontech)(载体名称为AD-PybZIPa),PyUFGT基因的启动子序列插入pABAi载体(Clontech)(Kpn I/Xho I)(载体名称为pABAi-pro-PyUFGT)。首先将pABAi-pro-PyUFGT转化至Y1H Gold酵母感受态细胞中(转化方法参见Clontech酵母单杂转化体系),在SD-Ura的培养基上生长,经PCR鉴定(采用2×UTaq PCR MasterMix(含染料),ZT201A,北京庄盟国际生物基因科技有限公司,中国)后再把转化子转移到含有不同浓度AbA(金胆子素)的培养基上筛选合适的AbA浓度。用SD-Ura的液体培养基将转化子在28℃,200rpm进行过夜摇培,收集菌体并制作含有pABAi-pro-PyUFGT的酵母感受态,将AD-PybZIPa转化到该感受态细胞中(转化方法同前),在SD-Leu的培养基上生长,之后将转化子在含有合适AbA浓度的SD-Leu平板上进行培养(结果见图6B)。
实施例6双荧光素酶和酵母单杂交验证PybZIPa对PyMYB114、PyMYB10、PyBBX22基因和自身的调控作用
为验证PybZIPa对花青苷合成相关转录调控因子(PyMYB114、PyMYB10和PyBBX22)及其自身是否存在调控作用,我们对PyMYB114、PyMYB10、PyBBX22和PybZIPa基因的启动子进行分析(启动子顺式作用元件分析采用PlantCARE:http:// bioinformatics.psb.ugent.be/webtools/plantcare/html/),发现他们的启动子序列中至少含有1个G-box元件。因此,利用双荧光素酶报告系统进行检测:采用农杆菌介导的瞬时转化法,将以下组合:pASK-PybZIPa/0800-PyMYB114,pASK-PybZIPa/0800-PyMYB10,pASK-PybZIPa/0800-PyBBX22和pASK-PybZIPa/0800-PybZIPa按照10:1的比例共转化至本氏烟草(Nicotiana benthamiana)叶片(转化方法参照Hellens et al.,2005),利用Dual-Luciferase Reporter(DLR)Assay Systems(E1910,Promega,美国)进行萤光素酶检测(具体操作参见试剂盒说明书)(结果见图6A)。基于双荧光素酶报告系统的结果,我们利用酵母单杂交系统做进一步验证:克隆参照实例3的方法并将PyMYB114、PyMYB10、PyBBX22和PybZIPa基因的启动子分别序列插入pABAi载体(Clontech)(Kpn I/Xho I)(载体名称为pABAi-pro-PyMYB114、pABAi-pro-PyMYB10、pABAi-pro-PyBBX22和pABAi-pro-PybZIPa)。首先将pABAi-pro-PyMYB114、pABAi-pro-PyMYB10、pABAi-pro-PyBBX22和pABAi-pro-PybZIPa分别转化至Y1H Gold酵母感受态细胞中(转化方法参见Clontech酵母单杂转化体系),在SD-Ura的培养基上生长,经PCR鉴定(采用2×UTaq PCR MasterMix(含染料))后再把转化子转移到含有不同浓度AbA(金胆子素)的培养基上筛选合适的AbA浓度。用SD-Ura的液体培养基将转化子在28℃,200rpm进行过夜摇培,收集菌体并制作含有pABAi-pro-PyMYB114、pABAi-pro-PyMYB10、pABAi-pro-PyBBX22和pABAi-pro-PybZIPa的酵母感受态,将AD-PybZIPa分别转化到上述感受态细胞中(转化方法同前),在SD-Leu的培养基上培养,之后将转化子在含有合适AbA浓度的SD-Leu平板上进行培养(结果见图6B)。荧光素酶活性检测和酵母单杂交实验结果表明,PybZIPa能够通过结合G-box元件促进PyMYB114、PyMYB10、PyBBX22基因的表达,进而促进花青苷的合成(图7)。除此之外,PybZIPa还能够激活自身启动子的转录活性,进而扩大PybZIPa对花青苷的调控效应。
主要参考文献
1 Wei,Y.Z.et al.Differential expression of anthocyanin biosyntheticgenes in relation to anthocyanin accumulation in the pericarp of Litchichinensis Sonn.PLoS One 6,e19455(2011).
2 Azuma,A.,Yakushiji,H.,Koshita,Y.&Kobayashi,S.Flavonoidbiosynthesis-related genes in grape skin are differentially regulated bytemperature and light conditions.Planta 236,1067-1080(2012).
3 Niu,S.S.et al.Coordinated regulation of anthocyanin biosynthesis inChinese bayberry (Myrica rubra)fruit by a R2R3 MYB transcriptionfactor.Planta 231,887-899(2010).
4 Uleberg,E.et al.Effects of temperature and photoperiod on yield andchemical composition of northern and southern clones of bilberry(Vacciniummyrtillus L.).J.Agric.Food Chem.60,10406-10414(2012).
5 Wang,Z.,Gerstein,M.&Snyder,M.RNA-Seq:a revolutionary tool for transcriptomics.Nat.Rev.Genet.10,57-63(2009).
6 Kadomura-Ishikawa,Y.,Miyawaki,K.,Noji,S.&Takahashi,A.Phototropin 2is involved in blue light-induced anthocyanin accumulation in Fragaria×ananassa fruits.J.Plant Res.126,847-857(2013).
7 Jia,H.J.,Araki,A.&Okamoto,G.Influence of fruit bagging on aromavolatiles and skin coloration of‘Hakuho’peach(Prunus persica Batsch).Postharvest Biol.Tec.35,61-68(2005).
8 Ravaglia,D.et al.Transcriptional regulation of flavonoidbiosynthesis in nectarine(Prunus persica)by a set of R2R3 MYB transcriptionfactors.BMC Plant Biol.13,68(2013).
9 Bai,S.et al.Transcriptome analysis of bagging-treated red Chinesesand pear peels reveals light-responsive pathway functions in anthocyaninaccumulation.Sci.Rep.7,63(2017).
10 Feng,S.,Wang,Y.,Yang,S.,Xu,Y.&Chen,X.Anthocyanin biosynthesis inpears is regulated by a R2R3-MYB transcription factor PyMYB10.Planta 232,245-255(2010).
11 Sun,Y.et al.Postharvest pigmentation in red Chinese sand pears(Pyrus pyrifolia Nakai)in response to optimum light andtemperature.Postharvest Biol.Tec.91,64-71(2014).
12 Takos,A.M.et al.Light-induced expression of a MYB gene regulatesanthocyanin biosynthesis in red apples.Plant Physiol.142,1216-1232(2006).
13 Takos,M.A.,Robinson,P.S.&Walker,R.A.Transcriptional regulation ofthe flavonoid pathway in the skin of dark-grown‘Cripps’Red’apples in responseto sunlight.J.Hortic.Sci.Biotech.81,735-744(2015).
14 Feng,F.,Li,M.,Ma,F.&Cheng,L.Phenylpropanoid metabolites andexpression of key genes involved in anthocyanin biosynthesis in the shadedpeel of apple fruit in response to sun exposure.Plant Physiol.Biochem.69,54-61(2013).
15 Kang,C.Y.,Lian,H.L.,Wang,F.F.,Huang,J.R.&Yang,H.Q.Cryptochromes,phytochromes,and COP1 regulate light-controlled stomatal development inArabidopsis.Plant Cell 21,2624-2641(2009).
16 Ma,L.Genomic Evidence for COP1 as a Repressor ofLight-RegulatedGene Expression and Development in Arabidopsis.Plant Cell 14,2383-2398(2002).
17 Wu,D.et al.Structural basis of ultraviolet-B perception byUVR8.Nature 484,214-219(2012).
18 Lau,O.S.&Deng,X.W.The photomorphogenic repressors COP1 and DET1:20years later.Trends Plant Sci.17,584-593(2012).
19 Stracke,R.et al.The Arabidopsis bZIP transcription factor HY5regulates expression of the PFG1/MYB12 gene in response to light andultraviolet-B radiation.Plant Cell Environ.33,88-103(2010).
20 An,J.P.et al.MdBBX22 regulates UV-B-induced anthocyaninbiosynthesis through regulating the function of MdHY5 and is targeted byMdBT2 for 26S proteasome-mediated degradation.Plant Biotechnology Journal 1-3(2019).
21 Yadav,A.et al.The B-Box-Containing MicroProtein miP1a/BBX31Regulates Photomorphogenesis and UV-B Protection.Plant Physiol 179,1876-1892(2019).
22 Heng Y.et al.B-Box Containing proteins BBX30 and BBX31,actingdownstream of HY5,negatively regulate photomorphogenesis in Arabidopsis.PlantPhysiol 180,497-508(2019).
23 Bai,S.L.et al.An apple B-box protein,MdCOL11,is involved in UV-B-and temperature-induced anthocyanin biosynthesis.Planta 240,1051-1062(2014).
24 Casati,P.,Campi,M.,Morrow,D.J.,Fernandes,J.&Walbot,V.Transcriptomic,proteomic and metabolomic analysis of maize responses to UV-B:comparison of greenhouse and field growth conditions.Plant Signal Behav.6,1146-1153(2011).
25 Stushnoff,C.et al.Flavonoid profiling and transcriptome analysisreveals new gene-metabolite correlations in tubers of Solanum tuberosumL.J.Exp.Bot.61,1225-1238(2010).
26 Kong,S.G.&Okajima,K.Diverse photoreceptors and light responses inplants.J.Plant Res.129,111-114(2016).
27 Persson,S.,Wei,H.,Milne,J.,Page,G.P.&Somerville,C.R.Identificationof genes required for cellulose synthesis by regression analysis of publicmicroarray data sets.Proc.Natl.Acad.Sci.U.S.A.102,8633-8638(2005).
28 Sekhon,R.S.et al.Transcriptional and metabolic analysis ofsenescence induced by preventing pollination in maize.Plant Physiol.159,1730-1744(2012).
29
Figure BDA0002221421240000111
A.M.et al.Transcriptome and metabolome analysis of citrusfruit to elucidate puffing disorder.Plant Sci.217-218,87-98(2014).
30 Caldana,C.et al.High-density kinetic analysis of the metabolomicand transcriptomic response of Arabidopsis to eight environmentalconditions.Plant J.67,869-884(2011).
31 Cho,K.et al.Integrated transcriptomics,proteomics,and metabolomicsanalyses to survey ozone responses in the leaves of rice seedling.J.ProteomeRes.7,2980-2998(2008).
32 Tan,F.Q.et al.Comparative metabolic and transcriptional analysisof a doubled diploid and its diploid citrus rootstock(C.junos cv.Ziyangxiangcheng)suggests its potential value for stress resistance improvement.BMCPlant Biol.15,89(2015).
33 Wang,D.,Amornsiripanitch,N.&Dong,X.A genomic approach to identifyregulatory nodes in the transcriptional network of systemic acquiredresistance in plants.PLoS Pathog.2,e123(2006).
34 Cho,K.et al.Network analysis of the metabolome and transcriptomereveals novel regulation of potato pigmentation.J.Exp.Bot.67,1519-1533(2016).
35 Hirai,M.Y.et al.Omics-based identification of Arabidopsis Mybtranscription factors regulating aliphatic glucosinolate biosynthesis.Proc.Natl.Acad.Sci.U.S.A.104,6478-6483(2007).
36 Gutierrez,R.A.et al.Systems approach identifies an organicnitrogen-responsive gene network that is regulated by the master clockcontrol gene CCA1.Proc.Natl.Acad.Sci.U.S.A.105,4939-4944(2008).
37 Cohen,H.&Amir,R.Dose-dependent effects of higher methionine levelson the transcriptome and metabolome of transgenic Arabidopsis seeds.PlantCell Rep.36,719-730(2017).
38 Hirai,M.Y.et al.Integration of transcriptomics and metabolomicsfor understanding of global responses to nutritional stresses in Arabidopsisthaliana.Proc.Natl.Acad.Sci.U.S.A.101,10205-10210(2004).
39 Lu,X.P.et al.Transcriptome and Metabolome Analyses ProvideInsights into the Occurrence of Peel Roughing Disorder on Satsuma Mandarin(Citrus unshiu Marc.)Fruit.Front.Plant Sci.8,1907(2017).
40 Agudelo-Romero,P.et al.Transcriptome and metabolome reprogrammingin Vitis vinifera cv.Trincadeira berries upon infection with Botrytiscinerea.J.Exp.Bot.66,1769-1785(2015).
41 Fortes,A.M.et al.Transcript and metabolite analysis in Trincadeiracultivar reveals novel information regarding the dynamics of graperipening.BMC Plant Biol.11,149(2011).
42 Li,Y.et al.Combined Analysis of the Fruit Metabolome andTranscriptome Reveals Candidate Genes Involved in Flavonoid Biosynthesis inActinidia arguta.Int.J.Mol.Sci.19(2018).
43 Yun,Z.et al.Comparative transcriptome and metabolome provides newinsights into the regulatory mechanisms of accelerated senescence in litchifruit after cold storage.Sci.Rep.6,19356(2016).
44 Wang,Z.,Cui,Y.,Vainstein,A.,Chen,S.&Ma,H.Regulation of Fig(Ficuscarica L.)Fruit Color:Metabolomic and Transcriptomic Analyses of theFlavonoid Biosynthetic Pathway.Front.Plant Sci.8,1990(2017).
45 Zhang,H.et al.Genome-wide mapping of the HY5-mediated genenetworks in Arabidopsis that involve both transcriptional and post-transcriptional regulation.Plant J.65,346-358(2011).
46 Yao,G.et al.Map-based cloning of the pear gene MYB114 identifiesan interaction with other transcription factors to coordinately regulatefruit anthocyanin biosynthesis.Plant J.92,437-451(2017).
47 An,J.P.et al.The bZIP transcription factor MdHY5 regulatesanthocyanin accumulation and nitrate assimilation in apple.Hortic.Res.4,17023(2017).
48 Kim,D.H.et al.ARice B-Box Protein,OsBBX14,Finely RegulatesAnthocyanin Biosynthesis in Rice.Int.J.Mol.Sci.19(2018).
49 Shin,D.H.et al.HY5 regulates anthocyanin biosynthesis by inducingthe transcriptional activation of the MYB75/PAP1 transcription factor inArabidopsis.FEBS Lett.587,1543-1547(2013).
51 Xu,D.et al.BBX21,an Arabidopsis B-box protein,directly activatesHY5 and is targeted by COP1 for 26S proteasome-mediated degradation.Proc.Natl.Acad.Sci.U.S.A.113,7655-7660(2016).
52 Nobeli,I.&Thornton,J.M.Abioinformatician's view of themetabolome.Bioessays 28,534-545(2006).
53 Hellens,R.P.et al.Transient expression vectors for functionalgenomics,quantification of promoter activity and RNA silencing inplants.Plant Methods 1,13(2005).
序列表
<110> 南京农业大学
<120> 梨bZIP家族新转录本PybZIPa及其重组表达载体的应用
<160> 35
<170> SIPOSequenceListing 1.0
<210> 1
<211> 657
<212> DNA
<213> ‘满天红’梨(Pyrus pyrifolia)
<400> 1
atgtcagtcc caatcagagc aggagatgat gaagccaaaa accccatgtt atccatctcc 60
tcctcctcct ccagtttgga gcaactacag caagtacagc agccatctgg ttcttcttcc 120
ttggggcctc ctcatccttc tcttcttctt catagtaaca ccaagaacag taacaaacta 180
gacgttcctt ggttttggtc attggatgat gatgatgatg gtggtgatga tgttccagaa 240
gagagcgatg aagatatgtt cacggttccg gacgtggagg cgttgccccc tcctaataat 300
aatattaata atgcggcctc tacaatcgca aatgccacca gtaacaacaa caacccagat 360
gcccagtctg gctttccggc caagcgccgc cgaggccgaa atccggtcga taaggagtac 420
aggcgactga agagattgct aaggaacagg gtgtctgctc aacaagcccg ggagaggaaa 480
aaggtttacg tcaacgatct ggaatcaaga gccaaagaat tggatgatag gaattcaaag 540
ttggaagaaa agatctctac gcttgtcaat gaaaacacca tgcttcgaaa ggttcttatg 600
aacacaaggc caaaagtgga cgaaagtatc gagcaaaagc aaggatcagt taagtaa 657
<210> 2
<211> 218
<212> PRT
<213> ‘满天红’梨(Pyrus pyrifolia)
<400> 2
Met Ser Val Pro Ile Arg Ala Gly Asp Asp Glu Ala Lys Asn Pro Met
1 5 10 15
Leu Ser Ile Ser Ser Ser Ser Ser Ser Leu Glu Gln Leu Gln Gln Val
20 25 30
Gln Gln Pro Ser Gly Ser Ser Ser Leu Gly Pro Pro His Pro Ser Leu
35 40 45
Leu Leu His Ser Asn Thr Lys Asn Ser Asn Lys Leu Asp Val Pro Trp
50 55 60
Phe Trp Ser Leu Asp Asp Asp Asp Asp Gly Gly Asp Asp Val Pro Glu
65 70 75 80
Glu Ser Asp Glu Asp Met Phe Thr Val Pro Asp Val Glu Ala Leu Pro
85 90 95
Pro Pro Asn Asn Asn Ile Asn Asn Ala Ala Ser Thr Ile Ala Asn Ala
100 105 110
Thr Ser Asn Asn Asn Asn Pro Asp Ala Gln Ser Gly Phe Pro Ala Lys
115 120 125
Arg Arg Arg Gly Arg Asn Pro Val Asp Lys Glu Tyr Arg Arg Leu Lys
130 135 140
Arg Leu Leu Arg Asn Arg Val Ser Ala Gln Gln Ala Arg Glu Arg Lys
145 150 155 160
Lys Val Tyr Val Asn Asp Leu Glu Ser Arg Ala Lys Glu Leu Asp Asp
165 170 175
Arg Asn Ser Lys Leu Glu Glu Lys Ile Ser Thr Leu Val Asn Glu Asn
180 185 190
Thr Met Leu Arg Lys Val Leu Met Asn Thr Arg Pro Lys Val Asp Glu
195 200 205
Ser Ile Glu Gln Lys Gln Gly Ser Val Lys
210 215
<210> 3
<211> 41
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
actagtggat ccaaagaatt catgtcagtc ccaatcagag c 41
<210> 4
<211> 37
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
tcattaaagc aggactctag acttaactga tccttgc 37
<210> 6
<211> 1998
<212> DNA
<213> ‘满天红’梨(Pyrus pyrifolia)
<400> 6
tgaactttgg ttatagattt ggtgtgtgat taataaatgt acataaagaa ttgtgtttaa 60
tggtagttaa ctaaacaaga gtttagtttg ggcctatcac cgatattatt tttcgaaata 120
attatttcgg gatgaggcgt tatagtaggc gtttaagttt tatgttgtta aatgtttttg 180
ttaatgttgt ttaagtttca tattattaaa tgttttttta atgttgttta agttttatgt 240
tgttaaatgt ttttttttaa tgttgtttaa tgttacttaa tgttatgctg aagtttaagt 300
ttcatattat taaatgtttt tttaatgttg tttaagtttt atgttgttaa atgttttttt 360
ttaatgttgt ttaatgttac ttaatgttat gctgacccgg ccggggctag ctggctggct 420
agattgggcc agccggttgg cctgattctc cttttgtggc ccagtgtgcc ccacgagcta 480
tttggcctaa ccttcggttg aagacgtttt catgtcattt aagactattt tcgactctat 540
gatcctctgg ctgaatctgt tgaagatggc ctaaatagac atgtattaac actctgaaat 600
tatcacatgc atcatttacg ttttaaaatt gcattcttca ggtctacatg catggtgttt 660
gttgtaacct tgtaatccat ggatcctaag cgagaatata cgcttcctca tttctgacct 720
catatatata ttacgcacac acacgcacgc acgcatatat gtatgtattg ttatgtagta 780
gtgtggtaat caaggaacca ccaggatatt caattcttgt gtggtaatca aggaaccacg 840
aggatattca gttcttgtgt ggtaatcaaa gaaccacgtg gtaatcaagg aaccacgagg 900
atattcagtt cttgtgtggt aatcaaagaa ccacgtggta atcaaggaac cacgaggata 960
ttcagttctt gtgtggtaat caaagaacca cgtggtaatc aaggaaccac gaggatattc 1020
agttcttgtg tggtaatcaa ggaaccacga ggattttcag ttcactgata tgaactgcag 1080
tcccttccac cagctggcat acctaacaaa tatatggtca cagctaattc tcataacttt 1140
cttcttctct tcttaaattt tttccttctg aataggttac aactcatggt cgttcattat 1200
tttcaaacgc aaagagacta agaaaaattt cactgtctat tatcccagtc atccagactc 1260
accaattctt ttcttcttaa tttctattga ttttcaactg gaaatctcaa ccgcacacaa 1320
ctgcatgttc tagctaagga attaataact agcaaatgac agcaaaggca tgacatcatc 1380
acctccatct gaaaatttcc acgaattaaa acaccagcgc cataccacgg gtcatgcatg 1440
cacatgatag ataggacata gaataatact tccctattca aatgttgagg agatatcttt 1500
ctcaaatgcg ttgttacata ttcacacaat tttgtactta cgaatataat ttttcatatt 1560
atatatcact gtataaagat catctttaca aacaataaaa aaaagtgaga tcgatgtgtt 1620
attcaactgt ataaagaaaa tcaatcgaaa ttagtaaaag tattacgaac tgttttattc 1680
atttgctgca attgattgac taaacaacct ttgttttaat tttttttttt ttttagtaaa 1740
gatgatcttt acataataat tttcatcatt aactatttcg attattataa cacgaagttt 1800
tgtgaatcgt ccacgaaaca ttttaaagag gaattcctcc ttatctatga ttgttcaaga 1860
attattctat gatttatata cccccaatgt actagtatta gagaactcgc taatagaagt 1920
ataggtccca ctgttattta aaatactgtg cactaaaatg cagtctacgt agtattatat 1980
atatatagat gattttca 1998
<210> 5
<211> 2097
<212> DNA
<213> ‘满天红’梨(Pyrus pyrifolia)
<400> 5
aataaaaaaa atgatgaatt gaaaagcttg aattcgagct cggtacctca ttaaaaattg 60
ctaattacat tcttaatatt ctattcaaag ctattttatc taatttttca tcaaattaag 120
tcacatgtca cattttaaag gatattgccg ccattttctt gcttataagc tcttaatgtt 180
gtatatatgt tgcgaattta aagtctaatt tacccttcaa agttaatttc atacactatt 240
tattctaagg aaataagtca ttaaattatg aaaaactacc aatctactct ttaaagtgta 300
ttatatgcaa gtcatgcgac ttaaattgat acaaaattga ataaaataaa ttcgaattta 360
atattaggca tgtaattggc aaattttatt agattgatga ctggtttttc ttaaaaaaat 420
aatttaagga tctaattttc attgaagtaa tactttaaga actaaatcaa cggttcaccc 480
taaaaataaa gttagagaaa atggaaaaga aaagaagtaa attgggtaat gctgtatgga 540
aggagcggta catgctaaac cctagcagtt gtggttttta atatatttta agccgatggg 600
gaccccgata tttttaatat ggccaacggg gagtgtcgat ccacgggaaa ccatttgtaa 660
tgcgaccgta aatcgaatca gatagaaaca tttaccttcg acggacaagc cgaaatgttg 720
accgcaaaca attggattaa tggttcttgt ggtgatgtag tattcaaaaa agagcatcta 780
gggtaataaa attaaaattc aaacccttgt gatgaagacc gttagcagat ttaatcaaaa 840
gtgaaatttc catcaaatct ttgttagatg cagggagaaa aatgtccatc atcactcttt 900
tttctattta ccttattctc tacttcatct atcgcctctc tttaattgta gcttcgtcaa 960
atctctgtta gcagcagcaa caacaaaatt gtgggaatgg ggagcttgcc gtctttgtcg 1020
tctccggcgc cgccatctac atctgcttcc aggttcaaca actccgccgc ttaacccata 1080
tctcgctctc ctccaaaacc acaggttaaa gctggagaca acaatggagt tctcgatgcg 1140
gaggagaaca agcctggaat tatttctgca tgttttgaca ctataagaaa gcagctcatt 1200
taccacgaac cacatagaga agttcaagaa atatgaagct aacaatagcc gttggttgac 1260
tgtaaaatac ttctcaaaga agaaccgagg gaggcaacat cttcgatgag agtgtgacaa 1320
tacatgttca ggtgactagt aaaactatgt agacttgtgt tgactagtta tactattttc 1380
tctccttttt ttcacgcagt ttcgctatcg aatgtctaaa aataaaaaaa atataatata 1440
atgttcaacc cattcgaata tacaaaattc aaagaaaata tattataaaa atatgaccct 1500
atggctcact agagttgtga aagctacaaa ttacaatggt cctggctagc tagggtgtct 1560
ttgtccacca caaagacgat ccaaccaagg gttctcttct cgaagtggtg tggttgtttt 1620
gtcatcttgc ctagcaagta ttatggtcgc ggtattgcgg tggctggatg aagtatttgt 1680
cattatcaat aagttatgtg ttcgcgtctt ttaacggtaa ccgtgtgttg ccggtatatg 1740
ttcaattgct taatatgtct ttactaaatt actaattcac tttagaccaa ttttggtcac 1800
tggagtatta cccaattgac acctattcgt tttatatatt taatttgttt tgtaagaatc 1860
agtgaaatac aacctatcgt ctctggtaaa aaaaaaaaac ctctatcaaa ttgtttcagt 1920
cgtactgtgg tccttttcat tcatttatgt ggagagcagt catgcacgtc ggtggcctta 1980
tgatctataa tctggtatat atttacatat ggaggatagt aatttgctgg gaatactcga 2040
ggcatgtgct ctgtatgtat ataaaactct tgtttctctt tctctaaata tttcccc 2097
<210> 7
<211> 3729
<212> DNA
<213> ‘满天红’梨(Pyrus pyrifolia)
<400> 7
tgaactttgg ttatagattt ggtgtgtgat taataaatgt acataaagaa ttgtgtttaa 60
tggtagttaa ctaaacaaga gtttagtttg ggcctatcac cgatattatt tttcgaaata 120
attatttcgg gatgaggcgt tatagtaggc gtttaagttt tatgttgtta aatgtttttg 180
ttaatgttgt ttaagtttca tattattaaa tgttttttta atgttgttta agttttatgt 240
tgttaaatgt ttttttttaa tgttgtttaa tgttacttaa tgttatgctg aagtttaagt 300
ttcatattat taaatgtttt tttaatgttg tttaagtttt atgttgttaa atgttttttt 360
ttaatgttgt ttaatgttac ttaatgttat gctgacccgg ccggggctag ctggctggct 420
agattgggcc agccggttgg cctgattctc cttttgtggc ccagtgtgcc ccacgagcta 480
tttggcctaa ccttcggttg aagacgtttt catgtcattt aagactattt tcgactctat 540
gatcctctgg ctgaatctgt tgaagatggc ctaaatagac atgtattaac actctgaaat 600
tatcacatgc atcatttacg ttttaaaatt gcattcttca ggtctacatg catggtgttt 660
gttgtaacct tgtaatccat ggatcctaag cgagaatata cgcttcctca tttctgacct 720
catatatata ttacgcacac acacgcacgc acgcatatat gtatgtattg ttatgtagta 780
gtgtggtaat caaggaacca ccaggatatt caattcttgt gtggtaatca aggaaccacg 840
aggatattca gttcttgtgt ggtaatcaaa gaaccacgtg gtaatcaagg aaccacgagg 900
atattcagtt cttgtgtggt aatcaaagaa ccacgtggta atcaaggaac cacgaggata 960
ttcagttctt gtgtggtaat caaagaacca cgtggtaatc aaggaaccac gaggatattc 1020
agttcttgtg tggtaatcaa ggaaccacga ggattttcag ttcactgata tgaactgcag 1080
tcccttccac cagctggcat acctaacaaa tatatggtca cagctaattc tcataacttt 1140
cttcttctct tcttaaattt tttccttctg aataggttac aactcatggt cgttcattat 1200
tttcaaacgc aaagagacta agaaaaattt cactgtctat tatcccagtc atccagactc 1260
accaattctt ttcttcttaa tttctattga ttttcaactg gaaatctcaa ccgcacacaa 1320
ctgcatgttc tagctaagga attaataact agcaaatgac agcaaaggca tgacatcatc 1380
acctccatct gaaaatttcc acgaattaaa acaccagcgc cataccacgg gtcatgcatg 1440
cacatgatag ataggacata gaataatact tccctattca aatgttgagg agatatcttt 1500
ctcaaatgcg ttgttacata ttcacacaat tttgtactta cgaatataat ttttcatatt 1560
atatatcact gtataaagat catctttaca aacaataaaa aaaagtgaga tcgatgtgtt 1620
attcaactgt ataaagaaaa tcaatcgaaa ttagtaaaag tattacgaac tgttttattc 1680
aaaaaaaaat gatgattgaa aagcttgaat tcgagctcgg taccagttag tagaattatc 1740
taaatatctc taacatgatg tttcaaccct tctccaaggt tccatccatg cctataaaag 1800
gagaaggcat ccacaccatc tgtatcaatt aagaagacta agtgagagtg agaagtagga 1860
gtagtcttgt gaggactgtg agtgatctaa agtttgtctc tagaaagagt gagtgtcata 1920
gcttcaaata gtgtctttga gagtttgtgt gctgtaatat tttgtgagtt aatacaagta 1980
attgtttatt tgtgttgtct ctccaacact tgtgttagag ttgtgtactc taagttttcc 2040
ccaacatata tcacttcact aataaagaca accttcgtaa gggttgctgt agttctctac 2100
ttgaaatcca attatctagc attgtaaccc taagttacaa acacaaacat aaacttgagc 2160
aacttctatg cataagaatc tagggtttca gactaactta acggaaccta acaagaaata 2220
atattctgga ccgcttaacg gaatccaacc gaagacaagg tttcggacca ctcaacggaa 2280
caaataaggg aaagggatat aaaccactca acgaagtcca tttgtagaat acgtatagtc 2340
ccccaatacg gattaaccaa gcgagaacat acgccatctg atagcgtggt ctcctgcaag 2400
acagataact aggcaggacc accgatgata tagtgtgacc aagtaagtag tgaccctaat 2460
gtagattaac caagtggagt taaattcaga atgcatatgc cgcccccccc cccccccaaa 2520
aaaaacaaaa agacggacta accaggcgga accatatgca ttcccccaat aatgtggttc 2580
cttaatgcag attaacaagg tggaaccacc tatgaaaata atgtaactag gtaaggcccg 2640
acgaatatcc attgcctgaa atcttaggag agaattcttg ctctagggga caaatgattt 2700
tcgtatgcct aagtgttttt ttttttggtg acagtaaact aagatttgag tatagagaca 2760
ttaactgaga ttgactcttg tgaaagctta gtgagttgaa gcacataggc caattatatt 2820
gagcaatgtg ttaggtgtag cgtctaaact tccgtaggag ttttgtacaa caagatagtg 2880
ggggtgccac aaaatgcaga caatagcaat aaattacggg ctaggattct ctccccttct 2940
tttttcgttc cattccatcc cttcctctca cattctctat tttgtctttc tctttctata 3000
aaaattaata taagatgttg atgtgactta accgagaccg ttcaaataag aggggaagga 3060
agaagaggaa aaaaaaagag gaagagaatt ctattctata aattacaagc agacactttt 3120
tttttttttt taacaagcag aagcaaataa acacttgaaa aagcagcgaa agcaggctaa 3180
agatatctta tggtggtcga agatgtgtgt tgtaactagt tacacgattc tgccttcaca 3240
ttcatagaat gtgcttttga ataatatatt acaactagag aactttatgc cttaggattg 3300
atttcccttg tcaatgttgt cgtgcagaaa tgttagctgt tctatatata gtgcgtgtgt 3360
gtgtgtgtgt gtatttcaca agttagactg gtagctaata acaactgttg aaatgtttta 3420
aacttgtcac tctttgcttc tgtggatatc agacatgcac gtcactggcc ttggaagatt 3480
aattagtccg atggtatcca tagcgttaac gtcatggcaa acacactcta aatatataca 3540
tacatacata catacataca tacatacata tatatatata caatggtagc taggtgtctt 3600
tctggagtct atgaagtggg tagcaggcaa aagataagct aataagctta gctgctagca 3660
gatacgagct cgaggcatgt gctctgtatg tatataaaac tcttgtttct ctttctctaa 3720
aaatttccc 3729
<210> 8
<211> 1998
<212> DNA
<213> ‘满天红’梨(Pyrus pyrifolia)
<400> 8
tcgaaaattg ataggtgtgt gtgagaggta aaaatggatg tgcggaattt atttaaattg 60
ctagttcgtt tgtggattat cttatatgat tgtacaaaga gtaatgctac acttaccata 120
tttttcatta ccacattcgt accacttctt taatagagat agagcccacc cacacatgta 180
ggtttcattt ctattagaga catagtacaa atgcgaatag aaaatatgat aagattagtg 240
tttttgttgt gccaataaaa aatttgctct actgtaatgt gaaagagtaa caattttatt 300
ttacaaataa caaatttgca ctactgtgtt attatacaag taacagataa gattaaagca 360
tttccaacca caaaaattga taattgatga tatttaaggc agattaaata aggcattata 420
gcctcaatgg tcctacaatt aagggacacc tacccttaat tagttcctac atctcatccc 480
attaatgacg tgcttactta catggaatta gaatgagtag agtgtgaatg attccaattt 540
cggatcaaac gtgtttacat acatggaatc ggaatgagta tagagggaat cattccaatt 600
ccagatcaac cctgtgttaa ccttcccaac aggagtgaag agtagtgtgg acccaatcta 660
aaataaggaa tctgattcat acttttgaag gaattcaatt cctcagggag gtggtggatt 720
tgggcatggc gagaatggga atcaactcca tgaccaccgt caaaccacta ccgcacttca 780
aaactattgt tctaaaaatt cccgctttac tccgcctggg ggctagatgg ctagtcactg 840
ctcacattaa ttcatacgca tttgaaaatt aagaaaaatc gctcacctaa actatctagt 900
ctgcctaggc catgactagc cccgcttaga tgctaggctc caatcttgct tgactagtgt 960
ctaacgtctt ttagaacctt gcccagtaac aagccagtat gatcaaattg aaactcatta 1020
tatgagaaga tcaaaacttg aatagaggtg cagttggaag cgtacgctac tgtctttcag 1080
cttccacttt tggccttcaa tttcgtggtc ctggccttga aaaatttgtc aaccatcccc 1140
cacccttcga caaaagaaaa aaaatgaaat gccgatgcct ttctctttct tattcttaaa 1200
tgggccagtt tagtaattaa attggtttta atttcaattc aggaatattt ggtaaacaac 1260
ttttatagaa ttaacattat tcatacttta attttagaca ttttagtaaa catcttacat 1320
aaaaatttaa ttctaatttc tcctctcaat tcaacttatc ttcaattcca ttcatcttaa 1380
tctgataacg cattaaataa acgtgccata agttgaaagc ctcatcaaga aaggtgcacc 1440
atcccatacc aaacaatgcc agttggacga gccctctcat taattttggt accttccata 1500
caagaggatg attctttact cttctagtct ctctaccctt ctataccctc ttatttgaac 1560
ggtcacggtt aagtcacgtc aacatcttat attgattttt ttttatagag ataataagac 1620
aaaaaacaat gtgtgagagg aggagatgga atgggatgag aataggaggg tagaaaatcc 1680
tctttctcca tataatgcct aattgctctg ggcgtgccca ctataaaata ggtgaatccg 1740
gatcctcttt atgagaatct caaagatccg tgaattgtac ctgttcattg tacatcgtgc 1800
ggttagtaat cattttaaat atttttattg aaaattaaac acaaactgta tttgacaaaa 1860
attgactgca cgatatacga tgaatagaca tgattcataa ttcttagaat tctcaccaaa 1920
agaatccaga gaggatcctg ttggaaacta ggccatttgg tttttgtggg ttcctgtggt 1980
gtcaacagga tcctcccc 1998
<210> 9
<211> 1951
<212> DNA
<213> ‘满天红’梨(Pyrus pyrifolia)
<400> 9
cttttacatt gaaaaggcct ttccttataa gaaattttga ctctgccaag catttgtatg 60
ctcatgaatc atgttgccct agatctcaat tcagctctca aagtaagcac atggttaaaa 120
cataccttct ctggctgtcc atatatggcc cattgcaata attttcagtt tttccaaata 180
acccaatccc attagagcat ggtccgtcca attgataata ttattcatta tggatctcaa 240
cataagattg aggcccagaa ctagatacat gaaaatgctc attagaccaa tcctgacgtt 300
ggaaatgtta ttataagtta gtgattttta cattctcagt ttcttcttct actttcgtcc 360
ctttgtttcc ctcaactgtt tttcttttga tttatattca gttcaaaggc taaaagagta 420
aaaaaaagaa aagtgcagga ggagaaaaat agagtgcgac atcgtctgta gtttttcgtg 480
tgaactgata cagtgtagaa gtaggaagga aatgcaagat gcgagagtag ttttgggagc 540
tgattgaatt tgcggtctgt attacaagcc ggtctgaaaa gcaagaaagc aagcattcca 600
accttttgac ctagatggat aaatggataa gtacaagaag actgggccaa cagggttggc 660
tgaagcttga aagggaaaga tgtgattatg gaatcttaat tagttgagta tttctcatct 720
aaggatgcct ttattataag aagaaaaaac atggtacact ttttttctaa ttgcaagcaa 780
tattttttac taatccacac tgagggaggg gagaaaaatc ataaccacta aaacaatcca 840
tcacttgcaa tatgtacata ttttttactt aggtttatct cacaatgtat ttcaatgaca 900
aaaacggtct atatttcttc aaaagtcatc tttgtaaaaa attggctaga ttcaaagttg 960
taggatcatt taaggcaagg ggggaggagt aaaaactaat acacaagtta ggggagggag 1020
agtttcaaat ccagaatgca taggtagaaa ctcaacactt tattcactca aatattgaat 1080
tacacgtgta tgatcattta aatatatatg agggaaaaca gtttgttgga tgcagttgaa 1140
atggaaatga ggataatcaa attgctaaaa gaaatactcc cgactaattc aacttttttg 1200
gcatgaataa ttcttgtaag gaaaactaaa ctgcattttt atgaaaatga atgagagatg 1260
attttcacac atctattttg accttctttc gcacatcttt atttcctttt tactactaaa 1320
ttaaacttaa aataaaaaaa aaatgtgtga gaaacgaaac aaaatatgtt ttcctaatga 1380
attacagctc ataatatgaa gttcttattt ttctcaaagg gcatacaaat tgcaatgaca 1440
acatagaaac ttcatcagtc gtgtttcatc tcaaaataat aacataccat atactatttt 1500
gtttaccaat ttttttaaat tatattattg aagtagtaca ttaagaacag aaaaagataa 1560
aagggaagaa gaaagaatag caaagtttga agaatgtaat taagctagaa aaataaatag 1620
atttttgtta tcaaagtttg aagaatgtaa ttaagctaga aaaataaata gatttttgtt 1680
gtgtttgctt ttagggttta cggacgtttc agcgagggag gtgtaggaca aatgaaaatg 1740
ggcctaggaa gaagagtgtc gtgcggctat ctttacatca acgtgttcgc tcttcaacca 1800
aaccccttcc ttttactcac aaccctggca actaatctaa acgcgcatat ataatcaata 1860
tatattcctt aatattgtgt atcatttcat atataagctc atcgtccaga gagagagagc 1920
tcataagcca gcccccgggg gatccactag t 1951
<210> 10
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
ctacaatcgc aaatgccacc 20
<210> 11
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
caccctgttc cttagcaatc tc 22
<210> 12
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
aaggattccg tcatcacat 19
<210> 13
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
gtcccaccca aataccat 18
<210> 14
<211> 17
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 14
ccacatctag ccgttga 17
<210> 15
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 15
cccacagttt agggtctc 18
<210> 16
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 16
aagtatgcca atgaccagg 19
<210> 17
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 17
gctcttcaag tccaccaac 19
<210> 18
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 18
cccgttgtcg gtgttgtt 18
<210> 19
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 19
atccgcatag tcgcttgg 18
<210> 20
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 20
caaaagccac atccgtcata a 21
<210> 21
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 21
aggtcttccc ctaaccctaa act 23
<210> 22
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 22
cacaaacgtc gtcgtcaaca a 21
<210> 23
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 23
ccgacagtcg atcatcaaac c 21
<210> 24
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 24
aaggttcaca aagcgaataa gc 22
<210> 25
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 25
gaagacgccc caacacaa 18
<210> 26
<211> 39
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 26
gtcgacggta tcgataagct tccttgtggg taatggttt 39
<210> 27
<211> 39
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 27
agaactagtg gatcccccgg gaaataacag tgggaccta 39
<210> 28
<211> 54
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 28
gtcgacggta tcgataagct ttcattaaaa attgctaatt acattcttaa tatt 54
<210> 29
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 29
agaactagtg gatcccccgg gtattcccag caaattacta tcctcc 46
<210> 30
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 30
gtcgacggta tcgataagct tagttagtag aattatctaa atatctctaa catgatg 57
<210> 31
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 31
gtcgacggta tcgataagct tagttagtag aattatctaa atatctctaa catgatg 57
<210> 32
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 32
gtcgacggta tcgataagct tgtcgaaaat tgataggtgt gtgtga 46
<210> 33
<211> 41
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 33
agaactagtg gatcccccgg gcggggagga tcctgttgac a 41
<210> 34
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 34
gtcgacggta tcgataagct ttcttttaca ttgaaaaggc ctttcc 46
<210> 35
<211> 44
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 35
agaactagtg gatcccccgg gggctggctt atgagctctc tctc 44

Claims (2)

1.SEQ ID No. 1所示的PybZIPa基因在促进梨果皮光诱导的花青苷合成中的应用。
2.含有SEQ ID No. 1所示的PybZIPa基因的重组表达载体在促进光诱导的梨果皮花青苷合成中的应用。
CN201910935158.0A 2019-09-29 2019-09-29 梨bZIP家族新转录本PybZIPa及其重组表达载体的应用 Active CN110577955B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910935158.0A CN110577955B (zh) 2019-09-29 2019-09-29 梨bZIP家族新转录本PybZIPa及其重组表达载体的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910935158.0A CN110577955B (zh) 2019-09-29 2019-09-29 梨bZIP家族新转录本PybZIPa及其重组表达载体的应用

Publications (2)

Publication Number Publication Date
CN110577955A CN110577955A (zh) 2019-12-17
CN110577955B true CN110577955B (zh) 2022-04-22

Family

ID=68814024

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910935158.0A Active CN110577955B (zh) 2019-09-29 2019-09-29 梨bZIP家族新转录本PybZIPa及其重组表达载体的应用

Country Status (1)

Country Link
CN (1) CN110577955B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110577955B (zh) * 2019-09-29 2022-04-22 南京农业大学 梨bZIP家族新转录本PybZIPa及其重组表达载体的应用
CN114891793A (zh) * 2022-06-13 2022-08-12 南京农业大学 一种梨CRISPRa基因转录激活系统及其应用
CN116554291B (zh) * 2023-04-28 2024-02-09 南京农业大学 一种梨bZIP类转录因子PubZIP914及其应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005047516A2 (en) * 2003-11-13 2005-05-26 Mendel Biotechnology, Inc. Plant transcriptional regulators
EP2855680A1 (en) * 2012-05-24 2015-04-08 A.B. Seeds Ltd. Compositions and methods for silencing gene expression
CN107686840A (zh) * 2017-06-23 2018-02-13 南京农业大学 梨转录因子PyERF3及其重组表达载体和应用
WO2019038594A2 (en) * 2017-08-21 2019-02-28 Biolumic Limited TRANSGENIC PLANTS WITH HIGH GROWTH AND HIGH RUSTICITY
CN109810181A (zh) * 2019-01-04 2019-05-28 南京农业大学 梨转录因子PyHY5及其重组表达载体和应用
CN110283832A (zh) * 2019-08-07 2019-09-27 合肥工业大学 一种促进花青苷合成的ItfEF71a基因及其重组表达载体与应用
CN110577955A (zh) * 2019-09-29 2019-12-17 南京农业大学 梨bZIP家族新转录本PybZIPa及其重组表达载体的应用
CN110819636A (zh) * 2019-11-08 2020-02-21 浙江中医药大学 一条SmbZIP1基因及其在提高丹参中丹酚酸含量中的应用
CN111718941A (zh) * 2019-03-22 2020-09-29 南京农业大学 一种与芹菜非生物胁迫相关的转录因子AgbZIP16基因序列及其应用
CN112626078A (zh) * 2020-12-15 2021-04-09 河南省农业科学院粮食作物研究所 玉米转录因子ZmGBF1基因及其表达载体和应用
CN113480625A (zh) * 2021-08-19 2021-10-08 中国热带农业科学院海口实验站 香蕉bZIP转录因子在调控果实发育过程中品质形成的应用及其表达载体构建

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7663025B2 (en) * 1999-03-23 2010-02-16 Mendel Biotechnology, Inc. Plant Transcriptional Regulators
US7777097B2 (en) * 2001-06-22 2010-08-17 Syngenta Participations Ag Plant disease resistance genes
AR037699A1 (es) * 2001-12-04 2004-12-01 Monsanto Technology Llc Maiz transgenico con fenotipo mejorado
US20050177893A1 (en) * 2002-07-30 2005-08-11 Rock Christopher D. Transcription factors and methods for introduction of value-added seed traits and stress tolerance
US20130312136A1 (en) * 2012-05-21 2013-11-21 Syngenta Participations Ag Methods and Compositions for Modulating Gene Expression in Plants

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005047516A2 (en) * 2003-11-13 2005-05-26 Mendel Biotechnology, Inc. Plant transcriptional regulators
EP2855680A1 (en) * 2012-05-24 2015-04-08 A.B. Seeds Ltd. Compositions and methods for silencing gene expression
CN107686840A (zh) * 2017-06-23 2018-02-13 南京农业大学 梨转录因子PyERF3及其重组表达载体和应用
WO2019038594A2 (en) * 2017-08-21 2019-02-28 Biolumic Limited TRANSGENIC PLANTS WITH HIGH GROWTH AND HIGH RUSTICITY
CN109810181A (zh) * 2019-01-04 2019-05-28 南京农业大学 梨转录因子PyHY5及其重组表达载体和应用
CN111718941A (zh) * 2019-03-22 2020-09-29 南京农业大学 一种与芹菜非生物胁迫相关的转录因子AgbZIP16基因序列及其应用
CN110283832A (zh) * 2019-08-07 2019-09-27 合肥工业大学 一种促进花青苷合成的ItfEF71a基因及其重组表达载体与应用
CN110577955A (zh) * 2019-09-29 2019-12-17 南京农业大学 梨bZIP家族新转录本PybZIPa及其重组表达载体的应用
CN110819636A (zh) * 2019-11-08 2020-02-21 浙江中医药大学 一条SmbZIP1基因及其在提高丹参中丹酚酸含量中的应用
CN112626078A (zh) * 2020-12-15 2021-04-09 河南省农业科学院粮食作物研究所 玉米转录因子ZmGBF1基因及其表达载体和应用
CN113480625A (zh) * 2021-08-19 2021-10-08 中国热带农业科学院海口实验站 香蕉bZIP转录因子在调控果实发育过程中品质形成的应用及其表达载体构建

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
"云红梨1号"HY5基因的克隆及生物信息学分析;苏俊等;《北方园艺》;20200530(第10期);全文 *
"红早酥"梨果皮色泽变异关键基因筛选及色泽形成机制;姚改芳;《中国优秀博士学位论文全文数据库(电子期刊)农业科技辑》;20210415(第04期);全文 *
B-box proteins: Pivotal players in light-mediated development in plants;Zhaoqing Song等;《Journal of Integrative Plant Biology》;20200915(第09期);全文 *
Differential Expression of Anthocyanin Biosynthetic Genes and Transcription Factor PcMYB10 in Pears (Pyrus communis L.);Li Li 等;《PLOS ONE》;20120928;第e46070页 *
PREDICTED: Pyrus x bretschneideri transcription factor HY5-like (LOC103944715), transcript variant X1, mRNA;NCBI;《Genbank Database》;20161012;Accession No.XM_009355181.2 *
The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple;Jian-Ping An 等;《Horticulture Research》;20170607;第1-9页 *
不同颜色果袋对葡萄花青苷合成的调控;冀晓昊 等;《中国农业科学》;20161125;第4460-4468页 *
两个红梨品种花色普合成相关基因及转录因子MYB10表达模式分析;田鹏 等;《江苏农业学报》;20150228;第166-171页 *
光诱导转录因子MdMYB 1对苹果果皮花青昔合成调控的表达分析;杨玲 等;《农业生物技术学报》;20140425;第422-431页 *
基于基因组学的梨群体遗传变异研究;张明月;《中国优秀博士学位论文全文数据库(电子期刊)农业科技辑》;20210515(第05期);全文 *
早酥红色芽变果实PbMYBR及相关基因的克隆及其表达分析;杜艳民;《中国优秀硕士学位论文全文数据库(电子期刊)农业科技辑》;20121215;全文 *
植物bZIP转录因子的生物学功能;张计育 等;《西北植物学报》;20110515;第1066-1075页 *
植物体内花青素苷生物合成及呈色的分子调控机制;庄维兵等;《植物生理学报》;20181120(第11期);全文 *
红皮梨花青普调控基因PyMYBa的克隆与表达分析;孙莎莎 等;《园艺学报》;20140626;第1183-1190页 *
草莓花青苷分子调控机理的初步研究;苗立祥 等;《浙江农业学报》;20150825;第75-87页 *

Also Published As

Publication number Publication date
CN110577955A (zh) 2019-12-17

Similar Documents

Publication Publication Date Title
Liu et al. Transcriptional regulation of anthocyanin synthesis by MYB-bHLH-WDR complexes in kiwifruit (Actinidia chinensis)
CN110577955B (zh) 梨bZIP家族新转录本PybZIPa及其重组表达载体的应用
Li et al. Genome-wide identification and analysis of the MYB transcription factor superfamily in Solanum lycopersicum
Li et al. Genome-wide analysis and expression profiles of the StR2R3-MYB transcription factor superfamily in potato (Solanum tuberosum L.)
Zhou et al. Chalcone synthase family genes have redundant roles in anthocyanin biosynthesis and in response to blue/UV‐A light in turnip (Brassica rapa; Brassicaceae)
CN107142276B (zh) 一种在作物种子胚乳合成花青素的转基因育种方法
WO2002079403A2 (en) Method for modifying plant biomass
Cao et al. LhGST is an anthocyanin-related glutathione S-transferase gene in Asiatic hybrid lilies (Lilium spp.)
Wang et al. An R2R3-MYB transcription factor CmMYB21 represses anthocyanin biosynthesis in color fading petals of chrysanthemum
CN107474123B (zh) 一种含CCT结构域的转录因子ZmCOL3及其编码基因、载体、宿主菌和应用
Wang et al. The FvPHR1 transcription factor control phosphate homeostasis by transcriptionally regulating miR399a in woodland strawberry
Matoušek et al. Sequence analysis of a “true” chalcone synthase (chs _H1) oligofamily from hop (Humulus lupulus L.) and PAP1 activation of chs _H1 in heterologous systems
Nardi et al. Influence of plant growth regulators on Expansin2 expression in strawberry fruit. Cloning and functional analysis of FaEXP2 promoter region
Singh et al. Expression of finger millet EcDehydrin7 in transgenic tobacco confers tolerance to drought stress
Liang et al. PacCOP1 negatively regulates anthocyanin biosynthesis in sweet cherry (Prunus avium L.)
Liu et al. Transcription factor MaMADS36 plays a central role in regulating banana fruit ripening
Hong et al. Genome-wide analysis and transcriptional reprogrammings of MYB superfamily revealed positive insights into abiotic stress responses and anthocyanin accumulation in Carthamus tinctorius L.
Wu et al. Kiwifruit SVP2 controls developmental and drought-stress pathways
Carlow et al. Nuclear localization and transactivation by Vitis CBF transcription factors are regulated by combinations of conserved amino acid domains
Li et al. Genome-scale mining of root-preferential genes from maize and characterization of their promoter activity
Wu et al. Overexpression of both AcSVP1 and AcSVP4 delays budbreak in kiwifruit A. chinensis var. deliciosa, but only AcSVP1 delays flowering in model plants
CN105132433B (zh) 正调控香雪兰花朵花色苷合成的MYB 转录因子的cDNA序列
Rajput et al. The R2R3-MYB gene family in Cicer arietinum: genome-wide identification and expression analysis leads to functional characterization of proanthocyanidin biosynthesis regulators in the seed coat
Zhao et al. The TT2-type MYB transcription factor JrMYB12 positively regulates proanthocyanidin biosynthesis in red walnut
Liu et al. Chlorophyllase is transcriptionally regulated by CsMYB308/CsDOF3 in young leaves of tea plant

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant