CN110563968A - 一种高强高拉伸的离子导电水凝胶的制备方法 - Google Patents
一种高强高拉伸的离子导电水凝胶的制备方法 Download PDFInfo
- Publication number
- CN110563968A CN110563968A CN201910892947.0A CN201910892947A CN110563968A CN 110563968 A CN110563968 A CN 110563968A CN 201910892947 A CN201910892947 A CN 201910892947A CN 110563968 A CN110563968 A CN 110563968A
- Authority
- CN
- China
- Prior art keywords
- ion
- polyvinyl alcohol
- inorganic particles
- conductive
- source compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
- C08J3/03—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
- C08J3/075—Macromolecular gels
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2329/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
- C08J2329/02—Homopolymers or copolymers of unsaturated alcohols
- C08J2329/04—Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2405/00—Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2203—Oxides; Hydroxides of metals of lithium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2227—Oxides; Hydroxides of metals of aluminium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2237—Oxides; Hydroxides of metals of titanium
- C08K2003/2241—Titanium dioxide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2244—Oxides; Hydroxides of metals of zirconium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/30—Sulfur-, selenium- or tellurium-containing compounds
- C08K2003/3045—Sulfates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/001—Conductive additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/346—Clay
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本发明公开了一种高强高拉伸的离子导电水凝胶的制备方法,步骤如下:称取一定量的聚乙烯醇、槐豆胶和导电离子来源化合物在85~100℃和持续搅拌下溶于水中,并逐渐加入无机粒子,继续搅拌,直到形成均匀稳定溶液;将步骤(1)得到的溶液在‑20℃冷冻10~24h,然后在4℃~30℃解冻2~6h,作为一个冷冻‑解冻循环,循环1~10次后即得到所述的离子导电水凝胶;本发明提供的高强高拉伸的离子导电水凝胶的制备方法,通过与槐豆胶复合,两种聚合物形成高分子网络,且通过氢键互相连接,可以显著提高力学性能。本发明可以通过简单共混的方法得到力学性能和电导率良好的导电水凝胶。操作简便,原料和加工成本低。
Description
技术领域
本发明涉及一种高强高拉伸的离子导电水凝胶的制备方法,可以用于电池、超级电容器、传感器等领域。
背景技术
水凝胶是由能在水中溶胀却不能溶解的交联聚合物及其中包裹的水分子所构成的一类软材料,这类软材料具有含水量高、孔隙率大、生物相容性好等优势。从水凝胶的化学结构上来分析,高分子网络中含有亲水基团和疏水基团,其中亲水基团以氢键等方式与水分子结合,将水分子固定在网状结构内部,而疏水基团遇水则膨胀,因此水凝胶可以吸收并储存大量水分,从而维持一定的形状。水凝胶具有形态柔软且保持特定的形状,能吸收大量的水以及可改良的机械性能,同时具有良好的生物相容性和生物降解性。因此,自20世纪50年代以来,水凝胶被广泛地应用于组织工程、药物释放、3D细胞培养、生物传感器等生物医药学领域。同时,水凝胶材料也可以被作为污水处理、传感器等应用。
导电水凝胶是一种新型水凝胶,兼备了水凝胶的三维网状结构、生物相容性和优异的电化学特性,可以应用于导电涂层、驱动器、传感器、化学阀、能源科学、生物医学工程等诸多领域。导电水凝胶具有多级孔洞的三维网状微结构,高的比表面积、高的电导率、简易通用的制备方法、优异的机械柔韧性以及可调控的化学和物理性质等诸多优点。因此在能量储存与转化、催化、传感器、生物材料科学以及智能材料科学等领域都具有广泛的应用价值。
随着科学技术的飞速发展,电子设备已经遍布人类生活的每个角落,与人类的生存和发展有着密不可分的联系。柔性电子设备具备柔软、可变形、质轻、便携、可大面积生产和应用等特点,被广泛地应用于生产和生活各个领域中,是工业生产和实验室研究的热点。柔性供能设备是柔性电子设备的核心部件,常用导电水凝胶作为超级电容器、镍氢电池等设备的电解质材料来提供柔性,但目前所用的导电水凝胶存在电导率低、力学性能没法满足要求的问题。
为了提高碱性聚合物电解质的综合性能,目前通常采用改善网络结构、共聚、共混、加入无机填料等方法。
发明内容
为了解决现有导电水凝胶pH值碱性和中性聚合物电解质力学性能差,难以满足便携式、穿戴式设备等问题,本发明提供一种高强高拉伸的离子导电水凝胶的制备方法,通过与槐豆胶复合,两种聚合物形成高分子网络,且通过氢键互相连接,可以显著提高力学性能。在凝胶体系中加入微米、纳米级无机颗粒,在其上附着高分子链,可以进一步提高力学性能,且无机颗粒的加入也可以增加凝胶的离子导电能力。
为解决上述技术问题,本发明采用以下技术方案:
本发明利用聚乙烯醇、槐豆胶、导电离子来源化合物、无机粒子制备高强高拉伸的离子导电水凝胶,其步骤如下:
(1)称取一定量的聚乙烯醇、槐豆胶和导电离子来源化合物在85~100℃和持续搅拌下溶于水中,并逐渐加入无机粒子,继续搅拌,直到形成均匀稳定溶液;
(2)将步骤(1)得到的溶液在-20℃冷冻10~24h,然后在4℃~30℃解冻2~6h,作为一个冷冻-解冻循环,循环1~10次后即得到所述的离子导电水凝胶。
所述导电离子来源化合物选自下列化合物中的一种或多种:氢氧化钾、氢氧化钠、氢氧化锂、四乙基氢氧化铵、硫酸锂、硫酸钠、硫酸钾、氯化钾、氯化钠、氯化锂、硝酸钾、硝酸钠、硝酸锂。
进一步,所述导电离子来源化合物在离子导电水凝胶中的摩尔浓度为0.5~6mol/L。
进一步,所述无机粒子选自下列化合物中的一种或多种:氧化铝、二氧化钛、氧化锆、二氧化硅、硅酸铝锂、蒙脱土。
进一步,所述的无机粒子的直径范围为20纳米~200微米;
进一步,所述聚乙烯醇与水的质量比为5~25:100,槐豆胶与聚乙烯醇的质量比为3~30:100,无机粒子与聚乙烯醇的质量比为0.5~20:100。
与现有的技术相比,本发明的有益效果是:本发明提供的高强高拉伸的离子导电水凝胶的制备方法,通过与槐豆胶复合,两种聚合物形成高分子网络,且通过氢键互相连接,可以显著提高力学性能。在凝胶体系中加入微米、纳米级无机颗粒,在其上附着高分子链,可以进一步提高力学性能,且无机颗粒的加入也可以增加凝胶的离子导电能力。本发明可以通过简单共混的方法得到力学性能和电导率良好的导电水凝胶。操作简便,原料和加工成本低。
具体实施方式
下面结合具体实施例,对本发明做进一步说明。应理解,以下实施例仅用于说明本发明而非用于限制本发明的范围,该领域的技术熟练人员可以根据上述发明的内容作出一些非本质的改进和调整。
实施例1
本实施例的高强高拉伸的离子导电水凝胶的制备方法,步骤如下:
(1)称取10g聚乙烯醇、3g槐豆胶和0.05mol氢氧化钾在100℃溶于100g水中,并逐渐加入0.05g二氧化钛,搅拌4h,形成均匀稳定溶液;
(2)将步骤(1)得到的溶液在-20℃冷冻10h,然后在4℃解冻2h,作为一个冷冻-解冻循环,循环6次后得到离子导电水凝胶。
所得离子导电水凝胶的电导率为0.022S/cm,拉伸强度为0.31MPa,断裂伸长率为4.6mm/mm。
实施例2
本实施例的高强高拉伸的离子导电水凝胶的制备方法,步骤如下:
(1)称取15g聚乙烯醇、1.5g槐豆胶和0.6mol硫酸钠在85℃溶于100g水中,并逐渐加入1.5g二氧化硅,搅拌3h,形成均匀稳定溶液;
(2)将步骤(1)得到的溶液在-20℃冷冻24h,然后在20℃解冻6h,作为一个冷冻-解冻循环,循环10次后得到离子导电水凝胶。
所得离子导电水凝胶的电导率为0.12S/cm,拉伸强度为0.6MPa,断裂伸长率为6.7mm/mm。
实施例3
本实施例的高强高拉伸的离子导电水凝胶的制备方法,步骤如下:
(1)称取20g聚乙烯醇、2g槐豆胶和0.3mol氯化钾在95℃溶于100g水中,并逐渐加入4g硅酸铝锂,搅拌3.5h,形成均匀稳定溶液。
(2)将步骤(1)得到的溶液在-18℃冷冻20h,然后在30℃解冻4h,作为一个冷冻-解冻循环,循环1次后得到离子导电水凝胶。
所得离子导电水凝胶的电导率为0.063S/cm,拉伸强度为0.08MPa,断裂伸长率为2.2mm/mm。
实施例4
本实施例的高强高拉伸的离子导电水凝胶的制备方法,步骤如下:
(1)称取25g聚乙烯醇、0.75g槐豆胶和0.5mol硝酸锂在90℃溶于100g水中,并逐渐加入2g蒙脱土,搅拌2h,形成均匀稳定溶液。
(2)将步骤(1)得到的溶液在-15℃冷冻18h,然后在4℃解冻4h,作为一个冷冻-解冻循环,循环5次后得到离子导电水凝胶。
所得离子导电水凝胶的电导率为0.048S/cm,拉伸强度为0.79MPa,断裂伸长率为8.5mm/mm。
实施例5
本实施例的高强高拉伸的离子导电水凝胶的制备方法,步骤如下:
(1)称取15g聚乙烯醇、1.8g槐豆胶和0.2mol氢氧化钠在90℃溶于100g水中,并逐渐加入2.5g氧化铝,搅拌3h,形成均匀稳定溶液。
(2)将步骤(1)得到的溶液在-20℃冷冻15h,然后在10℃解冻5h,作为一个冷冻-解冻循环,循环8次后得到离子导电水凝胶。
所得离子导电水凝胶的电导率为0.095S/cm,拉伸强度为1.6MPa,断裂伸长率为10.8mm/mm。
以上显示和描述了本发明的基本原理和主要特征以及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。
Claims (6)
1.一种高强高拉伸的离子导电水凝胶的制备方法,其特征在于包括下述步骤:
(1)称取一定量的聚乙烯醇、槐豆胶和导电离子来源化合物在85~100℃和持续搅拌下溶于水中,并逐渐加入无机粒子,继续搅拌,直到形成均匀稳定溶液;
(2)将步骤(1)得到的溶液在-15~-20℃冷冻10~24h,然后在4℃~30℃解冻2~6h,作为一个冷冻-解冻循环,循环1~10次后即得到所述的离子导电水凝胶。
2.根据权利要求1所述的离子导电水凝胶的制备方法,其特征在于:所述步骤(1)中导电离子来源化合物选自氢氧化钾、氢氧化钠、氢氧化锂、四乙基氢氧化铵、硫酸锂、硫酸钠、硫酸钾、氯化钾、氯化钠、氯化锂、硝酸钾、硝酸钠或硝酸锂中的至少一种。
3.根据权利要求1所述的离子导电水凝胶的制备方法,其特征在于:所述导电离子来源化合物在离子导电水凝胶中的摩尔浓度为0.5~6mol/L。
4.根据权利要求1所述的离子导电水凝胶的制备方法,其特征在于:所述步骤(1)中无机粒子选自氧化铝、二氧化钛、氧化锆、二氧化硅、硅酸铝锂或蒙脱土中的至少一种。
5.根据权利要求1或4所述的离子导电水凝胶的制备方法,其特征在于:所述无机粒子的直径范围为20纳米~200微米。
6.根据权利要求1所述的离子导电水凝胶的制备方法,其特征在于:所述聚乙烯醇与水的质量比为(5~25):100,槐豆胶与聚乙烯醇的质量比为(3~30):100,无机粒子与聚乙烯醇的质量比为(0.5~20):100。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910892947.0A CN110563968B (zh) | 2019-09-20 | 2019-09-20 | 一种高强高拉伸的离子导电水凝胶的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910892947.0A CN110563968B (zh) | 2019-09-20 | 2019-09-20 | 一种高强高拉伸的离子导电水凝胶的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110563968A true CN110563968A (zh) | 2019-12-13 |
CN110563968B CN110563968B (zh) | 2022-03-04 |
Family
ID=68781555
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910892947.0A Active CN110563968B (zh) | 2019-09-20 | 2019-09-20 | 一种高强高拉伸的离子导电水凝胶的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110563968B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111704728A (zh) * | 2020-06-23 | 2020-09-25 | 武汉大学 | 透明的离子导电纤维素水凝胶及其制备方法和应用 |
CN114075338A (zh) * | 2020-08-11 | 2022-02-22 | 赵超超 | 一种超低温自愈合离子导电水凝胶及其制备方法 |
CN114276564A (zh) * | 2021-08-11 | 2022-04-05 | 北京大学深圳研究生院 | 一种导电双网络水凝胶及其制备方法 |
CN114591017A (zh) * | 2022-03-17 | 2022-06-07 | 华南理工大学 | 一种无机微粒-亲水水凝胶复合颗粒及其制备方法和应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012126912A (ja) * | 2004-08-30 | 2012-07-05 | Nihon Univ | バクテリアセルロース有機ゲルを利用したリチウムイオン導電性材料 |
CN103030908A (zh) * | 2011-09-30 | 2013-04-10 | 中国石油化工集团公司 | 一种聚乙烯醇/无机纳米复合水凝胶及其制备方法 |
CN107180705A (zh) * | 2016-03-10 | 2017-09-19 | 中国科学院苏州纳米技术与纳米仿生研究所 | 用于柔性超级电容器的改性pva电解质薄膜、其制法与应用 |
CN107474265A (zh) * | 2017-09-27 | 2017-12-15 | 福州大学 | 一种聚乙烯醇导电水凝胶的制备方法 |
-
2019
- 2019-09-20 CN CN201910892947.0A patent/CN110563968B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012126912A (ja) * | 2004-08-30 | 2012-07-05 | Nihon Univ | バクテリアセルロース有機ゲルを利用したリチウムイオン導電性材料 |
CN103030908A (zh) * | 2011-09-30 | 2013-04-10 | 中国石油化工集团公司 | 一种聚乙烯醇/无机纳米复合水凝胶及其制备方法 |
CN107180705A (zh) * | 2016-03-10 | 2017-09-19 | 中国科学院苏州纳米技术与纳米仿生研究所 | 用于柔性超级电容器的改性pva电解质薄膜、其制法与应用 |
CN107474265A (zh) * | 2017-09-27 | 2017-12-15 | 福州大学 | 一种聚乙烯醇导电水凝胶的制备方法 |
Non-Patent Citations (2)
Title |
---|
KAITY SANTANU ET AL.: "Interpenetrating polymer network of locust bean gum-poly (vinyl alcohol) for controlled release drug delivery", 《CARBOHYDRATE POLYMERS》 * |
姚日升等: "《药用高分子材料 第二版》", 30 April 2008, 化学工业出版社 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111704728A (zh) * | 2020-06-23 | 2020-09-25 | 武汉大学 | 透明的离子导电纤维素水凝胶及其制备方法和应用 |
CN111704728B (zh) * | 2020-06-23 | 2021-10-22 | 武汉大学 | 透明的离子导电纤维素水凝胶及其制备方法和应用 |
CN114075338A (zh) * | 2020-08-11 | 2022-02-22 | 赵超超 | 一种超低温自愈合离子导电水凝胶及其制备方法 |
CN114276564A (zh) * | 2021-08-11 | 2022-04-05 | 北京大学深圳研究生院 | 一种导电双网络水凝胶及其制备方法 |
CN114591017A (zh) * | 2022-03-17 | 2022-06-07 | 华南理工大学 | 一种无机微粒-亲水水凝胶复合颗粒及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN110563968B (zh) | 2022-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110563968B (zh) | 一种高强高拉伸的离子导电水凝胶的制备方法 | |
Xu et al. | Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: Properties, applications, and perspectives | |
Wei et al. | Development of solid electrolytes in Zn–air and Al–air batteries: from material selection to performance improvement strategies | |
CN110085925B (zh) | 一种水系锌离子电池电解质膜及其制备和应用方法 | |
CN108794773B (zh) | 一种导电水凝胶的制备方法 | |
Zhang et al. | Stretchable and conductive cellulose hydrogel electrolytes for flexible and foldable solid-state supercapacitors | |
Zhang et al. | Alkaline sodium polyacrylate-starch hydrogels with tolerance to cold conditions for stretchable zinc-air batteries | |
CN107481869A (zh) | 一种双网络水凝胶电解质及其制备和应用 | |
Gao et al. | Research progress of ionic liquids-based gels in energy storage, sensors and antibacterial | |
CN110563966B (zh) | 一种MXene/石墨烯/聚乙烯醇复合凝胶的制备方法 | |
CN105086001A (zh) | 一种透明质酸-明胶/丙烯酰胺双网络水凝胶及其制备方法 | |
CN110698697A (zh) | 一种具有自愈合性能的聚乙烯亚胺-聚乙烯醇水凝胶的制备方法 | |
CN110265232B (zh) | 一种可自愈水凝胶电解质薄膜及其制备方法和应用 | |
CN113012947B (zh) | 一种水系固态电解质的制备方法及其应用 | |
CN110492176A (zh) | 一种耐碱双网络水凝胶柔性电解质及其制备方法与应用 | |
Pahnavar et al. | Self-extinguished and flexible cation exchange membranes based on modified K-Carrageenan/PVA double network hydrogels for electrochemical applications | |
Zhang et al. | Design of co-continuous structure of cellulose/PAA-based alkaline solid polyelectrolyte for flexible zinc-air battery | |
Yang et al. | Tough, self-healable, antifreezing and redox-mediated gel polymer electrolyte with three-role K3 [Fe (CN)] 6 for wearable flexible supercapacitors | |
Ge et al. | Critical challenges and solutions: quasi-solid-state electrolytes for zinc-based batteries | |
CN105330885A (zh) | 一种压电凝胶及其制备方法与应用 | |
CN114874463A (zh) | 一种具有优异机械性能的抗冻导电水凝胶及其制备方法与应用 | |
Liu et al. | Research progress in wide-temperature flexible zinc-air batteries | |
CN111312528A (zh) | 一种甲壳素再生水凝胶及其制备方法与应用 | |
Liu et al. | All-natural hydrogel electrolytes prepared by a universal strategy for supercapacitors | |
CN112210041A (zh) | 一种水合离子液凝胶及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |