CN110572066A - 一种全桥模块化多电平变换器的优化调制方法 - Google Patents

一种全桥模块化多电平变换器的优化调制方法 Download PDF

Info

Publication number
CN110572066A
CN110572066A CN201910942140.3A CN201910942140A CN110572066A CN 110572066 A CN110572066 A CN 110572066A CN 201910942140 A CN201910942140 A CN 201910942140A CN 110572066 A CN110572066 A CN 110572066A
Authority
CN
China
Prior art keywords
bridge arm
voltage
sub
modules
bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910942140.3A
Other languages
English (en)
Other versions
CN110572066B (zh
Inventor
林磊
何佳璐
徐晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201910942140.3A priority Critical patent/CN110572066B/zh
Publication of CN110572066A publication Critical patent/CN110572066A/zh
Application granted granted Critical
Publication of CN110572066B publication Critical patent/CN110572066B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种全桥模块化多电平变换器的优化调制方法,在对整数投入子模块桥臂电压进行调制的同时,提出了SAPWM调制算法,通过考虑全桥模块化多电平变换器在提压运行工况下的桥臂电压的正负情况自适应的调节上、下桥臂载波相位,并根据小数投入子模块数与桥臂载波信号的瞬时值的比较结果,控制用于输出电压小数部分的子模块的输出电平,从而同时实现对整数和小数投入子模块桥臂电压的调制,且能在全桥模块化多电平变换器整个提压运行基波周期内增加负载电压电平数,不仅有效降低了负载电压的总谐波畸变率,而且还增加了负载电压的谐波频率,降低了滤波成本,适用于提压运行工况下的全桥模块化多电平变换器。

Description

一种全桥模块化多电平变换器的优化调制方法
技术领域
本发明属于电压变换器领域,更具体地,涉及一种全桥模块化多电平变换器的优化调制方法。
背景技术
全桥模块化多电平变换器(Full Bridge Modular Multilevel Converter,FBMMC)凭借其灵活的子模块输出能力,在提压运行,直流故障穿越、以及电机驱动等领域展现出独到的优势。通过子模块产生负输出电平,FB MMC可以在直流电压不变的情况下产生更高幅值的负载电压,实现提压运行,提升FB MMC容量。在直流侧短路故障情况下,则可以消除直流侧故障电流,提供无功补偿,不依靠额外装置即可实现直流故障穿越。FB MMC子模块灵活的电平输出能力允许同一桥臂的各子模块处于不同的充放电状态,增加了子模块电容电压的控制自由度,有效解决了电机低速运行时子模块电容电压波动剧烈的问题。
常见的适用于FB MMC的调制方式主要有:最近电平逼近调制(NLM)以及脉冲宽度调制(PWM)。在中压条件下MMC子模块数较少,采用NLM会导致较低的负载电压电平数,进而引起严重的负载电压波形畸变。PWM虽然可以有效避免中压应用场景负载电压波形畸变的问题,但是较高的开关频率会带来居高不下的开关损耗以及沉重的散热压力,增加FB MMC整体成本,且不利于设备的长期安全可靠运行。因此,在中压应用领域,亟需一种优化的FBMMC调制策略,以较低的开关频率产生低波形畸变的负载电压。
针对上述问题,现有的FB MMC的优化调制方法基于NLM,通过在FB MMC的每个桥臂中额外增加一个半电压子模块,以较低的开关频率增加负载电压电平数,降低波形畸变。但是此方法需要在每一个桥臂中额外增加半电压子模块,硬件成本较高。需要额外的闭环控制保证半电压子模块电容电压始终为普通子模块电容电压的一半,控制复杂。未考虑桥臂电压的小数部分,仅能调制整数桥臂子模块数所对应的桥臂电压,生成的负载电压波形质量改善效果有限,且谐波主要为低频成分,滤波成本高。没有考虑普通子模块(即整数子模块)的负电平输出,不适用于提压运行工况,难以发挥FB MMC的优势。
综上所述,提出一种适用于提压运行工况的全桥模块化多电平变换器的优化调制方法及系统是亟待解决的问题。
发明内容
针对现有技术的缺陷,本发明的目的在于提出一种全桥模块化多电平变换器的优化调制方法,旨在解决现有技术由于未考虑整数子模块的负电平输出而导致的不适用于提压运行工况的问题。
为实现上述目的,本发明提出了一种全桥模块化多电平变换器的优化调制方法,包括以下步骤:
S1、分别在各桥臂中基于其桥臂电流和桥臂电压确定其子模块电容充放电状态,并根据其子模块的电容充放电状态和子模块电容电压对其子模块进行排序;
S2、分别在各桥臂中根据其桥臂电压和桥臂额定子模块平均电容电压计算其整数投入子模块数和小数投入子模块数;
S3、分别在各桥臂中采用NLM对其前整数投入子模块数个子模块进行控制,输出其桥臂电压的整数部分;判断其小数投入子模块数是否为0,若不为0,则基于其桥臂电压和小数投入子模块数,采用SAPWM对其第整数投入子模块数+1个子模块进行控制,输出其桥臂电压的小数部分,从而输出全桥臂电压;
S4、根据步骤S2所述的方法分别重新计算各桥臂新的整数投入子模块数和小数投入子模块数;
S5、分别在各桥臂中判断其相邻两次的整数投入子模块数是否相等,若不相等,则根据步骤S1所述的方法对其子模块进行排序;
S6、重复步骤S3-S5进行迭代,持续输出低总谐波畸变率的全桥臂电压。
进一步优选地,所述全桥模块化多电平变换器的桥臂包括上桥臂和下桥臂。
进一步优选地,上述整数投入子模块数是整数,用于表示采用多少子模块来输出桥臂电压的整数部分;上述小数投入子模块数是小数,用于表示一个子模块以几分之几的占空比断续输出子模块电容电压,以得到桥臂电压的小数部分。
进一步优选地,上述整数投入子模块数N和小数投入子模块数n的计算公式如下:
其中,uarm为桥臂电压,UC为额定子模块平均电容电压。
进一步优选地,分别在各桥臂中采用SAPWM对第整数投入子模块数+1个子模块进行控制的方法,包括以下步骤:
S31、若上、下桥臂电压均大于等于0,则生成同相的在0-1区间波动的上桥臂三角载波和下桥臂三角载波,否则,生成反相的在0-1区间波动的上桥臂三角载波和下桥臂三角载波;
S32、分别在上、下桥臂中,根据其桥臂电压、小数投入子模块数以及桥臂三角载波控制其第整数投入子模块数+1个子模块的输出电平,从而输出各桥臂电压的小数部分。
进一步优选地,步骤S32所述的方法包括:
若桥臂电压大于等于0且其小数投入子模块数大于其三角载波的瞬时值,则使其第整数投入子模块数+1个子模块输出正电平;
若桥臂电压小于0且小数投入子模块数大于其三角载波的瞬时值,则使其第整数投入子模块数+1个子模块输出负电平;
若小数投入子模块数小于等于其三角载波的瞬时值,则使其第整数投入子模块数+1个子模块输出零电平。
进一步优选地,上述全桥模块化多电平变换器的优化调制方法适用于提压运行工况下的全桥模块化多电平变换器。
通过本发明所构思的以上技术方案,与现有技术相比,能够取得下列有益效果:
1、本发明所提出的一种全桥模块化多电平变换器的优化调制方法,在对整数投入子模块桥臂电压进行调制的同时,提出了SAPWM调制算法,通过考虑全桥模块化多电平变换器在提压运行工况下的桥臂电压的正负情况自适应的调节上、下桥臂载波相位,并根据小数投入子模块数与桥臂载波信号的瞬时值的比较结果,控制用于输出电压小数部分的子模块的输出电平,从而在能够同时实现对整数和小数投入子模块桥臂电压的调制,且能在全桥模块化多电平变换器整个提压运行基波周期内增加负载电压电平数,适用于提压运行工况下的全桥模块化多电平变换器。
2、本发明提出了全桥模块化多电平变换器的优化调制方法,可以根据桥臂电压自适应的调节上、下桥臂载波相位,不仅能调制用于输出电压小数部分的子模块桥臂电压,还能在全桥模块化多电平变换器的整个提压运行基波周期增加负载电压的电平数。不仅有效降低了负载电压的总谐波畸变率,而且还增加了负载电压的谐波频率,降低了滤波成本。
3、本发明所提出的一种全桥模块化多电平变换器的优化调制方法,仅在整数投入子模块数变化时才进行新的排序操作,每桥臂仅一个子模块处于高频工作状态,显著降低了开关频率。
附图说明
图1是本发明所提供的一种全桥模块化多电平变换器的优化调制方法流程图;
图2是本发明所适用的单相FB MMC的拓扑结构;
图3是上、下桥臂载波相位对用于输出小数部分电压的子模块的输出电压与桥臂电感电压之和的影响;其中,图(a)为上、下桥臂载波反相,且uarmp≥0且uarmn≥0时上、下桥臂载波相位对用于输出电压小数部分的子模块的输出电压与桥臂电感电压之和的影响;图(b)为上、下桥臂载波同相,且uarmp≥0且uarmn≥0时上、下桥臂载波相位对用于输出电压小数部分的子模块的输出电压与桥臂电感电压之和的影响;图(c)为上、下桥臂载波反相,且uarmp≥0且uarmn<0时上、下桥臂载波相位对用于输出电压小数部分的子模块的输出电压与桥臂电感电压之和的影响;图(d)为上、下桥臂载波同相,且uarmp≥0且uarmn<0时上、下桥臂载波相位对用于输出电压小数部分的子模块的输出电压与桥臂电感电压之和的影响;
图4为分别采用NLM和本发明所提供方法调制FB MMC的结果图;
图5为分别采用NLM和本发明所提供的方法调制FB MMC所得到的负载电压的频谱图;其中,图(a)为采用NLM调制FB MMC所得到的负载电压的频谱图,图(b)为采用本发明所提出的方法调制FB MMC所得到的负载电压的频谱图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
为实现上述目的,本发明提供了一种全桥模块化多电平变换器的优化调制方法,如图1所示,包括以下步骤:
S1、分别在各桥臂中基于其桥臂电流和桥臂电压确定其子模块电容充放电状态,并根据其子模块的电容充放电状态和子模块电容电压对其子模块进行排序;
具体的,全桥模块化多电平变换器的桥臂包括上桥臂和下桥臂。
分别基于上、下桥臂电流和上、下桥臂电压确定上、下桥臂子模块电容的充放电状态,分别根据上、下子模块电容的充放电状态以及各子模块电容电压对上、下桥臂中的所有子模块进行排序,以维持桥臂中各子模块电容电压的均衡;
具体的,以下桥臂为例,基于下桥臂电流iarmn、下桥臂电压uarmn计算下桥臂子模块电容的充放电标志位flagC=iarmuarm,其中,各桥臂中子模块电容的充放电标志位均相同,计算一个子模块的充放电标志位即可得到各桥臂中各子模块的充放电状态。当flagC大于等于0时,下桥臂子模块电容为充电状态,对下桥臂子模块按照各子模块电容电压uSMI的升序进行排序;当flagC小于0时,下桥臂子模块电容为放电状态,对下桥臂子模块按照各子模块电容电压uSMI的降序进行排序。上桥臂中子模块的排序方法与下桥臂的相同。
S2、分别在各桥臂中根据其桥臂电压和桥臂额定子模块平均电容电压计算其整数投入子模块数和小数投入子模块数;
具体的,分别根据上、下桥臂电压和上、下桥臂额定子模块平均电容电压计算上、下桥臂整数投入子模块数Np、Nn,以及上、下桥臂小数投入子模块数np、nn
其中,整数投入子模块数是整数,用来表示采用多少子模块来得到桥臂电压的整数部分;小数投入子模块数是小数,用来表示采用一个子模块以几分之几的占空比断续输出子模块电容电压,以得到桥臂电压的小数部分。
具体的,以下桥臂为例,整数投入子模块数Nn和小数投入子模块数nn的计算公式如下:
其中,uarmn为下桥臂电压,为下桥臂额定子模块平均电容电压。
上桥臂整数投入子模块数和小数投入子模块数的计算方法与下桥臂相同。
S3、分别在各桥臂中采用NLM对其前整数投入子模块数个子模块进行控制,输出其桥臂电压的整数部分;判断其小数投入子模块数是否为0,若不为0,则基于其桥臂电压和小数投入子模块数,采用SAPWM对其第整数投入子模块数+1个子模块进行控制,输出其桥臂电压的小数部分,从而输出全桥臂电压;
具体的,采用NLM分别对排序后的前Np个上桥臂子模块和前Nn个下桥臂子模块进行控制,输出电压的整数部分;
具体的,以下桥臂为例,当下桥臂电压uarmn大于等于0时,投入排序后的前Nn个下桥臂子模块进行使用,并使其输出正电平。否则,投入排序后的前Nn个下桥臂子模块进行使用,并使其输出负电平。
上桥臂中采用NLM对排序后的前Np个上桥臂子模块控制方法与下桥臂相同。
具体的,若上桥臂的小数投入子模块数不为0,则基于上桥臂电压uarmp以及上桥臂小数投入子模块数np,采用SAPWM对排序后第Np+1个上桥臂子模块进行控制,输出上桥臂电压的小数部分;若下桥臂的小数投入子模块数不为0,则基于下桥臂电压uarmn以及下桥臂小数投入子模块数nn,采用SAPWM对排序后第Nn+1个下桥臂子模块进行控制,输出下桥臂电压的小数部分;
容易理解,FBMMC并不能直接投入小数个数的子模块,于是,SAPWM采用断续投入1个子模块的方式,等效产生桥臂电压小数部分。通过将计算得到的小数投入子模块数与三角载波瞬时值相比较,确定1个子模块投入与切除的时间,可以确保断续投入1个子模块所产生的平均输出电压与计算得到的小数投入子模块产生的输出电压完美等效,进而产生所需要的小数部分桥臂电压。
具体的,上述采用SAPWM对第整数投入子模块数+1个子模块进行控制的方法,包括以下步骤:
S31、若上、下桥臂电压uarmp、uarmn均大于等于0,则生成同相的在0-1区间波动的上桥臂三角载波和下桥臂三角载波,否则,生成反相的在0-1区间波动的上桥臂三角载波和下桥臂三角载波;
S32、分别根据上、下桥臂电压,上、下桥臂小数投入子模块数、上、下桥臂三角载波控制排序后第Np+1个上桥臂子模块和排序后第Nn+1个下桥臂子模块的输出电平,从而输出各桥臂电压的小数部分。
具体的,以下桥臂为例,若下桥臂电压uarmn大于等于0且其小数投入子模块数nn大于其三角载波的瞬时值cn(t),则使其第Nn+1个子模块输出正电平;
若下桥臂电压uarmn小于0且小数投入子模块数nn大于其三角载波的瞬时值cn(t),则使其第Nn+1个子模块输出负电平;
若小数投入子模块数nn小于等于其三角载波的瞬时值cn(t),则使其第Nn+1个子模块输出零电平。
为了便于叙述与理解,以单相FB MMC为例对本发明所提出的SAPWM调制方法的原理进行详述,具体的,单相FB MMC的拓扑结构如图2所示,其中负载电压uac满足:
其中,iarmp和iarmn分别为上下桥臂电流,uarmp和uarmn分别为上、下桥臂电压,uL为桥臂电感电压,uSMN_p和uSMN_n分别为上、下桥臂中由NLM控制的子模块的总输出电压。uSM_p和uSM_n分别为上、下桥臂中由SAPWM控制的子模块的输出电压。从上式可以看出,增加uSM_n+uL的电平数即可增加负载电压uac电平数,通过增加负载电压的电平数,可以使负载电压更加平滑,波形质量更优。
与HB MMC和FB MMC处于一般工况,即上桥臂电压uarmp大于等于0且下桥臂电压uarmn大于等于0时不同,当FB MMC处于提压运行工况时,uarmp、uarmn还可能存在如下情况:uarmp<0或uarmn<0,其中uarmp和uarmn不可能同时小于0。图3为上、下桥臂载波相位对用于输出小数部分电压的子模块的输出电压与桥臂电感电压之和的影响;其中,图(a)为上、下桥臂载波反相,且uarmp≥0且uarmn≥0时上、下桥臂载波相位对用于输出电压小数部分的子模块的输出电压与桥臂电感电压之和的影响;图(b)为上、下桥臂载波同相,且uarmp≥0且uarmn≥0时上、下桥臂载波相位对用于输出电压小数部分的子模块的输出电压与桥臂电感电压之和的影响;图(c)为上、下桥臂载波反相,且uarmp≥0且uarmn<0时上、下桥臂载波相位对用于输出电压小数部分的子模块的输出电压与桥臂电感电压之和的影响;图(d)为上、下桥臂载波同相,且uarmp≥0且uarmn<0时上、下桥臂载波相位对用于输出电压小数部分的子模块的输出电压与桥臂电感电压之和的影响。对比图3中的图(a)和图(b)可得,当uarmp≥0且uarmn≥0时采用同相的上、下桥臂载波控制小数投入子模块,可以在桥臂电感上产生高频阶梯电压,大大增加了uSM_n+uL的PWM波电平数,效果更好;对比图3中的图(c)和图(d)可知,当uarmp<0或uarmn<0时,采用反相的上、下桥臂载波控制小数投入子模块,uSM_n+uL的PWM波电平数更多,效果更好。本发明所提供的SAPWM调制方法即通过这种方式,实现了FB MMC提压运行工况下uSM_n+uL的PWM波电平数的增加,进而增加了负载电压的电平数,使负载电压信号更加平滑,波形质量更高。
S4、根据步骤S2所述的方法分别重新计算各桥臂新的整数投入子模块数和小数投入子模块数;
S5、分别在各桥臂中判断其相邻两次的整数投入子模块数是否相等,若不相等,则根据步骤S1所述的方法对其子模块进行排序;
S6、重复步骤S3-S5进行迭代,持续输出低总谐波畸变率的全桥臂电压。
最后,通过MATLAB/SIMULINK仿真FB MMC的提压运行,具体的仿真模型参数如表1所示。在FB MMC提压运行工况下,分别采用本发明所提出的全桥模块化多电平变换器的优化调制方法和NLM以验证本发明对负载电压uac波形畸变的改善效果,t<0.2s时,采用NLM调制FB MMC;当t≥0.2s时,采用本发明所提出的方法调制FB MMC,得到如图4所示的结果对比图,其中第一行为分别采用NLM和本发明所提供方法调制FB MMC所得的桥臂电压波形图,第二行为分别采用NLM和本发明所提供方法调制FB MMC所得的电感电压波形图,第三行为分别采用NLM和本发明所提供方法调制FB MMC所得的负载电压波形图。从图中可以看出,使用本发明所提出的方法可以同时调制整数和小数桥臂子模块,生成PWM波动的阶梯uac;并产生高频阶梯uL,大大增加了负载电压uac电平数。相较于NLM,本发明所提出的方法使uac的总谐波畸变率THD降低了22.13%。另外,如图5所示为分别采用NLM和本发明所提供的方法调制FB MMC所得到的负载电压uac的频谱图,其中,图(a)为采用NLM调制FB MMC所得到的负载电压uac的频谱图,图(b)为采用本发明所提出的方法调制FB MMC所得到的负载电压uac的频谱图。从图中可以看出,相较于NLM,本发明所提出的方法可以显著增加负载电压uac的谐波频率,大大降低了滤波成本。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种全桥模块化多电平变换器的优化调制方法,其特征在于,包括以下步骤:
S1、分别在各桥臂中基于其桥臂电流和桥臂电压确定其子模块电容充放电状态,并根据其子模块的电容充放电状态和子模块电容电压对其子模块进行排序;
S2、分别在各桥臂中根据其桥臂电压和桥臂额定子模块平均电容电压计算其整数投入子模块数和小数投入子模块数;
S3、分别在各桥臂中采用NLM对其前整数投入子模块数个子模块进行控制,输出其桥臂电压的整数部分;判断其小数投入子模块数是否为0,若不为0,则基于其桥臂电压和小数投入子模块数,采用SAPWM对其第整数投入子模块数+1个子模块进行控制,输出其桥臂电压的小数部分,从而输出全桥臂电压;
S4、根据步骤S2所述的方法分别重新计算各桥臂新的整数投入子模块数和小数投入子模块数;
S5、分别在各桥臂中判断其相邻两次的整数投入子模块数是否相等,若不相等,则根据步骤S1所述的方法对其子模块进行排序;
S6、重复步骤S3-S5进行迭代,持续输出全桥臂电压。
2.根据权利要求1所述的全桥模块化多电平变换器的优化调制方法,其特征在于,所述全桥模块化多电平变换器的桥臂包括上桥臂和下桥臂。
3.根据权利要求1所述的全桥模块化多电平变换器的优化调制方法,其特征在于,所述整数投入子模块数是整数,用于表示采用多少子模块来输出桥臂电压的整数部分;
所述小数投入子模块数是小数,用于表示一个子模块以几分之几的占空比断续输出子模块电容电压,以得到桥臂电压的小数部分。
4.根据权利要求3所述的全桥模块化多电平变换器的优化调制方法,其特征在于,所述整数投入子模块数N和所述小数投入子模块数n的计算公式如下:
其中,uarm为桥臂电压,UC为额定子模块平均电容电压。
5.根据权利要求1所述的全桥模块化多电平变换器的优化调制方法,其特征在于,分别在各桥臂中采用SAPWM对第整数投入子模块数+1个子模块进行控制的方法,包括以下步骤:
S31、若上、下桥臂电压均大于等于0,则生成同相的在0-1区间波动的上桥臂三角载波和下桥臂三角载波,否则,生成反相的在0-1区间波动的上桥臂三角载波和下桥臂三角载波;
S32、分别在上、下桥臂中,根据其桥臂电压、小数投入子模块数以及桥臂三角载波控制其第整数投入子模块数+1个子模块的输出电平,从而输出各桥臂电压的小数部分。
6.根据权利要求5所述的全桥模块化多电平变换器的优化调制方法,其特征在于,步骤S32所述的方法包括:
若桥臂电压大于等于0且其小数投入子模块数大于其三角载波的瞬时值,则使其第整数投入子模块数+1个子模块输出正电平;
若桥臂电压小于0且小数投入子模块数大于其三角载波的瞬时值,则使其第整数投入子模块数+1个子模块输出负电平;
若小数投入子模块数小于等于其三角载波的瞬时值,则使其第整数投入子模块数+1个子模块输出零电平。
7.根据权利要求1所述的全桥模块化多电平变换器的优化调制方法,其特征在于,所述全桥模块化多电平变换器的优化调制方法适用于提压运行工况下的全桥模块化多电平变换器。
CN201910942140.3A 2019-09-30 2019-09-30 一种全桥模块化多电平变换器的优化调制方法 Active CN110572066B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910942140.3A CN110572066B (zh) 2019-09-30 2019-09-30 一种全桥模块化多电平变换器的优化调制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910942140.3A CN110572066B (zh) 2019-09-30 2019-09-30 一种全桥模块化多电平变换器的优化调制方法

Publications (2)

Publication Number Publication Date
CN110572066A true CN110572066A (zh) 2019-12-13
CN110572066B CN110572066B (zh) 2020-12-08

Family

ID=68783643

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910942140.3A Active CN110572066B (zh) 2019-09-30 2019-09-30 一种全桥模块化多电平变换器的优化调制方法

Country Status (1)

Country Link
CN (1) CN110572066B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111342691A (zh) * 2020-04-09 2020-06-26 华中科技大学 一种Si器件与SiC器件混合型MMC及其调制方法
CN111953222A (zh) * 2020-08-11 2020-11-17 上海交通大学 基于nlm与pwm混合调制的改进调制方法
CN112928937A (zh) * 2021-01-22 2021-06-08 北京四方继保自动化股份有限公司 一种针对交直流电压质量优化的mmc调制方法
CN113507205A (zh) * 2021-07-27 2021-10-15 华中科技大学 一种抑制mmc共模传导emi的控制方法、控制器及控制系统
CN114063694A (zh) * 2021-10-27 2022-02-18 广东电网有限责任公司广州供电局 电压调制方法、装置、计算机设备及存储介质
CN115276442A (zh) * 2022-07-06 2022-11-01 电子科技大学 一种降低模块化多电平变换器输出电流总谐波失真的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103812369A (zh) * 2014-03-13 2014-05-21 华北电力大学 模块化多电平变换器调制方法及调制控制器
CN104362879A (zh) * 2014-10-21 2015-02-18 西南交通大学 一种改进的最近电平逼近调制算法
CN105186897A (zh) * 2015-08-20 2015-12-23 华中科技大学 一种适用于模块化多电平变换器的最近电平控制方法
CN105337522A (zh) * 2015-11-03 2016-02-17 湖南大学 一种模块化多电平换流器的双载波调制方法
CN105656330A (zh) * 2015-04-03 2016-06-08 华北电力大学 一种适用于高电平模块化多电平换流器的电容均压策略
CN109861569A (zh) * 2019-03-12 2019-06-07 东南大学 一种抑制电容电压波动的新型模块化多电平换流器及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103812369A (zh) * 2014-03-13 2014-05-21 华北电力大学 模块化多电平变换器调制方法及调制控制器
CN104362879A (zh) * 2014-10-21 2015-02-18 西南交通大学 一种改进的最近电平逼近调制算法
CN105656330A (zh) * 2015-04-03 2016-06-08 华北电力大学 一种适用于高电平模块化多电平换流器的电容均压策略
CN105186897A (zh) * 2015-08-20 2015-12-23 华中科技大学 一种适用于模块化多电平变换器的最近电平控制方法
CN105337522A (zh) * 2015-11-03 2016-02-17 湖南大学 一种模块化多电平换流器的双载波调制方法
CN109861569A (zh) * 2019-03-12 2019-06-07 东南大学 一种抑制电容电压波动的新型模块化多电平换流器及其控制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SIZHAO LU,ET AL: "An Improved Submodule Unified Pulse Modulation Scheme for a Hybrid Modular Multilevel Converter", 《CES TRANSACTIONS ON ELECTRICAL MACHINES AND SYSTEMS》 *
ZIXIN LI, ET AL: "An Improved Pulse Width Modulation Method for Chopper-Cell-Based Modular Multilevel Converters", 《IEEE TRANSACTIONS ON POWER ELECTRONICS》 *
聂雄: "模块化多电平变换器的优化控制策略研究", 《中国优秀硕士论文电子期刊网 工程科技II辑》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111342691A (zh) * 2020-04-09 2020-06-26 华中科技大学 一种Si器件与SiC器件混合型MMC及其调制方法
CN111342691B (zh) * 2020-04-09 2020-12-08 华中科技大学 一种Si器件与SiC器件混合型MMC及其调制方法
CN111953222A (zh) * 2020-08-11 2020-11-17 上海交通大学 基于nlm与pwm混合调制的改进调制方法
CN112928937A (zh) * 2021-01-22 2021-06-08 北京四方继保自动化股份有限公司 一种针对交直流电压质量优化的mmc调制方法
CN113507205A (zh) * 2021-07-27 2021-10-15 华中科技大学 一种抑制mmc共模传导emi的控制方法、控制器及控制系统
CN114063694A (zh) * 2021-10-27 2022-02-18 广东电网有限责任公司广州供电局 电压调制方法、装置、计算机设备及存储介质
CN114063694B (zh) * 2021-10-27 2023-10-20 广东电网有限责任公司广州供电局 电压调制方法、装置、计算机设备及存储介质
CN115276442A (zh) * 2022-07-06 2022-11-01 电子科技大学 一种降低模块化多电平变换器输出电流总谐波失真的方法
CN115276442B (zh) * 2022-07-06 2024-04-02 电子科技大学 一种降低模块化多电平变换器输出电流总谐波失真的方法

Also Published As

Publication number Publication date
CN110572066B (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
CN110572066B (zh) 一种全桥模块化多电平变换器的优化调制方法
Mertens et al. Quasi two-level PWM operation of an MMC phase leg with reduced module capacitance
US7920393B2 (en) Four pole neutral-point clamped three phase converter with low common mode voltage output
EP3393034A1 (en) Controlling a back-to-back three-level converter with midpoint voltage ripple compensation
CN112152477B (zh) 一种改进型飞跨电容mmc拓扑及其调制策略
CN111953223A (zh) 一种三相四线制三电平变流器中点电压平衡方法
CN110943638B (zh) 一种中点电压平衡变开关频率控制方法及系统
Devi et al. Comparative study on different five level inverter topologies
CN107834885A (zh) 抑制三电平npc型逆变器中点电位震荡的载波调制方法
CN110994964A (zh) 一种降低模块化多电平换流器交流电压低阶谐波调制方法
CN107196547B (zh) 一种三相双buck并网逆变器的对称全周期调制方法
Liu et al. Control strategy for cascade multilevel inverter based STATCOM with optimal combination modulation
CN111740624A (zh) 高增益多电平dc/ac变流拓扑及方法
US9438132B2 (en) Multilevel AC/DC power converting method and converter device thereof
KR102339935B1 (ko) 입력 전류의 고조파 저감을 위한 정류기 제어기가 구비된 무정전 전원장치 및 그 제어방법
US11979094B2 (en) Method for operating a power electronic converter device with floating cells
Eydi et al. A novel structure for 15-level inverter based on CHB and SCMLI topologies
Parkatti et al. A novel vector controlled current source shunt active power filter with reduced component voltage stresses
CN112636625A (zh) 一种应用于mmc的改进载波移相调制策略
Kim et al. Harmonic analysis and output filter design of NPC multi-level inverters
CN113258803B (zh) 一种模块化多电平变流器的电容电压均衡控制系统、方法
Park et al. Sinusoidal third harmonic voltage injection PWM method for applying the LCL filter to Vienna rectifiers
In et al. Improvement of the intput-output quality of three-level NPC inverters with small DC-link
Lin et al. Three-phase high power factor rectifier with two NPC legs
Cordova et al. Hybrid multilevel inverter drive with synchronous modulation and current waveform improvement

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant