CN111953222A - 基于nlm与pwm混合调制的改进调制方法 - Google Patents

基于nlm与pwm混合调制的改进调制方法 Download PDF

Info

Publication number
CN111953222A
CN111953222A CN202010799671.4A CN202010799671A CN111953222A CN 111953222 A CN111953222 A CN 111953222A CN 202010799671 A CN202010799671 A CN 202010799671A CN 111953222 A CN111953222 A CN 111953222A
Authority
CN
China
Prior art keywords
bridge arm
voltage
sub
pwm
modulation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010799671.4A
Other languages
English (en)
Inventor
姚钢
周荔丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202010799671.4A priority Critical patent/CN111953222A/zh
Publication of CN111953222A publication Critical patent/CN111953222A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

一种基于NLM与PWM混合调制的改进调制方法,其特征在于,通过对模块化多电平换流器的n‑1个子模块采用排序算法实现实现子模块电容电压的均压以最佳逼近基波,同时MMC的上、下桥臂中各引入一个子模块工作在高频PWM模式下且上、下桥臂的PWM载波采用相同的载波;本发明能够显著降低输出相电压相电流的谐波畸变率,输出的电能质量更高的同时,无需复杂的载波生成以及额外的闭环电压平衡控制,具有控制简单、成本低廉,易于实现的优点。

Description

基于NLM与PWM混合调制的改进调制方法
技术领域
本发明涉及的是一种应用于中压大容量变流器领域的技术,具体是一种基于最近电平逼近调制法(NLM)与脉冲宽度调制(PWM)混合调制的改进调制方法。
背景技术
模块化多电平变换器(MMC)作为一种新型多电平拓扑,具有模块化程度高、冗余性好、效率高、容量提升方便等一系列优点。在中压大容量变流器场合如中压电机驱动,新能源发电并网;静止同步无功补偿装置等领域表现出了更广泛的应用价值和更好的发展前景。
模块化多电平变换器(MMC)理想的调制方式应满足:调制后输出的波形谐波畸变率尽可能低,;对于开关器件而言,其开关频率要尽可能的小,以减少开关损耗,提高整个系统的效率;同时系统的控制算法要尽可能的简单易实现。
目前,常见的MMC调制策略主要有:最近电平逼近调制法(NLM),载波移相PWM调制法(CPS-PWM),其中NLM调制法具有谐波畸变率低、开关频率低、损耗小等优点,适用于子模块数目较多的高压、大功率场合,但在中、低数目子模块下,输出电平数较少,输出电压电流谐波畸变率较大,波形质量较差;CPS-PWM调制法使得每个子模块都运行在较高的开关频率,该方法利用多重化技术使得输出波形畸变率低、动态调节特性好,适用于子模块数目少的中低功率场合,但存在功率器件开关损耗大的问题,对散热系统有较高要求。现有的混合调制方法采用NLM+PWM相结合的混合调制策略,综合了NLM与PWM各自的优点,但输出电压电平数只能达到n+1,在中、低数目子模块下对电压电流的波形质量改善幅度较小。
发明内容
本发明针对现有的NLM与PWM混合调制策略在中、低级联数目子模块下,输出的电压电流波形质量较差的问题,提出一种基于NLM与PWM混合调制的改进调制方法,使每个桥臂在有限的n个子模块以及在不改变子模块电容平均电压和增加载波频率的情况下,实现了输出电压的电平数翻倍,可以克服中压型MMC模块数较少的缺点,在中、低级联数目子模块下,能够显著降低输出的电压电流的谐波畸变率。同时子模块均压控制采用排序算法来实现,无需复杂的载波生成以及额外的闭环电压平衡控制,具有控制简单、成本低廉,易于实现的优点。
本发明是通过以下技术方案实现的:
本发明涉及一种基于NLM与PWM混合调制的改进调制方法,通过对模块化多电平换流器(MMC)的n-1个子模块采用排序算法实现子模块电容电压的均压以最佳逼近基波,同时MMC的上、下桥臂中各引入一个子模块工作在高频PWM模式下且上、下桥臂的PWM载波采用相同的载波。
所述的模块化多电平换流器(MMC),由三相六个桥臂组成;每个桥臂由n个半桥结构的子模块和一个环流抑制电抗器L串联构成,n为中、低级联数目。
所述的子模块包括:两个全控型开关管及其反并联的二极管和一个稳压电容。
所述的排序算法具体为:以控制周期Ts为时间基准,每隔Ts的时间采样MMC各桥臂子模块电容电压,并对其按此时桥臂电流方向进行排序,若桥臂电流为正则将该桥臂子模块按其电容电压大小升序排列,反之则按其电容电压大小降序排列,根据计算得到各桥臂需要投入的子模块数目k,选择第1~k个投入,第K+2~n个切除,进行NLM工作模式,选择第k+1作为PWM工作子模块,进行PWM工作模式。
技术效果
与现有技术相比,本发明能够显著降低输出相电压相电流的谐波畸变率,输出的电能质量更高的同时,无需复杂的载波生成以及额外的闭环电压平衡控制,具有控制简单、成本低廉,易于实现的优点。
附图说明
图1为MMC拓扑结构示意图;
图2为基于NLM与PWM混合调制方法的原理图;
图中:(a)为上桥臂NLM调制波,(b)为上桥臂PWM调制波与载波,(c)为上桥臂PWM调制信号,(d)为上桥臂混合调制合成的电压波形;
图3为现有的混合调制PWM生成方式图;
图4为本发明改进的混合调制PWM生成方式图;
图5为本发明改进的混合调制上、下桥臂PWM状态图;
图6为本发明采用的基于排序算法的子模块均压控制框图;
图7为应用本发明得到的a相电压图;
图中:(a)为现有的混合调制方法得到的a相电压波形;(b)为本发明采用的改进的混合调制方法得到的a相电压波形;
图8为应用本发明得到的a相电流图;
图中:(a)为现有的混合调制方法得到的a相电流波形;(b)为本发明采用的改进的混合调制方法得到的a相电流波形;
图9为应用本发明得到的a相电压频谱图;
图中:(a)为现有的混合调制方法得到的a相电压频谱图;(b)为本发明采用的改进的混合调制方法得到的a相电压频谱图;
图10为应用本发明得到的a相电流频谱图;
图中:(a)为现有的混合调制方法得到的a相电流频谱图;(b)为本发明采用的改进的混合调制方法得到的a相电流频谱图;
图11为应用本发明得到的a相桥臂子模块电容电压图;
图中:(a)为现有的混合调制方法得到的a相桥臂子模块电容电压波形;(b)为本发明采用的改进的混合调制方法得到的a相桥臂子模块电容电压波形;
图12为应用本发明采用的调制方法与现有的调制方法的子模块个数n和相电压谐波畸变率的关系对比图。
具体实施方式
如图1所示,为本实施例涉及的模块化多电平变流器(MMC),由三相六个桥臂组成,每个桥臂由n个半桥结构的子模块和1个环流抑制电抗器L串联构成,每个子模块包括:两个全控型开关管V1、V2及其反并联的二极管D1、D2和一个稳压电容C。
所述的子模块具有+E,0(E为每个子模块电容电压平均值)两个电平,各子模块的工作模式包括:
1)V1关断,V2导通;
2)V2关断,V1导通;
3)PWM模式。
如图2所示,为本实施例涉及的混合调制过程示意图,对于MMC,交流侧输出的电压为上、下桥臂输出电压的叠加量。将混合调制技术应用于MMC时,可依据上述思路,分别对上、下桥臂进行控制,得到相应的桥臂电压波形,再进行相应的叠加即可得到相应的输出电压。以单相上桥臂为例,具体为:
如图2a所示,为上桥臂NLM调制波,根据上桥臂调制波的确定上桥臂需要投入的子模块数,用于最佳逼近上桥臂调制电压参考波;图2b为PWM补偿的调制电压参考波,是由上桥臂调制电压参考波uref与NLM调制电压参考波uNLM相减得到uPWM=uref-uNLM,图2c为PWM调制信号,利用三角载波进行PWM调制,获得PWM调制信号,用于补偿参考电压,图2d为两种调制策略共同作用合成上桥臂电压参考信号u=uNLM+uPWM
如图3所示,为现有的混合调制方法的PWM调制信号生成方式,现有的混合调制采用n+1调制,为保证每相中每个时刻上下桥臂只有一个子模块处于PWM工作状态,每相中的上、下桥臂处于PWM状态的2个子模块采取互补的控制策略。
如图4所示,为本实施例采用的改进的混合调制的PWM调制信号生成方式,当桥臂上子模块数较少时,为尽可能提高MMC交流侧输出电流波形的质量,可采用2n+1电平输出的单载波调制策略,以降低输出电压、电流畸变率和桥臂电抗的要求。与图3中现有的混合调制方法对比可知,现有的混合调制方法的下桥臂PWM状态由上桥臂PWM状态取反得到,其近似于上下桥臂载波反向,而改进的混合调制方法的上下桥臂采用相同的载波。
如图5所示,为本实施例采用的改进后的混合调制方法上下桥臂PWM状态,可以看到,在一个基本周期内,上下桥臂处于PWM工作状态的子模块个数在0,1和2之间变换,使得上、下桥臂投入的子模块总数在n-1,n和n+1之间变换,通过这一改变可以使得上、下桥臂电压不同时变化,上下桥臂投入的子模块数出现奇数差,使得输出电压总电平数翻倍,电压波形更加接近于正弦波,输出的电能质量将更高。
如图6所示,为本实施例采用的基于排序算法的子模块均压控制,为保证MMC子模块电容电压动态稳定,需要合理分配子模块的开关动作。开关状态分配的原则是在保证子模块电压稳定的前提下尽可能减小模块投切频率,降低器件损耗。为使子模块电容电压均衡,本实施例采用排序算法来实现均压。无需复杂的载波生成以及额外的闭环电压平衡控制,具有控制简单、易于实现的优点。其具体步骤如下:
以系统的控制周期Ts为时间基准,每隔Ts的时间采样MMC各桥臂子模块电容电压,对其按此时桥臂电流方向进行排序,若桥臂电流为正则将该桥臂子模块按其电容电压大小升序排列,反之则按电容电压大小降序排列,根据计算得到各桥臂需要投入的子模块数目k,选择第1~k个投入,第K+2~n个切除,进行NLM工作模式,选择第k+1作为PWM工作子模块,进行PWM工作模式。
在MATLAB/Simulink软件中搭建三相5电平PMSM-MMC电机驱动的仿真模型,MMC分别应用现有的混合调制方法和本实施例采用的改进的混合调制方法进行仿真验证。应用本实施例方法得到的相电压、相电流、相电压频谱图、相电流频谱图以及子模块电容电压波形如图7~11所示。
仿真结果证明:相较于现有的混合调制方法,本实施例采用的改进的混合调制方法输出的相电压电平数目翻倍,相电压相电流波形畸变率更小,波形更接近正弦波,输出的电能波形质量更高,同时子模块电容电压波动也得到有效的抑制。图12应用本实施例采用的调制方法与现有的调制方法的子模块个数n和相电压谐波畸变率的关系对比图,可以看到,当子模块数量在中低数目时,应用本实施例采用的调制方法输出的相电压畸变率更低,因此,本实施例采用的调制方法在子模块数目较少的中压大容量MMC应用场合具有较好的工程实用价值,如中压电机驱动,新能源发电并网;静止同步无功补偿装置等领域。
上述具体实施可由本领域技术人员在不背离本发明原理和宗旨的前提下以不同的方式对其进行局部调整,本发明的保护范围以权利要求书为准且不由上述具体实施所限,在其范围内的各个实现方案均受本发明之约束。

Claims (4)

1.一种基于NLM与PWM混合调制的改进调制方法,其特征在于,通过对模块化多电平换流器的n-1个子模块采用排序算法实现实现子模块电容电压的均压以最佳逼近基波,同时MMC的上、下桥臂中各引入一个子模块工作在高频PWM模式下且上、下桥臂的PWM载波采用相同的载波。
2.根据权利要求1所述的改进调制方法,其特征是,所述的模块化多电平换流器,由三相六个桥臂组成;每个桥臂由n个半桥结构的子模块和一个环流抑制电抗器L串联构成,n为中、低级联数目。
3.根据权利要求2所述的改进调制方法,其特征是,所述的子模块包括两个全控型开关管及其反并联的二极管和一个稳压电容。
4.根据权利要求1所述的改进调制方法,其特征是,所述的排序算法具体为:以控制周期Ts为时间基准,每隔Ts的时间采样MMC各桥臂子模块电容电压,并对其按此时桥臂电流方向进行排序,若桥臂电流为正则将该桥臂子模块按其电容电压大小升序排列,反之则按其电容电压大小降序排列,根据计算得到各桥臂需要投入的子模块数目k,选择第1~k个投入,第K+2~n个切除,进行NLM工作模式,选择第k+1作为PWM工作子模块,进行PWM工作模式。
CN202010799671.4A 2020-08-11 2020-08-11 基于nlm与pwm混合调制的改进调制方法 Pending CN111953222A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010799671.4A CN111953222A (zh) 2020-08-11 2020-08-11 基于nlm与pwm混合调制的改进调制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010799671.4A CN111953222A (zh) 2020-08-11 2020-08-11 基于nlm与pwm混合调制的改进调制方法

Publications (1)

Publication Number Publication Date
CN111953222A true CN111953222A (zh) 2020-11-17

Family

ID=73332617

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010799671.4A Pending CN111953222A (zh) 2020-08-11 2020-08-11 基于nlm与pwm混合调制的改进调制方法

Country Status (1)

Country Link
CN (1) CN111953222A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210058007A1 (en) * 2018-01-12 2021-02-25 Mitsubishi Electric Corporation Power conversion device
CN113114049A (zh) * 2021-04-15 2021-07-13 湖南大学 混合型模块化多电平铁路功率调节器及其控制方法、系统
CN113972850A (zh) * 2021-10-11 2022-01-25 中国华能集团清洁能源技术研究院有限公司 一种基于nl-spwm的mmc双桥臂互补式混合调制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107846153A (zh) * 2017-11-08 2018-03-27 华北电力大学(保定) Mmc换流器的混合调制算法
CN110572066A (zh) * 2019-09-30 2019-12-13 华中科技大学 一种全桥模块化多电平变换器的优化调制方法
CN110880785A (zh) * 2019-11-12 2020-03-13 东南大学 基于混合调制策略的模块化多电平变换器主动热控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107846153A (zh) * 2017-11-08 2018-03-27 华北电力大学(保定) Mmc换流器的混合调制算法
CN110572066A (zh) * 2019-09-30 2019-12-13 华中科技大学 一种全桥模块化多电平变换器的优化调制方法
CN110880785A (zh) * 2019-11-12 2020-03-13 东南大学 基于混合调制策略的模块化多电平变换器主动热控制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YI WANG等: "A Nearest Level PWM Method for the MMC in DC Distribution Grids", 《IEEE TRANSACTIONS ON POWER ELECTRONICS》, vol. 33, no. 11, pages 9209 - 9218, XP011688731, DOI: 10.1109/TPEL.2018.2792148 *
YUNBO LONG等: "A Hybrid Modulation Method for Improved Modular Multilevel Converter applied for Power Quality Compensation in Medium Voltage", 《2013 1ST INTERNATIONAL FUTURE ENERGY ELECTRONICS CONFERENCE》, 19 December 2013 (2013-12-19), pages 789 - 793 *
姚钢 等: "单相多电平电流源变流器混合调制与控制技术", 《电网技术》, vol. 42, no. 04, pages 1300 - 1307 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210058007A1 (en) * 2018-01-12 2021-02-25 Mitsubishi Electric Corporation Power conversion device
US11601064B2 (en) * 2018-01-12 2023-03-07 Mitsubishi Electric Corporation Power conversion device having a frequency of a first control signal higher than a frequency of a second control signal
CN113114049A (zh) * 2021-04-15 2021-07-13 湖南大学 混合型模块化多电平铁路功率调节器及其控制方法、系统
CN113972850A (zh) * 2021-10-11 2022-01-25 中国华能集团清洁能源技术研究院有限公司 一种基于nl-spwm的mmc双桥臂互补式混合调制方法

Similar Documents

Publication Publication Date Title
CN103560746B (zh) 一种多并联逆变器电机调速系统及其控制方法
CN111953222A (zh) 基于nlm与pwm混合调制的改进调制方法
CN110048627B (zh) 无共模电压的多电平逆变器的调制方法
Kadum PWM control techniques for three phase three level inverter drives
Gu et al. Novel modulation scheme for balancing power distribution among modules in nine-level asymmetric cascaded H-bridge inverter
Kumar Sahu et al. THD analysis of a seven, nine, and eleven level cascaded H-bridge multilevel inverter for different loads
Yan et al. Multi-mode hybrid modulation strategy for three-level converters based on half-wave symmetric SHEPWM
Wang et al. Topology and modulation of fractional-level MMC for DC distribution grids
Chenchireddy et al. 3-phase 7-level diode clamped inverter for standalone application
Lin et al. Multilevel inverter with series connection of H-bridge cells
Sarker et al. A Modified PWM Technique to Reduce Harmonic Content of Multi-level NPC Topology for Medium Voltage Electric Vehicle (EV) Applications
Sangwongwanich Double-carrier-based modulation theory of three-level inverters and a new discontinuous PWM for neutral-point voltage balancing
Fang et al. Improved virtual space vector modulation for neutral point voltage oscillation and common-mode voltage reduction in neutral point clamped three-level inverter
Aihsan et al. Harmonic Analysis of Three-Phase Asymmetrical Multilevel Inverter with Reduced Number of Switches
Ren et al. A novel neutral-point-clamped half-bridge eleven-level inverter with high DC voltage utilization ratio and fewer switches
Phan et al. Simplified Space Vector Pulse Width Modulation for Four-Level Neutral Point Clamped Inverter
Chen et al. Optimal control strategy of the interleaved buck cell based shunt active filter
CN116073690B (zh) 一种mmc储能系统混合调制方法
Peng et al. A Neutral Point Voltage Control Strategy for NPC Three-level Converter Based on Reference Voltage Decomposition Method
Jena et al. Single-source three-phase switched-capacitor-based MLI
Vaikundaselvan et al. PWM strategy for three phase voltage source inverter with minimum harmonic distortion
Elahi et al. An Efficient Switched-Capacitor Based Single DC Source Inverter with Selective Harmonic Elimination
Basit et al. The simulation of 3-phase 17-level inverter using two cascaded square wave bridge
CN116345858A (zh) 一种应用于中点钳位三电平逆变器的中点电位控制方法
Kamlu Comparative analysis for Cascaded H-Bridge Multilevel Inverter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination