CN113972850A - 一种基于nl-spwm的mmc双桥臂互补式混合调制方法 - Google Patents

一种基于nl-spwm的mmc双桥臂互补式混合调制方法 Download PDF

Info

Publication number
CN113972850A
CN113972850A CN202111183843.6A CN202111183843A CN113972850A CN 113972850 A CN113972850 A CN 113972850A CN 202111183843 A CN202111183843 A CN 202111183843A CN 113972850 A CN113972850 A CN 113972850A
Authority
CN
China
Prior art keywords
modulation
sub
spwm
bridge arm
bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111183843.6A
Other languages
English (en)
Other versions
CN113972850B (zh
Inventor
郭小江
刘艳贵
车延博
王海明
梅名皖
申旭辉
汤海雁
刘亮亮
刘恒
李家山
李铮
赵瑞斌
付明志
孙栩
潘霄峰
秦猛
李春华
关何格格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Huaneng Clean Energy Research Institute
Clean Energy Branch of Huaneng Zhejiang Energy Development Co Ltd
Original Assignee
Tianjin University
Huaneng Clean Energy Research Institute
Clean Energy Branch of Huaneng Zhejiang Energy Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University, Huaneng Clean Energy Research Institute, Clean Energy Branch of Huaneng Zhejiang Energy Development Co Ltd filed Critical Tianjin University
Priority to CN202111183843.6A priority Critical patent/CN113972850B/zh
Publication of CN113972850A publication Critical patent/CN113972850A/zh
Application granted granted Critical
Publication of CN113972850B publication Critical patent/CN113972850B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种基于NL‑SPWM的MMC双桥臂互补式混合调制方法,包括步骤:采用向下取整的原则产生一组逼近调制信号的阶梯波;采集向下逼近调制过程中阶梯波与正弦调制信号之间的误差信号,并将其作为阶梯波每个台阶上的调制信号;将调制信号叠加到利用向下逼近调制产生的阶梯波上,得到子模块开关控制信号。本发明提供的MMC双桥臂互补式混合调制方法,能够结合NLM方法与SPWM方法的优点,在保证输出波形质量的基础上,减低开关频率。

Description

一种基于NL-SPWM的MMC双桥臂互补式混合调制方法
技术领域
本发明属于电力电子变换器的调制策略领域,具体涉及一种基于NL-SPWM的MMC双桥臂互补式混合调制方法。
背景技术
新能源发电是解决用电需求快速增长、电网运行经济灵活等挑战的有效途径之一。光伏组件能够实现直流输出,便于光伏场接入。由于太阳能资源的分散性,光伏发电通过集散式架构接入中高压交流电网成为趋势。与传统的两电平电压源型变换器相比,模块化多电平具有可扩展性、灵活性、冗余性和低失真等优点,能够通过子模块的串联实现中高压的输出,模块化多电平变换器(MMC)已经成为中高压电网的首选技术。大容量集散式光伏电站经过中高压直流电网汇集接入,有助于实现系统的经济运行。对于具有数百个串联模块的高压直流输电系统,MMC在最近电平逼近调制(NLM)策略下可获得较为理想的正弦波电流。然而,对于10KV以下的中压直流(MVDC)输电系统,单相桥臂串联子模块较少,利用最近电平调制策略产生的阶梯波在逼近正弦调制信号的过程中会产生一部分误差信号,特别是电平数较少时,误差较大,输出相电压中会包含较大的低次谐波分量,输出相电流的畸变率较高。采用CPS-PWM调制方法可以降低谐波,谐波含量会低于NLM策略,但由于每个子模块都是独立调制的会使控制变得更加复杂,且子模块IGBT开关频率高,开关损耗较大。
因此,对于应用于MVDC输电系统的MMC变流器,由于其模块数量较少,采用常见的调制策略,会出现明显的低压谐波和电流畸变,使电能质量下降,难以满足光伏中高压汇集接入系统的实际运行要求。
发明内容
针对光伏MVDC系统中存在的上述问题,本发明实施例提出了一种基于NL-SPWM的MMC双桥臂互补式混合调制方法,在NLM的基础上,采用SPWM原理对NLM产生的误差信号进行二次调制,在保证输出电压波形质量的前提下,提高了MMC的系统转化效率,降低了系统开关损耗和相电流的谐波总畸变率,解决了开关损耗大、低压谐波和电流畸变等电能质量的问题。
为了达到上述目的,本发明的技术方案是:
一种基于NL-SPWM的MMC双桥臂互补式混合调制方法,包括如下步骤:
1)采用向下取整的原则产生一组逼近调制信号的阶梯波;
2)采集向下逼近调制过程中阶梯波与正弦调制信号之间的误差信号,并将其作为阶梯波每个台阶上的调制信号;
3)将调制信号叠加到利用向下逼近调制产生的阶梯波上,得到子模块开关控制信号。
具体的,为产生逼近调制信号的阶梯波,步骤1)中,各相桥臂应投入子模块的个数如下:
Figure BDA0003298375040000021
其中,N为桥臂的子模块数目,Npi与Nni分别表示上、下桥臂处于导通状态的子模块数目;floor(x)为对x按四舍五入原则向下取整函数;
Figure BDA0003298375040000022
为调制波的瞬时值,Uc为子模块电容电压的额定值。
具体的,步骤2)中,采用SPWM对误差信号进行调制。
具体的,为了尽可能降低开关频率,选取1个子模块进行SPWM调制,其余子模块以阶梯波的形式进行投切。
具体的,步骤2)中,采集误差信号之后,采用三角载波信号对向下逼近正弦调制信号过程产生的误差信号进行二次调制。
具体的,对误差信号进行二次调制,具体为:上下桥臂采用相同的三角载波信号,选择相反的开通与关断条件进行调制,使上下桥臂互补开通。
具体的,根据误差信号与三角载波大小关系确定上桥臂第N个子模块的运行模式,下桥臂与之对应的1个子模块采用互补的控制信号;上下桥臂的控制信号表示为:
Figure BDA0003298375040000031
其中,utri为载波信号,u为误差信号。
进一步的,还包括子模块的均压控制方法,具体为:
1)当电平数发生变化时,采用向下取整的原则计算出此时各相桥臂应投入的子模块数目之和恒为N-1;
2)根据各相桥臂的电流方向判断此时子模块的工作状态,当子模块工作在充电模式时,将桥臂子模块电容电压值从小到大进行排序,优先投入电容电压较小的子模块;当子模块工作在放电模式时,将桥臂子模块电容电压值从大到小进行排序,优先投入电容电压较大的子模块;
3)将第2到N个子模块进行正常的投切操作,把向下逼近产生的阶梯波与正弦调制信号的误差信号作为第1个子模块的调制信号,并与三角载波信号作比较,给出该子模块的工作状态。
本发明的有益效果如下:
1)本发明提供的MMC双桥臂互补式混合调制方法,能够结合NLM方法与SPWM方法的优点,在保证输出波形质量的基础上,减低开关频率。
2)本发明在NLM基础上加入了SPWM策略,对NLM产生的误差信号进行二次调制,保障了保证输出电压波形质量,提高了MMC的系统转化效率,降低了系统开关损耗和相电流的谐波总畸变率。
3)本发明通过改进子模块电容电压均衡策略,降低混合调制策略下子模块的开关频率,减少了MMC系统的开关损耗,既实现了子模块的电压平衡,也抑制了桥臂环流。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例中混合调制策略的控制框图。
图2是本发明实施例中NL-SPWM原理图。
图3是本发明实施例中混合调制脉冲信号的产生过程图。
图4是本发明实施例中上下桥臂互补原理图。
图5是本发明实施例中NL-SPWM调制流程图。
图6是本发明实施例中混合调制策略的仿真验证图。其中,(a)是交流侧电流波形,(b)是交流侧A相电压,(c)是直流侧电压,(d)是子模块电容电压,(e)是电压谐波成分。
具体实施方式
下面将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
以下详细说明均是示例性的说明,旨在对本发明提供进一步的详细说明。除非另有指明,本发明所采用的所有技术术语与本申请所属领域的一般技术人员的通常理解的含义相同。本发明所使用的术语仅是为了描述具体实施方式,而并非意图限制根据本发明的示例性实施方式。
本发明实施例提供了一种基于NL-SPWM的MMC双桥臂互补式混合调制方法,包括:
1)NL-SPWM混合调制策略,如图1所示。
首先,混合调制策略利用最近电平逼近的基本思想,采用向下取整的原则产生一组逼近调制信号的阶梯波,各相桥臂应投入子模块的个数如下:
Figure BDA0003298375040000051
Figure BDA0003298375040000052
其中,N为桥臂的子模块数目,Npi与Nni分别表示上、下桥臂处于导通状态的子模块数目。floor(x)为对x按四舍五入原则向下取整函数。
Figure BDA0003298375040000053
为调制波的瞬时值。Uc为子模块电容电压的额定值。
其次,采集向下逼近调制过程中阶梯波与正弦调制信号之间的误差信号,并将其作为阶梯波每个台阶上的调制信号。此环节采用SPWM进行调制,为了尽可能降低开关频率,本实施例选取1个子模块进行SPWM调制。NLM-SPWM的原理如图2所示。
最后,将这组SPWM信号叠加到利用向下逼近调制产生的阶梯波上,最终形成混合调制策略的子模块开关控制信号,混合调制脉冲信号的产生过程如图3示。
2)基于NL-SPWM的双桥臂互补式混合调制策略。
如图4所示,在混合调制策略中,任意时刻每个桥臂只有一个子模块工作在SPWM模式下,其余N-1个子模块以阶梯波的形式进行投切,与NLM策略的调制过程相比,混合调制策略采用三角载波信号对向下逼近正弦调制信号过程产生的误差信号进行二次调制,提高了调制策略的调制精度。由于通过最近电平逼近后投入子模块数目为N-1,不符合上下桥臂导通子模块数目为N的要求。因此,上下桥臂采用相同的三角载波信号,选择相反的开通与关断条件进行调制,使得上下桥臂完全互补开通,从而保证子模块投入数目恒为N。
设载波信号为utri,误差信号为u。那么上下桥臂的控制信号可以表示为:
Figure BDA0003298375040000054
Figure BDA0003298375040000061
采用向下逼近调制方法时,上桥臂最多有N-1个子模块开通,此时根据式(3)(4)所示的误差信号与三角载波大小关系确定上桥臂第N个子模块的运行模式,下桥臂与之对应的1个子模块采用互补的控制信号,使得输出电压尽可能逼近电压参考值;同样地,根据向下逼近调制算法,下桥臂最多有N-1个子模块开通,控制方式与上桥臂相似。
3)子模块电容电压均衡策略。
传统的排序算法对投切频率不高的NLM而言,具有较好的控制效果,而混合调制策略中有一个子模块工作在SPWM模式下,其总体开关频率要略高于最近电平调制策略。因此,为了降低混合调制策略下子模块的开关频率,本发明在传统排序算法的基础上设计了一种改进的子模块均压控制算法,如图5所示。
首先,当电平数发生变化时,根据最近电平逼近的原理,采用向下取整的原则计算出此时各相桥臂应投入的子模块数目之和恒为N-1。
其次,根据各相桥臂的电流方向判断此时子模块的工作状态,当子模块工作在充电模式时,将桥臂子模块电容电压值从小到大进行排序,优先投入电容电压较小的子模块。当子模块工作在放电模式时,将桥臂子模块电容电压值从大到小进行排序,优先投入电容电压较大的子模块。
最后,将第2到N个子模块进行正常的投切操作,把向下逼近产生的阶梯波与正弦调制信号的误差信号作为第1个子模块的调制信号,并与三角载波信号作比较给出该子模块的工作状态。
4)仿真验证
为了验证本发明所提出的基于NL-SPWM的MMC双桥臂互补式混合调制策略的有效性,在simulink上对所提策略进行了验证,结果如图6所示。
图6(a)显示了NLM策略下的相电流波形质量差,失真严重,毛刺多。在混合调制策略下,MMC的输入相电流波形更平滑,更接近正弦波。两种调制策略的相电压实现了相位同步。
图6(b)显示了当NL-SPWM下a相的上臂电压被局部放大时,可以观察到混合调制下的上臂电压由多个精细的阶跃波组成,更接近实际的正弦波。
图6(c)显示了采用NLM策略的直流侧输出电压具有超调量和较大的波动,而采用NL-SPWM的直流侧输出电压更稳定,超调量明显较小。
图6(d)显示了在NLM下,SMs的电容电压在1887V上下波动,波动范围为±1.72%;而在混合调制策略下,短消息系统的电容电压在1918V左右上下波动,波动幅度在50%以内±1.64%.结果表明,在稳态运行时,两种调制策略下的短消息系统的电容电压都较好,而采用改进的均压控制算法的混合调制策略下的短消息系统的电压波动较小。
图6(e)显示了采用NLM策略的MMC输入相电流的总谐波失真率(THD)为4.31%,混合调制策略下MMC输入相电流的总谐波失真率(THD)为2.07%。在两种调制策略下,MMC输入相电压的总谐波畸变率都得到了很好的控制,但混合调制策略下输入相电流和相电压的总谐波畸变率低于NLM策略。同时,与NLM相比,可以看出所提出的调制策略的二次谐波明显降低。因此,根据MMC输入相电流的仿真结果,混合调制策略对MMC有较好的调制效果。
综上所述,本发明提出的调制策略及其均压算法不仅保证了直流输出电压的稳定性,而且实现了良好的均压效果。此外,提高了MMC的系统转化效率,降低了系统开关损耗和相电流的谐波总畸变率。解决MVDC系统中开关损耗大、低压谐波和电流畸变等电能质量的问题。
由技术常识可知,本发明可以通过其它的不脱离其精神实质或必要特征的实施方案来实现。因此,上述公开的实施方案,就各方面而言,都只是举例说明,并不是仅有的。所有在本发明范围内或在等同于本发明的范围内的改变均被本发明包含。

Claims (8)

1.一种基于NL-SPWM的MMC双桥臂互补式混合调制方法,其特征在于,包括如下步骤:
1)产生一组逼近调制信号的阶梯波;
2)将向下逼近调制过程中阶梯波与正弦调制信号之间的误差信号作为阶梯波每个台阶上的调制信号;
3)将调制信号叠加到利用向下逼近调制产生的阶梯波上,得到子模块开关控制信号。
2.根据权利要求1所述的基于NL-SPWM的MMC双桥臂互补式混合调制方法,其特征在于,步骤1)中,产生阶梯波时,各相桥臂应投入子模块的个数如下:
Figure FDA0003298375030000011
其中,N为桥臂的子模块数目,Npi与Nni分别表示上、下桥臂处于导通状态的子模块数目;floor(x)为对x按四舍五入原则向下取整函数;
Figure FDA0003298375030000012
为调制波的瞬时值,Uc为子模块电容电压的额定值。
3.根据权利要求1所述的基于NL-SPWM的MMC双桥臂互补式混合调制方法,其特征在于,步骤2)中,采用SPWM对误差信号进行调制。
4.根据权利要求3所述的基于NL-SPWM的MMC双桥臂互补式混合调制方法,其特征在于,选取1个子模块进行SPWM调制,其余子模块以阶梯波的形式进行投切。
5.根据权利要求1所述的基于NL-SPWM的MMC双桥臂互补式混合调制方法,其特征在于,步骤2)中,采集误差信号之后,采用三角载波信号对向下逼近正弦调制信号过程产生的误差信号进行二次调制。
6.根据权利要求5所述的基于NL-SPWM的MMC双桥臂互补式混合调制方法,其特征在于,对误差信号进行二次调制,具体为:上下桥臂采用相同的三角载波信号,选择相反的开通与关断条件进行调制,使上下桥臂互补开通。
7.根据权利要求6所述的基于NL-SPWM的MMC双桥臂互补式混合调制方法,其特征在于,根据误差信号与三角载波大小关系确定上桥臂第N个子模块的运行模式,下桥臂与之对应的1个子模块采用互补的控制信号;上下桥臂的控制信号表示为:
Figure FDA0003298375030000021
Figure FDA0003298375030000022
其中,utri为载波信号,u为误差信号。
8.根据权利要求1所述的基于NL-SPWM的MMC双桥臂互补式混合调制方法,其特征在于,还包括子模块的均压控制方法,具体为:
1)当电平数发生变化时,采用向下取整的原则计算出此时各相桥臂应投入的子模块数目之和恒为N-1;
2)根据各相桥臂的电流方向判断此时子模块的工作状态,当子模块工作在充电模式时,将桥臂子模块电容电压值从小到大进行排序,优先投入电容电压较小的子模块;当子模块工作在放电模式时,将桥臂子模块电容电压值从大到小进行排序,优先投入电容电压较大的子模块;
3)将第2到N个子模块进行正常的投切操作,把向下逼近产生的阶梯波与正弦调制信号的误差信号作为第1个子模块的调制信号,并与三角载波信号作比较给出该子模块的工作状态。
CN202111183843.6A 2021-10-11 2021-10-11 一种基于nl-spwm的mmc双桥臂互补式混合调制方法 Active CN113972850B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111183843.6A CN113972850B (zh) 2021-10-11 2021-10-11 一种基于nl-spwm的mmc双桥臂互补式混合调制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111183843.6A CN113972850B (zh) 2021-10-11 2021-10-11 一种基于nl-spwm的mmc双桥臂互补式混合调制方法

Publications (2)

Publication Number Publication Date
CN113972850A true CN113972850A (zh) 2022-01-25
CN113972850B CN113972850B (zh) 2024-03-19

Family

ID=79587260

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111183843.6A Active CN113972850B (zh) 2021-10-11 2021-10-11 一种基于nl-spwm的mmc双桥臂互补式混合调制方法

Country Status (1)

Country Link
CN (1) CN113972850B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107846153A (zh) * 2017-11-08 2018-03-27 华北电力大学(保定) Mmc换流器的混合调制算法
CN111030496A (zh) * 2019-04-04 2020-04-17 沈阳工业大学 一种适用于模块化多电平变流器的变载波混合调制方法
CN111342691A (zh) * 2020-04-09 2020-06-26 华中科技大学 一种Si器件与SiC器件混合型MMC及其调制方法
CN111756264A (zh) * 2020-07-02 2020-10-09 华北电力大学(保定) 一种适用于中压三相mmc的最近半电平逼近pwm混合调制方法
CN111953222A (zh) * 2020-08-11 2020-11-17 上海交通大学 基于nlm与pwm混合调制的改进调制方法
CN112910292A (zh) * 2021-01-19 2021-06-04 华中科技大学 一种设置有半电压SiC子模块的MMC的调制方法及MMC

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107846153A (zh) * 2017-11-08 2018-03-27 华北电力大学(保定) Mmc换流器的混合调制算法
CN111030496A (zh) * 2019-04-04 2020-04-17 沈阳工业大学 一种适用于模块化多电平变流器的变载波混合调制方法
CN111342691A (zh) * 2020-04-09 2020-06-26 华中科技大学 一种Si器件与SiC器件混合型MMC及其调制方法
CN111756264A (zh) * 2020-07-02 2020-10-09 华北电力大学(保定) 一种适用于中压三相mmc的最近半电平逼近pwm混合调制方法
CN111953222A (zh) * 2020-08-11 2020-11-17 上海交通大学 基于nlm与pwm混合调制的改进调制方法
CN112910292A (zh) * 2021-01-19 2021-06-04 华中科技大学 一种设置有半电压SiC子模块的MMC的调制方法及MMC

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YI WANG ET AL: ""A Nearest Level PWM Method for the MMC in DC Distribution Grids"", 《IEEE TRANSACTIONS ON POWER ELECTRONICS》, vol. 33, no. 11, pages 9209 - 9218, XP011688731, DOI: 10.1109/TPEL.2018.2792148 *
许仪勋 等: ""一种适用于少子模块MMC全电平模式混合调制策略"", 《华北电力大学学报(自然科学版)》, pages 1 - 9 *

Also Published As

Publication number Publication date
CN113972850B (zh) 2024-03-19

Similar Documents

Publication Publication Date Title
Li et al. A new nine-level active NPC (ANPC) converter for grid connection of large wind turbines for distributed generation
Yousofi-Darmian et al. A new asymmetric multilevel inverter with reduced number of components
Song et al. Cascaded multilevel inverter employing three-phase transformers and single DC input
Roncero-Clemente et al. Carrier level-shifted based control method for the PWM 3L-T-type qZS inverter with capacitor imbalance compensation
Abhilash et al. A seven-level VSI with a front-end cascaded three-level inverter and flying-capacitor-fed H-bridge
Nagarajan et al. Performance analysis of a novel reduced switch cascaded multilevel inverter
EP3529888A1 (en) Control of dc-to-ac modular multilevel converter
CN102820672B (zh) 一种连接不同电压等级交流电网的柔性直流输电系统
CN110048627B (zh) 无共模电压的多电平逆变器的调制方法
Rao et al. Grid Connected Distributed Generation System with High Voltage Gain Cascaded DC-DC Converter Fed Asymmetric Multilevel Inverter Topology.
Samanes et al. Common-mode and phase-to-ground voltage reduction in back-to-back power converters with discontinuous PWM
CN114744898A (zh) 基于Si和SiC器件的混合型多电平并网变换器及其控制方法
Ali et al. New Cascaded-Transformers Multilevel Inverter for Renewable Distribution Systems
Zhang et al. Selected harmonic mitigation PWM power matching control strategy for asymmetric cascaded H-bridge multilevel inverter
Sindhuja et al. A Reconfigurable Multilevel Inverters with Minimal Switches for Battery Charging and Renewable Energy Applications
Sandoval et al. A new delta inverter system for grid integration of large scale photovoltaic power plants
Al-Atbee et al. A cascade multi-level inverter topology with reduced switches and higher efficiency
CN111030483A (zh) 一种电力电子变压器及控制方法
CN113972850B (zh) 一种基于nl-spwm的mmc双桥臂互补式混合调制方法
Lin et al. Multilevel inverter with series connection of H-bridge cells
Bifaretti et al. A modulation technique for high power AC/DC multilevel converters for power system integration
Ananthu et al. Voltage balancing of modular multilevel converter for an induction motor drive
CN205945092U (zh) 一种基于混合多电平变换器的分布式电源并网电路
Achilladelis et al. Optimized pulse width modulation for transformerless active-NPC inverters
Hossain et al. A Review on Performance Evaluation of Multilevel Multifunctional Grid Connected Inverter Topologies and Control Strategies Used in PV Systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant