CN110563455A - 一种利用改进的液相辅助烧结机制来制备sofc陶瓷连接体的方法 - Google Patents

一种利用改进的液相辅助烧结机制来制备sofc陶瓷连接体的方法 Download PDF

Info

Publication number
CN110563455A
CN110563455A CN201910988744.1A CN201910988744A CN110563455A CN 110563455 A CN110563455 A CN 110563455A CN 201910988744 A CN201910988744 A CN 201910988744A CN 110563455 A CN110563455 A CN 110563455A
Authority
CN
China
Prior art keywords
preparing
connector
improved liquid
slurry
sofc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910988744.1A
Other languages
English (en)
Other versions
CN110563455B (zh
Inventor
魏涛
叶钰盛
卓怀芃
张早红
王志孟
杨兴林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Science and Technology
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CN201910988744.1A priority Critical patent/CN110563455B/zh
Publication of CN110563455A publication Critical patent/CN110563455A/zh
Application granted granted Critical
Publication of CN110563455B publication Critical patent/CN110563455B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2641Compositions containing one or more ferrites of the group comprising rare earth metals and one or more ferrites of the group comprising alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • H01M8/0217Complex oxides, optionally doped, of the type AMO3, A being an alkaline earth metal or rare earth metal and M being a metal, e.g. perovskites
    • H01M8/0219Chromium complex oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种利用改进的液相辅助烧结机制来制备SOFC陶瓷连接体的方法,固体氧化物燃料电池用陶瓷连接体组成为镧锶铬铁氧化物,其化学式为LaxSr1‑xCryFe1‑yO3‑σ,其中x=0.5~1;y=0.1~0.5,厚度为10~20μm;具体制备方法如下步骤:1)镧锶铬铁氧化物粉体的制备;2)提拉法制备连接体并实现与阳极的共烧。本发明利用一种改进的液相辅助烧结机制,从材料本身的性能入手,利用简单的提拉制备法即可使得连接体烧结致密,同时实现SOFC的Ni‑YSZ阳极与陶瓷连接体共烧,大大节省了制备陶瓷连接体的成本。

Description

一种利用改进的液相辅助烧结机制来制备SOFC陶瓷连接体的 方法
技术领域
本发明涉及属于电池领域,具体的说是一种利用改进的液相辅助烧结机制来制备SOFC陶瓷连接体的方法。
背景技术
固体氧化物燃料电池(SOFC)是将燃料中的化学能直接转化为电能的一种电化学装置,具有高效、清洁、能量转换效率高、对环境友好、燃料适应性强及寿命长等优点,被公认为21世纪的绿色能源转化装置。目前国际国内主流的SOFC结构主要分为平板式和管式两种,而由于管式结构相较于平板式结构具有易于封装,耐久性更强以及制作成本低等优势,得到世界各机构的广泛关注,如美国的西门子-西屋公司以及日本的三菱重工均采用管式结构。
但是SOFC单电池工作电压只有0.8 V左右,要达到能够实际应用的千瓦乃至兆瓦级发电机功率范围,需将很多单电池按照串联和并联方式组装。连接体就是将电池组装成电池堆的关键部件,它不仅为相邻电池的阴极和阳极提供电子通道,而且起着隔离相邻阳极和阴极的不同气氛的作用。因此连接体必须具备高的电子电导率、低的氧离子电导率,同时其在800℃左右的工作环境下,最重要的一个作用是隔离阴极的O2和阳极的H2,因此连接体必须是致密的,而且需在氧化和还原气氛下都具备良好的化学和物理稳定性,是SOFC所有组件中对材料性能要求最为苛刻的。而且管式SOFC只能采用陶瓷材料作为连接体。目前,常用的材料是铬酸镧(LaCrO3),它因具备良好的电子电导和化学稳定性而被用作SOFC连接体达数十年,比如:西门子-西屋公司采用等离子喷涂法,沿管轴线方向制备了宽11mm、厚100μm的掺杂LaCrO3连接体条,但是由于工艺复杂,成本很高。这是由于LaCrO3基陶瓷材料的烧结性能不佳,使得该类材料很难在NiO-YSZ阳极上通过共烧而达到致密,因此不得不采用电化学气相沉积、等离子喷涂以及磁控溅射等方法,对设备要求高,导致SOFC连接体的制造成本往往占到整个电堆的60 %,这严重阻碍了SOFC的商业化进展。
除了采用高精尖的制备技术,另一种提高LaCrO3烧结性能的方法是“液相辅助烧结机制”在LaCrO3粉末中加入少量的烧结助剂,比如添加CaCrO4,该材料熔点较低,在烧结过程中会变成液体,从而填补在LaCrO3的缝隙中,进而提升连接体的致密度,但是这种方法不仅在连接体材料中引入了CaCrO4杂质,该杂质还会与SOFC的电解质(YSZ,氧化钇稳定的氧化锆)发生反应生成绝缘的CaZrO3,造成连接体的导电性能变差。
发明内容
为了解决上述问题,本发明提供了一种利用改进的液相辅助烧结机制来制备SOFC陶瓷连接体的方法,利用一种改进的液相辅助烧结机制,从材料本身的性能入手,利用简单的提拉制备法即可使得连接体烧结致密,同时实现SOFC的Ni-YSZ阳极与陶瓷连接体共烧。
为了达到上述目的,本发明通过以下技术方案来实现的:
本发明是一种利用改进的液相辅助烧结机制来制备SOFC陶瓷连接体的方法,其特征在于:固体氧化物燃料电池用陶瓷连接体组成为镧锶铬铁氧化物,其化学式为LaxSr1-xCryFe1- yO3-σ,其中x=0.5~1; y=0.1~0.5,厚度为10~20μm;具体制备方法如下步骤:
1)镧锶铬铁氧化物粉体的制备:
a、采用均为分析纯的La2O3, SrCO3, Fe(NO3)3·9H2O和 Cr(NO3)3·9H2O为初始原料,根据各组分的元素化学计量比,将La2O3,SrCO3溶于50~100ml浓度为1mol/L稀硝酸,配制成溶液1;Fe(NO3)3·9H2O 和Cr(NO3)3·9H2O溶于50~100ml去离子水,配制成溶液2,然后将上述溶液1和溶液2混合,搅拌均匀得到混合溶液;
b、往步骤a中得到的混合溶液中加入柠檬酸和乙二醇作为络合剂,在80 ℃的水浴中不停地搅拌,直至形成暗黑色胶状物;
c、将步骤b中得到的暗黑色胶状物转移至烘箱中以200 ℃烘干,待胶状物变成蓬松的泡沫状后取出;
d、将步骤三中的泡沫状LaxSr1-xCryFe1-yO3-σ前驱体研磨成粉末后置于马弗炉中,采用程序升温法烧结,烧结温度为700~1100 ℃,升温速率为3~5 ℃/min,保温4~8小时,除去中间残留的有机物以及碳,形成所需的含有SrCrO4的LaxSr1-xCryFe1-yO3-σ粉体;
2)提拉法制备连接体并实现与阳极的共烧:
e、取LaxSr1-xCryFe1-yO3-σ粉体20克,酒精40克,分散剂TEA 0.6克,粘结剂PVB 0.4克,加入60克氧化锆研磨球,在行星球磨机上研磨4小时,然后抽真空处理2~3分钟,除去浆料中的空气,得到LaxSr1-xCryFe1-yO3-σ浆料;
f、将阳极支撑管素坯浸入e中的浆料中,放入10~20s,待管子上的LaxSr1-xCryFe1-yO3-σ浆料干燥后,继续提拉一次,然后放入烘箱干燥。最后将上述提拉两次后的带有连接体的素胚管放入马弗炉中在1400℃共烧4个小时,厚度为10~20μm。
本发明的进一步改进在于:所述LaxSr1-xCryFe1-yO3-σ为La0.8Sr0.2Cr0.5Fe0.5O3-σ
本发明的进一步改进在于:所述步骤1的b步骤中向混合溶液中加入的柠檬酸与乙二醇 与溶液中的金属离子之和的摩尔比为1∶1∶1。
本发明的进一步改进在于:步骤1中的d步骤中烧结的温度为800-1100℃。
本发明的进一步改进在于:步骤1中的b步骤中搅拌时间为8-12h。
本发明的进一步改进在于:步骤1中的a步骤中的La2O3、SrCO3、Fe(NO3)3·9H2O 和Cr(NO3)3·9H2O的量均为0.01~0.03mol。
在我们前期的研究中,我们发现掺杂一定量Sr和Fe的LaCrO3即LaxSr1-xCryFe1- yO3-σ,其中x=0.5~1; y=0.1~0.5,在800 ℃时,电导率在空气中达21.88 S cm-1,在5 % H2/Ar中达6.45 S cm-1,且在还原和氧化气氛中都能保持稳定,同时热膨胀系数为11.47×10-6 K-1,同YSZ 的膨胀系数10.95×10-6 K-1基本保持一致。只要烧结致密后,便非常适合作为SOFC的陶瓷连接体材料。
但是采用传统的方法很难将这种材料烧结致密。通过研究发现,在800-1100 ℃时会有SrCrO4析出,但是到1200℃以后,SrCrO4又会重新融入到LaxSr1-xCryFe1-yO3-σ当中,形成完整的纯相结构,见图1,即在1200℃以上,Sr、Fe掺杂的LaCrO3中并没有其他杂相生成,可以形成纯相物质。我们还发现SrCrO4的熔点也比较低,在800~1000 ℃以下也会以液体形式存在,这让我们联想到“液相辅助烧结机制”中烧结助剂的作用。因此我们直接利用这一现象,即采用800~1000℃煅烧的粉体(会有析出的SrCrO4)作为制作连接体的材料,而不是采用1200℃煅烧的粉体。这样当连接体制备好后,在1400℃煅烧4h后,原来的SrCrO4又会重新融入到LaxSr1-xCryFe1-yO3-σ材料当中,形成纯相的LaxSr1-xCryFe1-yO3-σ,既没有引入杂质,保持了原材料的性能,同时利用了“液相辅助烧结”的原理,使得连接体致密,在此,我们称之为“改进的液相辅助烧结机制”。
本发明的有益效果是:本发明工艺简单,通过上述提拉的办法可以很方便地在管式SOFC电池上制备连接体,连接体面积可控,通过改变涂覆面积的大小,可以很容易地控制连接体面积。采用与阳极支撑管共烧结的办法,经济、简单且方便,减少制备步骤及成本,有利于管式SOFC商业化。由于是通过共烧制备,连接体与阳极烧结在一起,结构牢固,结合性好,有利于提高电池热循环性能。此外,陶瓷连接体不会生氧化,在氧化和还原气氛中稳定性好。
附图说明
图1是图1 900~1200℃煅烧的粉体的XRD图。
图2是在NiO-YSZ阳极素胚上用提拉法制备LSCrF连接体薄膜的示意图。
图3 共烧后的电池阳极与连接体接触情况。其中a为还原前;b为还原后。
具体实施方式
为了加强对本发明的理解,下面将结合附图和实施例对本发明作进一步描述,以下实施例进一步说明本发明的内容,但不应理解为对本发明的限制,在不背离本发明实质的情况下,对本发明方法、步骤或条件所作的修改和替换,均属于本发明的范围。
本发明是一种利用改进的液相辅助烧结机制来制备SOFC陶瓷连接体的方法,固体氧化物燃料电池用陶瓷连接体组成为镧锶铬铁氧化物,其化学式为LaxSr1-xCryFe1-yO3-σ其中x=0.5~1; y=0.1~0.5,厚度为10~20μm;本发明的镧锶铬铁氧化物组成为La0.8Sr0.2Cr0.5Fe0.5O3-σ具体制备方法如下步骤:
1)镧锶铬铁氧化物粉体的制备:
a、采用均为分析纯的La2O3, SrCO3, Fe(NO3)3·9H2O和 Cr(NO3)3·9H2O为初始原料,根据各组分的元素化学计量比,将0.01~0.03mol La2O3,0.01~0.03mol SrCO3溶于50~100ml浓度为1mol/L稀硝酸,配制成溶液1;0.01~0.03mol Fe(NO3)3·9H2O 和0.01~0.03mol Cr(NO3)3·9H2O溶于50~100ml去离子水,配制成溶液2,然后将上述溶液1和溶液2混合,搅拌均匀得到混合溶液;
b、往步骤a中得到的混合溶液中加入柠檬酸和乙二醇作为络合剂,在80 ℃的水浴中不停地搅拌8-12h,直至形成暗黑色胶状物;
c、将步骤b中得到的暗黑色胶状物转移至烘箱中以200 ℃烘干,待胶状物变成蓬松的泡沫状后取出;
d、将步骤三中的泡沫状La0.8Sr0.2Cr0.5Fe0.5O3-σ前驱体研磨成粉末后置于马弗炉中,采用程序升温法烧结,烧结温度为700~1100 ℃,升温速率为3~5 ℃/min,保温4~8小时,除去中间残留的有机物以及碳,形成所需的含有SrCrO4的La0.8Sr0.2Cr0.5Fe0.5O3-σ粉体;
2)提拉法制备连接体并实现与阳极的共烧:
e、取La0.8Sr0.2Cr0.5Fe0.5O3-σ粉体20克,酒精40克,分散剂TEA 0.6克,粘结剂PVB 0.4克,加入60克氧化锆研磨球,在行星球磨机上研磨4小时,然后抽真空处理2~3分钟,除去浆料中的空气,得到La0.8Sr0.2Cr0.5Fe0.5O3-σ浆料;
f、将阳极支撑管素坯浸入e中的浆料中,放入10~20s,待管子上的La0.8Sr0.2Cr0.5Fe0.5O3-σ浆料干燥后,继续提拉一次,然后放入烘箱干燥,最后将上述提拉两次后的带有连接体的素胚管放入马弗炉中在1400℃共烧4个小时,厚度为10~20μm。
图3a为共烧4h后的电池阳极与连接体接触的情况,连接体与阳极可以紧密的结合在一起,同时连接体表面呈现光亮,说明非常致密。图2可以看出即使经过H2还原之后,即模拟SOFC真实工作环境,连接体与阳极支撑体之间依然结合紧密且致密性良好,说明该连接体与阳极支撑管素坯共烧的办法是可行的。

Claims (7)

1.一种利用改进的液相辅助烧结机制来制备SOFC陶瓷连接体的方法,其特征在于:固体氧化物燃料电池用陶瓷连接体组成为镧锶铬铁氧化物,其化学式为LaxSr1-xCryFe1-yO3-σ,其中x=0.5~1; y=0.1~0.5,厚度为10~20μm;具体制备方法如下步骤:
1)镧锶铬铁氧化物粉体的制备:
a、采用均为分析纯的La2O3, SrCO3, Fe(NO3)3·9H2O和 Cr(NO3)3·9H2O为初始原料,根据各组分的元素化学计量比,将La2O3,SrCO3溶于50~100ml浓度为1mol/L稀硝酸,配制成溶液1;Fe(NO3)3·9H2O 和Cr(NO3)3·9H2O溶于50~100ml去离子水,配制成溶液2,然后将上述溶液1和溶液2混合,搅拌均匀得到混合溶液;
b、往步骤a中得到的混合溶液中加入柠檬酸和乙二醇作为络合剂,在80 ℃的水浴中不停地搅拌,直至形成暗黑色胶状物;
c、将步骤b中得到的暗黑色胶状物转移至烘箱中以200 ℃烘干,待胶状物变成蓬松的泡沫状后取出;
d、将步骤三中的泡沫状LaxSr1-xCryFe1-yO3-σ前驱体研磨成粉末后置于马弗炉中,采用程序升温法烧结,烧结温度为700~1100 ℃,升温速率为3~5 ℃/min,保温4~8小时,除去中间残留的有机物以及碳,形成所需的含有SrCrO4的LaxSr1-xCryFe1-yO3-σ粉体;
2)提拉法制备连接体并实现与阳极的共烧:
e、取LaxSr1-xCryFe1-yO3-σ粉体20克,酒精40克,分散剂TEA 0.6克,粘结剂PVB 0.4克,加入60克氧化锆研磨球,在行星球磨机上研磨4小时,然后抽真空处理2~3分钟,除去浆料中的空气,得到LaxSr1-xCryFe1-yO3-σ浆料;
f、将阳极支撑管素坯浸入e中的浆料中,放入10~20s,待管子上的LaxSr1-xCryFe1-yO3-σ浆料干燥后,继续提拉一次,然后放入烘箱干燥。
2.最后将上述提拉两次后的带有连接体的素胚管放入马弗炉中在1400℃共烧4个小时,厚度为10~20μm。
3.根据权利要求1所述一种利用改进的液相辅助烧结机制来制备SOFC陶瓷连接体的方法,其特征在于:所述LaxSr1-xCryFe1-yO3-σ为La0.8Sr0.2Cr0.5Fe0.5O3-σ
4.根据权利要求2所述一种利用改进的液相辅助烧结机制来制备SOFC陶瓷连接体的方法,其特征在于:所述步骤1的b步骤中向混合溶液中加入的柠檬酸与乙二醇 与溶液中的金属离子之和的摩尔比为1∶1∶1。
5.根据权利要求1所述一种利用改进的液相辅助烧结机制来制备SOFC陶瓷连接体的方法,其特征在于:步骤1中的d步骤中烧结的温度为800-1100℃。
6.根据权利要求1所述一种利用改进的液相辅助烧结机制来制备SOFC陶瓷连接体的方法,其特征在于:步骤1中的b步骤中搅拌时间为8-12h。
7.根据权利要求3-5任意一项所述一种利用改进的液相辅助烧结机制来制备SOFC陶瓷连接体的方法,其特征在于:步骤1中的a步骤中的La2O3、SrCO3、Fe(NO3)3·9H2O 和Cr(NO3)3·9H2O的量均为0.01~0.03mol。
CN201910988744.1A 2019-10-17 2019-10-17 一种利用改进的液相辅助烧结机制来制备sofc陶瓷连接体的方法 Active CN110563455B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910988744.1A CN110563455B (zh) 2019-10-17 2019-10-17 一种利用改进的液相辅助烧结机制来制备sofc陶瓷连接体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910988744.1A CN110563455B (zh) 2019-10-17 2019-10-17 一种利用改进的液相辅助烧结机制来制备sofc陶瓷连接体的方法

Publications (2)

Publication Number Publication Date
CN110563455A true CN110563455A (zh) 2019-12-13
CN110563455B CN110563455B (zh) 2021-08-03

Family

ID=68785225

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910988744.1A Active CN110563455B (zh) 2019-10-17 2019-10-17 一种利用改进的液相辅助烧结机制来制备sofc陶瓷连接体的方法

Country Status (1)

Country Link
CN (1) CN110563455B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111484329A (zh) * 2020-05-20 2020-08-04 中国科学院重庆绿色智能技术研究院 一种液相合成LaxSr1-xCoO3-δ复合氧化物的方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050022883A1 (en) * 2003-07-29 2005-02-03 Paul Adams Fuel cartridge with connecting valve
US20050084733A1 (en) * 2003-10-21 2005-04-21 Tarver Gary D. Fuel cell assembly and method of making the same
US20070190393A1 (en) * 2006-02-14 2007-08-16 Markoski Larry J System for flexible in situ control of water in fuel cells
US20070290384A1 (en) * 2004-08-07 2007-12-20 Cabot Corporation Gas dispersion manufacture of nanoparticulates, and nanoparticulate-containing products and processing thereof
CN101148322A (zh) * 2007-06-29 2008-03-26 清华大学 固体氧化物燃料电池用微晶玻璃封接材料及其封接方法
US20080274393A1 (en) * 2007-04-17 2008-11-06 Markoski Larry J Hydrogel barrier for fuel cells
CN102888599A (zh) * 2012-11-01 2013-01-23 哈尔滨工业大学 在多孔基底材料上制备高致密度金属氧化物薄膜的方法
US20170069917A1 (en) * 2015-09-08 2017-03-09 Institute Of Nuclear Energy Research, Atomic Energy Council, Executive Yuan Growing method of layers for protecting metal interconnects of solid oxide fuel cells
CN107200575A (zh) * 2017-06-08 2017-09-26 江苏师范大学 一种Ca助剂体系YAG基透明陶瓷的制备方法
CN107721424A (zh) * 2017-09-30 2018-02-23 江苏师范大学 一种凝胶注模成型制备yag透明陶瓷的方法
CN109704765A (zh) * 2019-03-07 2019-05-03 哈尔滨工业大学 具有准同型晶相结构的高致密化铁电陶瓷及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050022883A1 (en) * 2003-07-29 2005-02-03 Paul Adams Fuel cartridge with connecting valve
US20050084733A1 (en) * 2003-10-21 2005-04-21 Tarver Gary D. Fuel cell assembly and method of making the same
US20070290384A1 (en) * 2004-08-07 2007-12-20 Cabot Corporation Gas dispersion manufacture of nanoparticulates, and nanoparticulate-containing products and processing thereof
US20070190393A1 (en) * 2006-02-14 2007-08-16 Markoski Larry J System for flexible in situ control of water in fuel cells
US20080274393A1 (en) * 2007-04-17 2008-11-06 Markoski Larry J Hydrogel barrier for fuel cells
CN101148322A (zh) * 2007-06-29 2008-03-26 清华大学 固体氧化物燃料电池用微晶玻璃封接材料及其封接方法
CN102888599A (zh) * 2012-11-01 2013-01-23 哈尔滨工业大学 在多孔基底材料上制备高致密度金属氧化物薄膜的方法
US20170069917A1 (en) * 2015-09-08 2017-03-09 Institute Of Nuclear Energy Research, Atomic Energy Council, Executive Yuan Growing method of layers for protecting metal interconnects of solid oxide fuel cells
CN107200575A (zh) * 2017-06-08 2017-09-26 江苏师范大学 一种Ca助剂体系YAG基透明陶瓷的制备方法
CN107721424A (zh) * 2017-09-30 2018-02-23 江苏师范大学 一种凝胶注模成型制备yag透明陶瓷的方法
CN109704765A (zh) * 2019-03-07 2019-05-03 哈尔滨工业大学 具有准同型晶相结构的高致密化铁电陶瓷及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111484329A (zh) * 2020-05-20 2020-08-04 中国科学院重庆绿色智能技术研究院 一种液相合成LaxSr1-xCoO3-δ复合氧化物的方法

Also Published As

Publication number Publication date
CN110563455B (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
Li et al. Electrode properties of Sr doped La2CuO4 as new cathode material for intermediate-temperature SOFCs
Zhao et al. Preparation and electrochemical properties of La1. 5Pr0. 5NiO4 and La1. 5Pr0. 5Ni0. 9Cu0. 1O4 cathode materials for intermediate-temperature solid oxide fuel cells
CN101577340B (zh) 一种阴极支撑的管式固体氧化物燃料电池的制备方法
CN111477881A (zh) 一种NiFe合金纳米颗粒包覆Pr0.8Sr1.2(FeNi)O4-δ材料及其制法
CN104409742A (zh) 一种BaCoO3-δ基B位Bi2O3和Nb2O5共掺杂的固体氧化物燃料电池阴极材料及其制备方法与应用
CN108390087B (zh) 一种复合固体电解质及其制备方法
CN102738492A (zh) 固体氧化物燃料电池用材料、含该材料的阴极及燃料电池
Liu et al. A high performance thermal expansion offset composite cathode for IT-SOFCs
CN114824303A (zh) 一种r-p型层状中熵钙钛矿结构阴极材料及其制备方法
CN109904498B (zh) 一种用于低温固体氧化物燃料电池的矿物材料电解质
Zhao et al. Fabrication and characterization of a cathode-supported tubular solid oxide fuel cell
JP3617814B2 (ja) アルカリ土類添加ニッケル−鉄系ペロブスカイト型低温動作固体燃料電池用空気極材料
CN110563455B (zh) 一种利用改进的液相辅助烧结机制来制备sofc陶瓷连接体的方法
Zhou et al. Electrochemical properties of La1. 5Pr0. 5Ni0. 95− xCuxAl0. 05O4+ δ Ruddlesden-Popper phase as cathodes for intermediate-temperature solid oxide fuel cells
CN111584882B (zh) 一种新型结构的固体氧化物燃料电池及其制备方法
Yu et al. Surface modulated B-site doping of PrBa0. 5Sr0. 5Co2-xFexO5+ δ as highly efficient cathode for intermediate-temperature solid oxide fuel cells
KR101456982B1 (ko) 고체산화물 연료전지 금속분리판 보호막용 세라믹 분말의 제조방법 및 그 보호막
JP3339983B2 (ja) 固体電解質型燃料電池セルおよびその製造方法
KR102154634B1 (ko) 지지체식 전기화학셀의 제조방법 및 이에 의해 제조된 전기화학셀
CN111244515B (zh) 含钙钛矿型LaNiO3的复合电解质、燃料电池及其制备方法
KR101727457B1 (ko) 고체산화물 연료전지 금속분리판 보호막의 제조방법 및 그로부터 제조된 고체산화물 연료전지 금속분리판 보호막
CN115332619A (zh) 一种用于固态电池的高熵氧化物固态电解质材料及其制备方法与应用
KR100960270B1 (ko) 치밀한 구조를 갖는 스피넬계 전도성 박막, 이의 제조방법및 이를 이용한 금속 접속자
CN113871637A (zh) 一种高性能固体氧化物燃料电池阴极材料及其制备方法
CN111697242A (zh) B位原位出溶的钙钛矿型对称固体氧化物燃料电池电极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant