CN110560049A - 一种用微乳液法制备铂钌钛复合纳米颗粒的方法 - Google Patents
一种用微乳液法制备铂钌钛复合纳米颗粒的方法 Download PDFInfo
- Publication number
- CN110560049A CN110560049A CN201910909924.6A CN201910909924A CN110560049A CN 110560049 A CN110560049 A CN 110560049A CN 201910909924 A CN201910909924 A CN 201910909924A CN 110560049 A CN110560049 A CN 110560049A
- Authority
- CN
- China
- Prior art keywords
- ruthenium
- solution
- titanium composite
- microemulsion
- stirring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 42
- HGLQUIYJNASQMF-UHFFFAOYSA-N [Ti].[Ru].[Pt] Chemical compound [Ti].[Ru].[Pt] HGLQUIYJNASQMF-UHFFFAOYSA-N 0.000 title claims abstract description 37
- 239000002131 composite material Substances 0.000 title claims abstract description 35
- 238000000593 microemulsion method Methods 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000003756 stirring Methods 0.000 claims abstract description 30
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000004530 micro-emulsion Substances 0.000 claims abstract description 17
- 239000000725 suspension Substances 0.000 claims abstract description 14
- 238000001035 drying Methods 0.000 claims abstract description 9
- 229910002621 H2PtCl6 Inorganic materials 0.000 claims abstract description 8
- 229910019891 RuCl3 Inorganic materials 0.000 claims abstract description 8
- 239000004094 surface-active agent Substances 0.000 claims abstract description 8
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims abstract description 7
- 239000003513 alkali Substances 0.000 claims abstract description 7
- 238000010907 mechanical stirring Methods 0.000 claims abstract description 7
- 239000002243 precursor Substances 0.000 claims abstract description 7
- 238000005406 washing Methods 0.000 claims abstract description 7
- 239000011541 reaction mixture Substances 0.000 claims abstract description 6
- 239000002904 solvent Substances 0.000 claims abstract description 5
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims abstract description 3
- 239000007788 liquid Substances 0.000 claims abstract description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 12
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 9
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 claims description 6
- 239000011668 ascorbic acid Substances 0.000 claims description 5
- 229960005070 ascorbic acid Drugs 0.000 claims description 3
- 235000010323 ascorbic acid Nutrition 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims 2
- 229910021529 ammonia Inorganic materials 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 10
- 239000000243 solution Substances 0.000 description 37
- 239000007772 electrode material Substances 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 239000002245 particle Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 229910010062 TiCl3 Inorganic materials 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- CJTCBBYSPFAVFL-UHFFFAOYSA-N iridium ruthenium Chemical compound [Ru].[Ir] CJTCBBYSPFAVFL-UHFFFAOYSA-N 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- -1 hydroxyl free radical Chemical class 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011943 nanocatalyst Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
- B01J23/462—Ruthenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/33—Electric or magnetic properties
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/725—Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Catalysts (AREA)
Abstract
一种用微乳液法制备铂钌钛复合纳米颗粒的方法,具体操作按下列步骤进行:步骤a、在剧烈的机械搅拌下,将十六烷基三甲基溴化铵加入到甲苯中,得到乳白色的悬浊液;步骤b、将H2PtCl6前驱体溶液滴加到步骤a悬浊液中,并搅拌过夜,得到橙黄色溶液;步骤c、将过量碱液加入步骤b溶液中,搅拌,然后向上述反应混合物中加入TiCl3,搅拌,得到淡黄色溶液;步骤d、将RuCl3溶液加入到步骤c溶液中,搅拌得到黑色微乳液;步骤e、将上述微乳液液离心,获得铂钌钛复合氧化物纳米颗粒;步骤f、将所得铂钌钛复合氧化物纳米颗粒用溶剂洗涤,并离心去除表面活性剂,并干燥过夜,即得到产物;本发明能够增强材料的导电性、电催化性能、及稳定性。
Description
技术领域
本发明属于纳米催化材料领域,特别涉及一种用微乳液法制备铂钌钛复合纳米颗粒的方法。
背景技术
电催化氧化技术具有氧化还原、凝聚、杀菌、吸附和消毒等多种功能,同时也具有设备小,操作简单,又以电子作为反应剂,不添加化学试剂,可避免二次污染,在能源和环境领域具有广阔的应用前景。电催化氧化就是在电场作用下,产生具有强氧化性的羟基自由基等强氧化剂,从而使许多难以降解的有机物分解为CO2或者其他简单化合物。近年来,随着高电催化活性电极材料的开发成功,电催化氧化技术已经开始应用于特种难生物降解有机废水的处理,具有良好的电催化活性和电化学稳定性,还有电解效率高、电解稳定、无有害物质残留等突出优点。在材料中添加多种铂族贵金属,有电流效率高、导电性能好、电催化性能好、抗氧化性强、工作寿命长、节约能源等特点。
电催化氧化的核心是材料的制备,微乳液法制备纳米粒子的实验装置简单,能耗低,操作容易,又具有粒径分布较窄,粒子间不易聚结,稳定性好等特点,且表面活性剂对纳米微粒表面的包覆改善了纳米材料的界面性质,显著地改善了其电化学性质。微乳液的制备方法在不断的发展和完善中,但还有许多问题需要解决,主要有两个方面:一方面是更深入的研究有关微乳液法制备纳米催化剂的形成机理、反应动力学等一些理论问题和探索微乳液的种类、微结构与颗粒制备的选择性之间的规律;另一方面,由于基本处于实验室研究阶段的微乳液法制备纳米粒子的产量相对较小,急需解决工业生产所遇问题,需要解决有机溶剂重复利用以减小环境污染等问题。采用该研究中的方法制备铂钌钛复合纳米颗粒,能有效提高各项性能,应用于电催化氧化领域,有广阔的前景。
发明内容
为了解决以上技术问题,本发明目的在于提供一种用微乳液法制备铂钌钛复合纳米颗粒的方法,该方法制备铂钌钛复合氧化物纳米颗粒能够增强材料的导电性、电催化性能,及稳定性。
本发明是通过以下技术方案来实现:
一种用微乳液法制备铂钌钛复合纳米颗粒的方法,包括以下步骤:
步骤a、在剧烈的机械搅拌下,将2.0-5.0g十六烷基三甲基溴化铵加入到50.0-250ml甲苯中,得到乳白色的悬浊液;
步骤b、将0.06-0.12g的H2PtCl6前驱体溶液滴加到步骤a悬浊液中,并搅拌过夜,得到橙黄色溶液;
步骤c、将过量碱液加入步骤b溶液(橙黄色溶液)中,搅拌,然后向上述反应混合物中加入pH=4的TiCl3(0.05-1g),搅拌,得到淡黄色溶液;
步骤d、将RuCl3(0.1-0.8g)溶液加入到步骤c溶液中,搅拌得到黑色微乳液;
步骤e、将上述微乳液液离心,获得铂钌钛复合氧化物纳米颗粒;
步骤f、将所得铂钌钛复合氧化物纳米颗粒用溶剂洗涤,并离心3-5次去除表面活性剂,并在100℃干燥过夜,即得到产物。
所述的步骤c中加入碱液搅拌2h,加入TiCl3搅拌10min。
所述的步骤c中,pH=4的TiCl3溶液内应加入抗坏血酸(TiCl3:抗坏血酸=0.6:0.7g),再调pH值。
所述的步骤e离心10-30分钟。
所述的步骤f中干燥温度为100℃。
所述的溶剂为纯水、乙醇、丙酮和乙醚。
所述步骤c碱液为氨水、KOH、NaOH溶液。
所述的步骤b、c、d中Pt:Ru(摩尔比)=1:8~20。
与现有技术相比,本发明具有以下有益的技术效果:
该用微乳液法制备铂钌钛复合纳米颗粒能够增强电极材料的导电性、电催化性能,及稳定性。
该方法制备的电极材料电阻为2-5欧,材料导电性提高。采用电化学工作站对该材料进行测试,若电极材料的双电层电容越大,则该电极的材料的电化学活性面积越大,该电极材料的双电层电容为65.76mF,市售的钌铱电极的双电层电容为50.23mF,微乳液法制备铂钌钛复合材料的电化学活性面积要大于市面所售的钌铱电极。
附图说明
图1为微乳液法制备的铂钌钛纳米颗粒粉体XRD谱图。
图2为微乳液法制备的铂钌钛纳米颗粒粉体TEM照片。
图3为微乳液法制备的铂钌钛纳米颗粒粉体。
具体实施方式
下面结合实施例对本发明作进一步详细说明:
实施例1
一种用微乳液法制备铂钌钛复合纳米颗粒的方法,包括步骤:
步骤a、在剧烈的机械搅拌下,将2.0g十六烷基三甲基溴化铵加入到50.0ml甲苯中,得到乳白色的悬浊液;
步骤b、将0.06g的H2PtCl6前驱体溶液滴加到步骤a悬浊液中,并搅拌过夜,得到橙黄色溶液;
步骤c、将过量氨水加入步骤b溶液中,搅拌2h,然后向上述反应混合物中加入pH=4的TiCl3(0.5g),搅拌10min,得到淡黄色溶液;
步骤d、将加入RuCl3(0.1g)溶液加入到步骤c溶液中,搅拌得到黑色微乳液;
步骤e、将上述微乳液离心10分钟,获得铂钌钛复合氧化物纳米颗粒;
步骤f、将所得铂钌钛复合氧化物纳米颗粒用纯水洗涤,并离心3次去除表面活性剂,并在100℃干燥过夜,即得到产物。
实施例2
步骤a、在剧烈的机械搅拌下,将3.5g十六烷基三甲基溴化铵加入到120.0ml甲苯中,得到乳白色的悬浊液;
步骤b、将0.08g的H2PtCl6前驱体溶液滴加到步骤a悬浊液中,并搅拌过夜,得到橙黄色溶液;
步骤c、将过量NaOH溶液加入步骤b溶液中,搅拌2h,然后向上述反应混合物中加入pH=4的TiCl3(0.8g),搅拌10min,得到淡黄色溶液;
步骤d、将加入RuCl3(0.3g)溶液加入到步骤c溶液中,搅拌得到黑色微乳液;
步骤e、将上述微乳液离心10分钟,获得铂钌钛复合氧化物纳米颗粒;
步骤f、将所得铂钌钛复合氧化物纳米颗粒用乙醇洗涤,并离心5次去除表面活性剂,并在100℃干燥过夜,即得到产物。
实施例3
步骤a、在剧烈的机械搅拌下,将4.5g十六烷基三甲基溴化铵加入到200.0ml甲苯中,得到乳白色的悬浊液;
步骤b、将0.10g的H2PtCl6前驱体溶液滴加到步骤a悬浊液中,并搅拌过夜,得到橙黄色溶液;
步骤c、将过量KOH溶液加入步骤b溶液中,搅拌2h,然后向上述反应混合物中加入pH=4的TiCl3(1g),搅拌10min,得到淡黄色溶液;
步骤d、将加入RuCl3(0.6g)溶液加入到步骤c溶液中,搅拌得到黑色微乳液;
步骤e、将上述微乳液离心10分钟,获得铂钌钛复合氧化物纳米颗粒;
步骤f、将所得铂钌钛复合氧化物纳米颗粒用丙酮洗涤,并离心5次去除表面活性剂,并在100℃干燥过夜,即得到产物。
实施例4
步骤a、在剧烈的机械搅拌下,将5.0g十六烷基三甲基溴化铵加入到250.0ml甲苯中,得到乳白色的悬浊液;
步骤b、将0.12g的H2PtCl6前驱体溶液滴加到步骤a悬浊液中,并搅拌过夜,得到橙黄色溶液;
步骤c、将过量NaOH溶液加入步骤b溶液中,搅拌2h,然后向上述反应混合物中先加入pH=4的TiCl3(0.6g),搅拌10min,得到淡黄色溶液;
步骤d、将加入RuCl3(0.8g)溶液加入到步骤c溶液中,搅拌得到黑色微乳液;
步骤e、将上述微乳液离心10分钟,获得铂钌钛复合氧化物纳米颗粒;
步骤f、将所得铂钌钛复合氧化物纳米颗粒用乙醚洗涤,并离心5次去除表面活性剂,并在100℃干燥过夜,即得到产物。
本发明提供的微乳液法制备的铂钌钛复合纳米颗粒,是以将H2PtCl6、RuCl3与TiCl3为原料,采用微乳液法制备的,其中,Pt:Ru(摩尔比)=1:8~20。该材料的特点主要有:(1)用微乳液制备纳米颗粒其能耗低,操作简单,且制备的材料稳定性好(2)能增强电极材料的氧化性与导电性(3)降低造价。
如图1所示:三个强衍射峰2θ分别出现在27.6°、35.6°和54.2°附近,它们的位置不仅互有重叠的部分,而且都具有不同的偏移程度,所以可认为这三个衍射峰主要以(PtRuTi)O2固溶体相存在。
如图2图3所示:对采用微乳液法制备的铂钌钛复合纳米颗粒进行TEM扫描,观察到Pt在晶格结构中高度分散,晶体颗粒小、晶体饱满、致密有序,使电极的比表面积增加,电极的空间利用率增大,从而提供了更多的活性位点,对于提高电极的电催化氧化性能非常有益。
以上实施例仅用于说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本权利要求范围当中。
Claims (8)
1.一种用微乳液法制备铂钌钛复合纳米颗粒的方法,其特征在于,包括以下步骤:
步骤a、在剧烈的机械搅拌下,将2.0-5.0g十六烷基三甲基溴化铵加入到50.0-250ml甲苯中,得到乳白色的悬浊液;
步骤b、将0.06-0.12g的H2PtCl6前驱体溶液滴加到步骤a悬浊液中,并搅拌过夜,得到橙黄色溶液;
步骤c、将过量碱液加入步骤橙黄色溶液中,搅拌,然后向上述反应混合物中加入pH=4的TiCl3(0.05-1g),搅拌,得到淡黄色溶液;
步骤d、将RuCl3(0.1-0.8g)溶液加入到步骤c溶液中,搅拌得到黑色微乳液;
步骤e、将上述微乳液液离心,获得铂钌钛复合氧化物纳米颗粒;
步骤f、将所得铂钌钛复合氧化物纳米颗粒用溶剂洗涤,并离心3-5次去除表面活性剂,并在100℃干燥过夜,即得到产物。
2.根据权利要求1所述的一种用微乳液法制备铂钌钛复合纳米颗粒的方法,其特征在于,所述的步骤c中加入碱液搅拌2h,加入TiCl3搅拌10min。
3.根据权利要求1所述的一种用微乳液法制备铂钌钛复合纳米颗粒的方法,其特征在于,所述的步骤c中,pH=4的TiCl3溶液内应加入抗坏血酸,TiCl3:抗坏血酸=0.6:0.7g,再调pH值。
4.根据权利要求1所述的一种用微乳液法制备铂钌钛复合纳米颗粒的方法,其特征在于,所述的步骤e离心10-30分钟。
5.根据权利要求1所述的一种用微乳液法制备铂钌钛复合纳米颗粒的方法,其特征在于,所述的步骤f中干燥温度为100℃。
6.根据权利要求1所述的一种用微乳液法制备铂钌钛复合纳米颗粒的方法,其特征在于,所述的溶剂为纯水、乙醇、丙酮和乙醚。
7.根据权利要求1所述的一种用微乳液法制备铂钌钛复合纳米颗粒的方法,其特征在于,所述步骤c碱液为氨水、KOH、NaOH溶液。
8.根据权利要求1所述的一种用微乳液法制备铂钌钛复合纳米颗粒的方法,其特征在于,所述的步骤b、c、d中Pt:Ru的摩尔比=1:8~20。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910909924.6A CN110560049B (zh) | 2019-09-25 | 2019-09-25 | 一种用微乳液法制备铂钌钛复合纳米颗粒的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910909924.6A CN110560049B (zh) | 2019-09-25 | 2019-09-25 | 一种用微乳液法制备铂钌钛复合纳米颗粒的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110560049A true CN110560049A (zh) | 2019-12-13 |
CN110560049B CN110560049B (zh) | 2022-08-12 |
Family
ID=68782236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910909924.6A Active CN110560049B (zh) | 2019-09-25 | 2019-09-25 | 一种用微乳液法制备铂钌钛复合纳米颗粒的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110560049B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111704211A (zh) * | 2020-06-26 | 2020-09-25 | 陕西科技大学 | 一种铂钌钛钇dsa电极的制备方法 |
CN113023834A (zh) * | 2021-03-08 | 2021-06-25 | 北京石油化工学院 | 一种复合电极的制备方法及利用阳极氧化进行医疗污水消毒的方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1223452A (en) * | 1967-04-20 | 1971-02-24 | Bayer Ag | A process for the electrochemical production of olefin oxides |
WO1994020997A1 (en) * | 1993-03-10 | 1994-09-15 | Massachusetts Institute Of Technology | Solid electrolyte-electrode system for an electrochemical cell |
US20080026275A1 (en) * | 2004-05-27 | 2008-01-31 | Kostantinos Kourtakis | Sol-Gel Derived Composites Comprising Oxide or Oxyhydroxide Matrices With Noble Metal Components and Carbon for Fuel Cell Catalysts |
EP2082804A1 (en) * | 2008-01-25 | 2009-07-29 | CPE Lyon Formation Continue et Recherche | Hybrid organic-inorganic materials that contain stabilized carbene |
CN101652181A (zh) * | 2007-01-19 | 2010-02-17 | 艾菲纽技术公司 | 以选择性氧化烷烃和/或烯烃制备高价值含氧化合物 |
US20110207602A1 (en) * | 2006-09-22 | 2011-08-25 | Ocean University Of China | Nanometer powder catalyst and its preparation method |
US20170247269A1 (en) * | 2014-09-10 | 2017-08-31 | China National Foodpurification Technology (Beijing) Co., Ltd | Electrode, preparation method therefor, and uses thereof |
CN109382097A (zh) * | 2018-09-29 | 2019-02-26 | 陕西科技大学 | 一种微乳液法制备铂铱钌复合纳米颗粒的方法 |
CN109607690A (zh) * | 2018-11-20 | 2019-04-12 | 陕西科技大学 | 一种三维多孔石墨烯水凝胶锑掺杂氧化锡电极的制备方法 |
-
2019
- 2019-09-25 CN CN201910909924.6A patent/CN110560049B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1223452A (en) * | 1967-04-20 | 1971-02-24 | Bayer Ag | A process for the electrochemical production of olefin oxides |
WO1994020997A1 (en) * | 1993-03-10 | 1994-09-15 | Massachusetts Institute Of Technology | Solid electrolyte-electrode system for an electrochemical cell |
US20080026275A1 (en) * | 2004-05-27 | 2008-01-31 | Kostantinos Kourtakis | Sol-Gel Derived Composites Comprising Oxide or Oxyhydroxide Matrices With Noble Metal Components and Carbon for Fuel Cell Catalysts |
US20110207602A1 (en) * | 2006-09-22 | 2011-08-25 | Ocean University Of China | Nanometer powder catalyst and its preparation method |
CN101652181A (zh) * | 2007-01-19 | 2010-02-17 | 艾菲纽技术公司 | 以选择性氧化烷烃和/或烯烃制备高价值含氧化合物 |
EP2082804A1 (en) * | 2008-01-25 | 2009-07-29 | CPE Lyon Formation Continue et Recherche | Hybrid organic-inorganic materials that contain stabilized carbene |
US20170247269A1 (en) * | 2014-09-10 | 2017-08-31 | China National Foodpurification Technology (Beijing) Co., Ltd | Electrode, preparation method therefor, and uses thereof |
CN109382097A (zh) * | 2018-09-29 | 2019-02-26 | 陕西科技大学 | 一种微乳液法制备铂铱钌复合纳米颗粒的方法 |
CN109607690A (zh) * | 2018-11-20 | 2019-04-12 | 陕西科技大学 | 一种三维多孔石墨烯水凝胶锑掺杂氧化锡电极的制备方法 |
Non-Patent Citations (5)
Title |
---|
T. A. F. LASSALI ET AL.: "Structural, morphological and surface properties as a function of composition of Ru+Ti+Pt mixed-oxide electrodes", 《ELECTROCHIMICA ACTA》 * |
WANG, JB ET AL.: "Catalytic wet air oxidation of acetic acid over different ruthenium catalysts", 《CATALYSIS COMMUNICATIONS》 * |
宗蕾: "微乳体系中肉桂醛和柠檬醛选择性加氢性能的研究", 《中国优秀硕士学位论文全文数据库》 * |
来水利等: "稳定性二氧化氯在废纸脱墨中的应用", 《陕西科技大学学报(自然科学版)》 * |
王爱萍等: "钌钛复合氧化物及其载铂催化剂的制备与表征", 《催化学报》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111704211A (zh) * | 2020-06-26 | 2020-09-25 | 陕西科技大学 | 一种铂钌钛钇dsa电极的制备方法 |
CN113023834A (zh) * | 2021-03-08 | 2021-06-25 | 北京石油化工学院 | 一种复合电极的制备方法及利用阳极氧化进行医疗污水消毒的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110560049B (zh) | 2022-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | PtO nanodots promoting Ti3C2 MXene in-situ converted Ti3C2/TiO2 composites for photocatalytic hydrogen production | |
Li et al. | Visible-light-driven nitrogen fixation catalyzed by Bi5O7Br nanostructures: enhanced performance by oxygen vacancies | |
Chen et al. | Room temperature synthesized BaTiO3 for photocatalytic hydrogen evolution | |
Ma et al. | A novel noble-metal-free Mo2C-In2S3 heterojunction photocatalyst with efficient charge separation for enhanced photocatalytic H2 evolution under visible light | |
Li et al. | MOF-derived Cu2O/Cu nanospheres anchored in nitrogen-doped hollow porous carbon framework for increasing the selectivity and activity of electrochemical CO2-to-formate conversion | |
Ren et al. | 2D co-catalytic MoS2 nanosheets embedded with 1D TiO2 nanoparticles for enhancing photocatalytic activity | |
Li et al. | Preparation of AgIn5S8/TiO2 heterojunction nanocomposite and its enhanced photocatalytic H2 production property under visible light | |
Shi et al. | Visible-light photocatalytic degradation of BiTaO4 photocatalyst and mechanism of photocorrosion suppression | |
Lardhi et al. | Significant impact of exposed facets on the BiVO4 material performance for photocatalytic water splitting reactions | |
Zhuang et al. | Lignin-based carbon dots as high-performance support of Pt single atoms for photocatalytic H2 evolution | |
Wang et al. | Photocatalytic CO2 reduction with water vapor to CO and CH4 in a recirculation reactor by Ag-Cu2O/TiO2 Z-scheme heterostructures | |
Zhang et al. | Ferroelectric polarization effect promoting the bulk charge separation for enhance the efficiency of photocatalytic degradation | |
Candia-Onfray et al. | An updated review of metal–organic framework materials in photo (electro) catalytic applications: From CO2 reduction to wastewater treatments | |
He et al. | Ultrathin CoOOH oxides nanosheets realizing efficient photocatalytic hydrogen evolution | |
Zhao et al. | MoS2 quantum dots@ TiO2 nanotube composites with enhanced photoexcited charge separation and high-efficiency visible-light driven photocatalysis | |
She et al. | Facile preparation of mixed-phase CdS and its enhanced photocatalytic selective oxidation of benzyl alcohol under visible light irradiation | |
Sayed et al. | Co-Fe layered double hydroxide decorated titanate nanowires for overall photoelectrochemical water splitting | |
Ali Khan et al. | Synergistic effect of Co/La in oxygen vacancy rich ternary CoAlLa layered double hydroxide with enhanced reductive sites for selective photoreduction of CO2 to CH4 | |
Fang et al. | Effect of surface self-heterojunction existed in Bi x Y1–x VO4 on photocatalytic overall water splitting | |
Zhang et al. | MOF-mediated fabrication of coralloid Ni2P@ CdS for enhanced visible-light hydrogen evolution | |
CN110560049B (zh) | 一种用微乳液法制备铂钌钛复合纳米颗粒的方法 | |
Yang et al. | Insight into the effect of crystalline structure on the oxygen reduction reaction activities of one-dimensional MnO2 | |
Zhao et al. | Polyoxometalates-doped TiO 2/Ag hybrid heterojunction: removal of multiple pollutants and mechanism investigation | |
Hu et al. | Ultrathin graphitic carbon nitride modified PbBiO2Cl microspheres with accelerating interfacial charge transfer for the photodegradation of organic contaminants | |
Huang et al. | Improved mass-transfer enhances photo-driven dye degradation and H2 evolution over a few-layer WS2/ZnO heterostructure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |