CN110560049A - 一种用微乳液法制备铂钌钛复合纳米颗粒的方法 - Google Patents

一种用微乳液法制备铂钌钛复合纳米颗粒的方法 Download PDF

Info

Publication number
CN110560049A
CN110560049A CN201910909924.6A CN201910909924A CN110560049A CN 110560049 A CN110560049 A CN 110560049A CN 201910909924 A CN201910909924 A CN 201910909924A CN 110560049 A CN110560049 A CN 110560049A
Authority
CN
China
Prior art keywords
ruthenium
solution
titanium composite
microemulsion
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910909924.6A
Other languages
English (en)
Other versions
CN110560049B (zh
Inventor
朱云庆
成诚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201910909924.6A priority Critical patent/CN110560049B/zh
Publication of CN110560049A publication Critical patent/CN110560049A/zh
Application granted granted Critical
Publication of CN110560049B publication Critical patent/CN110560049B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

一种用微乳液法制备铂钌钛复合纳米颗粒的方法,具体操作按下列步骤进行:步骤a、在剧烈的机械搅拌下,将十六烷基三甲基溴化铵加入到甲苯中,得到乳白色的悬浊液;步骤b、将H2PtCl6前驱体溶液滴加到步骤a悬浊液中,并搅拌过夜,得到橙黄色溶液;步骤c、将过量碱液加入步骤b溶液中,搅拌,然后向上述反应混合物中加入TiCl3,搅拌,得到淡黄色溶液;步骤d、将RuCl3溶液加入到步骤c溶液中,搅拌得到黑色微乳液;步骤e、将上述微乳液液离心,获得铂钌钛复合氧化物纳米颗粒;步骤f、将所得铂钌钛复合氧化物纳米颗粒用溶剂洗涤,并离心去除表面活性剂,并干燥过夜,即得到产物;本发明能够增强材料的导电性、电催化性能、及稳定性。

Description

一种用微乳液法制备铂钌钛复合纳米颗粒的方法
技术领域
本发明属于纳米催化材料领域,特别涉及一种用微乳液法制备铂钌钛复合纳米颗粒的方法。
背景技术
电催化氧化技术具有氧化还原、凝聚、杀菌、吸附和消毒等多种功能,同时也具有设备小,操作简单,又以电子作为反应剂,不添加化学试剂,可避免二次污染,在能源和环境领域具有广阔的应用前景。电催化氧化就是在电场作用下,产生具有强氧化性的羟基自由基等强氧化剂,从而使许多难以降解的有机物分解为CO2或者其他简单化合物。近年来,随着高电催化活性电极材料的开发成功,电催化氧化技术已经开始应用于特种难生物降解有机废水的处理,具有良好的电催化活性和电化学稳定性,还有电解效率高、电解稳定、无有害物质残留等突出优点。在材料中添加多种铂族贵金属,有电流效率高、导电性能好、电催化性能好、抗氧化性强、工作寿命长、节约能源等特点。
电催化氧化的核心是材料的制备,微乳液法制备纳米粒子的实验装置简单,能耗低,操作容易,又具有粒径分布较窄,粒子间不易聚结,稳定性好等特点,且表面活性剂对纳米微粒表面的包覆改善了纳米材料的界面性质,显著地改善了其电化学性质。微乳液的制备方法在不断的发展和完善中,但还有许多问题需要解决,主要有两个方面:一方面是更深入的研究有关微乳液法制备纳米催化剂的形成机理、反应动力学等一些理论问题和探索微乳液的种类、微结构与颗粒制备的选择性之间的规律;另一方面,由于基本处于实验室研究阶段的微乳液法制备纳米粒子的产量相对较小,急需解决工业生产所遇问题,需要解决有机溶剂重复利用以减小环境污染等问题。采用该研究中的方法制备铂钌钛复合纳米颗粒,能有效提高各项性能,应用于电催化氧化领域,有广阔的前景。
发明内容
为了解决以上技术问题,本发明目的在于提供一种用微乳液法制备铂钌钛复合纳米颗粒的方法,该方法制备铂钌钛复合氧化物纳米颗粒能够增强材料的导电性、电催化性能,及稳定性。
本发明是通过以下技术方案来实现:
一种用微乳液法制备铂钌钛复合纳米颗粒的方法,包括以下步骤:
步骤a、在剧烈的机械搅拌下,将2.0-5.0g十六烷基三甲基溴化铵加入到50.0-250ml甲苯中,得到乳白色的悬浊液;
步骤b、将0.06-0.12g的H2PtCl6前驱体溶液滴加到步骤a悬浊液中,并搅拌过夜,得到橙黄色溶液;
步骤c、将过量碱液加入步骤b溶液(橙黄色溶液)中,搅拌,然后向上述反应混合物中加入pH=4的TiCl3(0.05-1g),搅拌,得到淡黄色溶液;
步骤d、将RuCl3(0.1-0.8g)溶液加入到步骤c溶液中,搅拌得到黑色微乳液;
步骤e、将上述微乳液液离心,获得铂钌钛复合氧化物纳米颗粒;
步骤f、将所得铂钌钛复合氧化物纳米颗粒用溶剂洗涤,并离心3-5次去除表面活性剂,并在100℃干燥过夜,即得到产物。
所述的步骤c中加入碱液搅拌2h,加入TiCl3搅拌10min。
所述的步骤c中,pH=4的TiCl3溶液内应加入抗坏血酸(TiCl3:抗坏血酸=0.6:0.7g),再调pH值。
所述的步骤e离心10-30分钟。
所述的步骤f中干燥温度为100℃。
所述的溶剂为纯水、乙醇、丙酮和乙醚。
所述步骤c碱液为氨水、KOH、NaOH溶液。
所述的步骤b、c、d中Pt:Ru(摩尔比)=1:8~20。
与现有技术相比,本发明具有以下有益的技术效果:
该用微乳液法制备铂钌钛复合纳米颗粒能够增强电极材料的导电性、电催化性能,及稳定性。
该方法制备的电极材料电阻为2-5欧,材料导电性提高。采用电化学工作站对该材料进行测试,若电极材料的双电层电容越大,则该电极的材料的电化学活性面积越大,该电极材料的双电层电容为65.76mF,市售的钌铱电极的双电层电容为50.23mF,微乳液法制备铂钌钛复合材料的电化学活性面积要大于市面所售的钌铱电极。
附图说明
图1为微乳液法制备的铂钌钛纳米颗粒粉体XRD谱图。
图2为微乳液法制备的铂钌钛纳米颗粒粉体TEM照片。
图3为微乳液法制备的铂钌钛纳米颗粒粉体。
具体实施方式
下面结合实施例对本发明作进一步详细说明:
实施例1
一种用微乳液法制备铂钌钛复合纳米颗粒的方法,包括步骤:
步骤a、在剧烈的机械搅拌下,将2.0g十六烷基三甲基溴化铵加入到50.0ml甲苯中,得到乳白色的悬浊液;
步骤b、将0.06g的H2PtCl6前驱体溶液滴加到步骤a悬浊液中,并搅拌过夜,得到橙黄色溶液;
步骤c、将过量氨水加入步骤b溶液中,搅拌2h,然后向上述反应混合物中加入pH=4的TiCl3(0.5g),搅拌10min,得到淡黄色溶液;
步骤d、将加入RuCl3(0.1g)溶液加入到步骤c溶液中,搅拌得到黑色微乳液;
步骤e、将上述微乳液离心10分钟,获得铂钌钛复合氧化物纳米颗粒;
步骤f、将所得铂钌钛复合氧化物纳米颗粒用纯水洗涤,并离心3次去除表面活性剂,并在100℃干燥过夜,即得到产物。
实施例2
步骤a、在剧烈的机械搅拌下,将3.5g十六烷基三甲基溴化铵加入到120.0ml甲苯中,得到乳白色的悬浊液;
步骤b、将0.08g的H2PtCl6前驱体溶液滴加到步骤a悬浊液中,并搅拌过夜,得到橙黄色溶液;
步骤c、将过量NaOH溶液加入步骤b溶液中,搅拌2h,然后向上述反应混合物中加入pH=4的TiCl3(0.8g),搅拌10min,得到淡黄色溶液;
步骤d、将加入RuCl3(0.3g)溶液加入到步骤c溶液中,搅拌得到黑色微乳液;
步骤e、将上述微乳液离心10分钟,获得铂钌钛复合氧化物纳米颗粒;
步骤f、将所得铂钌钛复合氧化物纳米颗粒用乙醇洗涤,并离心5次去除表面活性剂,并在100℃干燥过夜,即得到产物。
实施例3
步骤a、在剧烈的机械搅拌下,将4.5g十六烷基三甲基溴化铵加入到200.0ml甲苯中,得到乳白色的悬浊液;
步骤b、将0.10g的H2PtCl6前驱体溶液滴加到步骤a悬浊液中,并搅拌过夜,得到橙黄色溶液;
步骤c、将过量KOH溶液加入步骤b溶液中,搅拌2h,然后向上述反应混合物中加入pH=4的TiCl3(1g),搅拌10min,得到淡黄色溶液;
步骤d、将加入RuCl3(0.6g)溶液加入到步骤c溶液中,搅拌得到黑色微乳液;
步骤e、将上述微乳液离心10分钟,获得铂钌钛复合氧化物纳米颗粒;
步骤f、将所得铂钌钛复合氧化物纳米颗粒用丙酮洗涤,并离心5次去除表面活性剂,并在100℃干燥过夜,即得到产物。
实施例4
步骤a、在剧烈的机械搅拌下,将5.0g十六烷基三甲基溴化铵加入到250.0ml甲苯中,得到乳白色的悬浊液;
步骤b、将0.12g的H2PtCl6前驱体溶液滴加到步骤a悬浊液中,并搅拌过夜,得到橙黄色溶液;
步骤c、将过量NaOH溶液加入步骤b溶液中,搅拌2h,然后向上述反应混合物中先加入pH=4的TiCl3(0.6g),搅拌10min,得到淡黄色溶液;
步骤d、将加入RuCl3(0.8g)溶液加入到步骤c溶液中,搅拌得到黑色微乳液;
步骤e、将上述微乳液离心10分钟,获得铂钌钛复合氧化物纳米颗粒;
步骤f、将所得铂钌钛复合氧化物纳米颗粒用乙醚洗涤,并离心5次去除表面活性剂,并在100℃干燥过夜,即得到产物。
本发明提供的微乳液法制备的铂钌钛复合纳米颗粒,是以将H2PtCl6、RuCl3与TiCl3为原料,采用微乳液法制备的,其中,Pt:Ru(摩尔比)=1:8~20。该材料的特点主要有:(1)用微乳液制备纳米颗粒其能耗低,操作简单,且制备的材料稳定性好(2)能增强电极材料的氧化性与导电性(3)降低造价。
如图1所示:三个强衍射峰2θ分别出现在27.6°、35.6°和54.2°附近,它们的位置不仅互有重叠的部分,而且都具有不同的偏移程度,所以可认为这三个衍射峰主要以(PtRuTi)O2固溶体相存在。
如图2图3所示:对采用微乳液法制备的铂钌钛复合纳米颗粒进行TEM扫描,观察到Pt在晶格结构中高度分散,晶体颗粒小、晶体饱满、致密有序,使电极的比表面积增加,电极的空间利用率增大,从而提供了更多的活性位点,对于提高电极的电催化氧化性能非常有益。
以上实施例仅用于说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本权利要求范围当中。

Claims (8)

1.一种用微乳液法制备铂钌钛复合纳米颗粒的方法,其特征在于,包括以下步骤:
步骤a、在剧烈的机械搅拌下,将2.0-5.0g十六烷基三甲基溴化铵加入到50.0-250ml甲苯中,得到乳白色的悬浊液;
步骤b、将0.06-0.12g的H2PtCl6前驱体溶液滴加到步骤a悬浊液中,并搅拌过夜,得到橙黄色溶液;
步骤c、将过量碱液加入步骤橙黄色溶液中,搅拌,然后向上述反应混合物中加入pH=4的TiCl3(0.05-1g),搅拌,得到淡黄色溶液;
步骤d、将RuCl3(0.1-0.8g)溶液加入到步骤c溶液中,搅拌得到黑色微乳液;
步骤e、将上述微乳液液离心,获得铂钌钛复合氧化物纳米颗粒;
步骤f、将所得铂钌钛复合氧化物纳米颗粒用溶剂洗涤,并离心3-5次去除表面活性剂,并在100℃干燥过夜,即得到产物。
2.根据权利要求1所述的一种用微乳液法制备铂钌钛复合纳米颗粒的方法,其特征在于,所述的步骤c中加入碱液搅拌2h,加入TiCl3搅拌10min。
3.根据权利要求1所述的一种用微乳液法制备铂钌钛复合纳米颗粒的方法,其特征在于,所述的步骤c中,pH=4的TiCl3溶液内应加入抗坏血酸,TiCl3:抗坏血酸=0.6:0.7g,再调pH值。
4.根据权利要求1所述的一种用微乳液法制备铂钌钛复合纳米颗粒的方法,其特征在于,所述的步骤e离心10-30分钟。
5.根据权利要求1所述的一种用微乳液法制备铂钌钛复合纳米颗粒的方法,其特征在于,所述的步骤f中干燥温度为100℃。
6.根据权利要求1所述的一种用微乳液法制备铂钌钛复合纳米颗粒的方法,其特征在于,所述的溶剂为纯水、乙醇、丙酮和乙醚。
7.根据权利要求1所述的一种用微乳液法制备铂钌钛复合纳米颗粒的方法,其特征在于,所述步骤c碱液为氨水、KOH、NaOH溶液。
8.根据权利要求1所述的一种用微乳液法制备铂钌钛复合纳米颗粒的方法,其特征在于,所述的步骤b、c、d中Pt:Ru的摩尔比=1:8~20。
CN201910909924.6A 2019-09-25 2019-09-25 一种用微乳液法制备铂钌钛复合纳米颗粒的方法 Active CN110560049B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910909924.6A CN110560049B (zh) 2019-09-25 2019-09-25 一种用微乳液法制备铂钌钛复合纳米颗粒的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910909924.6A CN110560049B (zh) 2019-09-25 2019-09-25 一种用微乳液法制备铂钌钛复合纳米颗粒的方法

Publications (2)

Publication Number Publication Date
CN110560049A true CN110560049A (zh) 2019-12-13
CN110560049B CN110560049B (zh) 2022-08-12

Family

ID=68782236

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910909924.6A Active CN110560049B (zh) 2019-09-25 2019-09-25 一种用微乳液法制备铂钌钛复合纳米颗粒的方法

Country Status (1)

Country Link
CN (1) CN110560049B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111704211A (zh) * 2020-06-26 2020-09-25 陕西科技大学 一种铂钌钛钇dsa电极的制备方法
CN113023834A (zh) * 2021-03-08 2021-06-25 北京石油化工学院 一种复合电极的制备方法及利用阳极氧化进行医疗污水消毒的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1223452A (en) * 1967-04-20 1971-02-24 Bayer Ag A process for the electrochemical production of olefin oxides
WO1994020997A1 (en) * 1993-03-10 1994-09-15 Massachusetts Institute Of Technology Solid electrolyte-electrode system for an electrochemical cell
US20080026275A1 (en) * 2004-05-27 2008-01-31 Kostantinos Kourtakis Sol-Gel Derived Composites Comprising Oxide or Oxyhydroxide Matrices With Noble Metal Components and Carbon for Fuel Cell Catalysts
EP2082804A1 (en) * 2008-01-25 2009-07-29 CPE Lyon Formation Continue et Recherche Hybrid organic-inorganic materials that contain stabilized carbene
CN101652181A (zh) * 2007-01-19 2010-02-17 艾菲纽技术公司 以选择性氧化烷烃和/或烯烃制备高价值含氧化合物
US20110207602A1 (en) * 2006-09-22 2011-08-25 Ocean University Of China Nanometer powder catalyst and its preparation method
US20170247269A1 (en) * 2014-09-10 2017-08-31 China National Foodpurification Technology (Beijing) Co., Ltd Electrode, preparation method therefor, and uses thereof
CN109382097A (zh) * 2018-09-29 2019-02-26 陕西科技大学 一种微乳液法制备铂铱钌复合纳米颗粒的方法
CN109607690A (zh) * 2018-11-20 2019-04-12 陕西科技大学 一种三维多孔石墨烯水凝胶锑掺杂氧化锡电极的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1223452A (en) * 1967-04-20 1971-02-24 Bayer Ag A process for the electrochemical production of olefin oxides
WO1994020997A1 (en) * 1993-03-10 1994-09-15 Massachusetts Institute Of Technology Solid electrolyte-electrode system for an electrochemical cell
US20080026275A1 (en) * 2004-05-27 2008-01-31 Kostantinos Kourtakis Sol-Gel Derived Composites Comprising Oxide or Oxyhydroxide Matrices With Noble Metal Components and Carbon for Fuel Cell Catalysts
US20110207602A1 (en) * 2006-09-22 2011-08-25 Ocean University Of China Nanometer powder catalyst and its preparation method
CN101652181A (zh) * 2007-01-19 2010-02-17 艾菲纽技术公司 以选择性氧化烷烃和/或烯烃制备高价值含氧化合物
EP2082804A1 (en) * 2008-01-25 2009-07-29 CPE Lyon Formation Continue et Recherche Hybrid organic-inorganic materials that contain stabilized carbene
US20170247269A1 (en) * 2014-09-10 2017-08-31 China National Foodpurification Technology (Beijing) Co., Ltd Electrode, preparation method therefor, and uses thereof
CN109382097A (zh) * 2018-09-29 2019-02-26 陕西科技大学 一种微乳液法制备铂铱钌复合纳米颗粒的方法
CN109607690A (zh) * 2018-11-20 2019-04-12 陕西科技大学 一种三维多孔石墨烯水凝胶锑掺杂氧化锡电极的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
T. A. F. LASSALI ET AL.: "Structural, morphological and surface properties as a function of composition of Ru+Ti+Pt mixed-oxide electrodes", 《ELECTROCHIMICA ACTA》 *
WANG, JB ET AL.: "Catalytic wet air oxidation of acetic acid over different ruthenium catalysts", 《CATALYSIS COMMUNICATIONS》 *
宗蕾: "微乳体系中肉桂醛和柠檬醛选择性加氢性能的研究", 《中国优秀硕士学位论文全文数据库》 *
来水利等: "稳定性二氧化氯在废纸脱墨中的应用", 《陕西科技大学学报(自然科学版)》 *
王爱萍等: "钌钛复合氧化物及其载铂催化剂的制备与表征", 《催化学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111704211A (zh) * 2020-06-26 2020-09-25 陕西科技大学 一种铂钌钛钇dsa电极的制备方法
CN113023834A (zh) * 2021-03-08 2021-06-25 北京石油化工学院 一种复合电极的制备方法及利用阳极氧化进行医疗污水消毒的方法

Also Published As

Publication number Publication date
CN110560049B (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
Yang et al. PtO nanodots promoting Ti3C2 MXene in-situ converted Ti3C2/TiO2 composites for photocatalytic hydrogen production
Li et al. Visible-light-driven nitrogen fixation catalyzed by Bi5O7Br nanostructures: enhanced performance by oxygen vacancies
Chen et al. Room temperature synthesized BaTiO3 for photocatalytic hydrogen evolution
Ma et al. A novel noble-metal-free Mo2C-In2S3 heterojunction photocatalyst with efficient charge separation for enhanced photocatalytic H2 evolution under visible light
Li et al. MOF-derived Cu2O/Cu nanospheres anchored in nitrogen-doped hollow porous carbon framework for increasing the selectivity and activity of electrochemical CO2-to-formate conversion
Ren et al. 2D co-catalytic MoS2 nanosheets embedded with 1D TiO2 nanoparticles for enhancing photocatalytic activity
Li et al. Preparation of AgIn5S8/TiO2 heterojunction nanocomposite and its enhanced photocatalytic H2 production property under visible light
Shi et al. Visible-light photocatalytic degradation of BiTaO4 photocatalyst and mechanism of photocorrosion suppression
Lardhi et al. Significant impact of exposed facets on the BiVO4 material performance for photocatalytic water splitting reactions
Zhuang et al. Lignin-based carbon dots as high-performance support of Pt single atoms for photocatalytic H2 evolution
Wang et al. Photocatalytic CO2 reduction with water vapor to CO and CH4 in a recirculation reactor by Ag-Cu2O/TiO2 Z-scheme heterostructures
Zhang et al. Ferroelectric polarization effect promoting the bulk charge separation for enhance the efficiency of photocatalytic degradation
Candia-Onfray et al. An updated review of metal–organic framework materials in photo (electro) catalytic applications: From CO2 reduction to wastewater treatments
He et al. Ultrathin CoOOH oxides nanosheets realizing efficient photocatalytic hydrogen evolution
Zhao et al. MoS2 quantum dots@ TiO2 nanotube composites with enhanced photoexcited charge separation and high-efficiency visible-light driven photocatalysis
She et al. Facile preparation of mixed-phase CdS and its enhanced photocatalytic selective oxidation of benzyl alcohol under visible light irradiation
Sayed et al. Co-Fe layered double hydroxide decorated titanate nanowires for overall photoelectrochemical water splitting
Ali Khan et al. Synergistic effect of Co/La in oxygen vacancy rich ternary CoAlLa layered double hydroxide with enhanced reductive sites for selective photoreduction of CO2 to CH4
Fang et al. Effect of surface self-heterojunction existed in Bi x Y1–x VO4 on photocatalytic overall water splitting
Zhang et al. MOF-mediated fabrication of coralloid Ni2P@ CdS for enhanced visible-light hydrogen evolution
Yang et al. Insight into the effect of crystalline structure on the oxygen reduction reaction activities of one-dimensional MnO2
CN110560049B (zh) 一种用微乳液法制备铂钌钛复合纳米颗粒的方法
Hu et al. Ultrathin graphitic carbon nitride modified PbBiO2Cl microspheres with accelerating interfacial charge transfer for the photodegradation of organic contaminants
Huang et al. Improved mass-transfer enhances photo-driven dye degradation and H2 evolution over a few-layer WS2/ZnO heterostructure
Wang et al. Efficient heterojunctions via the in situ self-assembly of BiVO4 quantum dots on SiC facets for enhanced photocatalysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant