CN110560000A - 一种Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法及应用 - Google Patents
一种Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法及应用 Download PDFInfo
- Publication number
- CN110560000A CN110560000A CN201910835889.8A CN201910835889A CN110560000A CN 110560000 A CN110560000 A CN 110560000A CN 201910835889 A CN201910835889 A CN 201910835889A CN 110560000 A CN110560000 A CN 110560000A
- Authority
- CN
- China
- Prior art keywords
- zif
- solution
- doping
- preparing
- adsorption material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- MFLKDEMTKSVIBK-UHFFFAOYSA-N zinc;2-methylimidazol-3-ide Chemical compound [Zn+2].CC1=NC=C[N-]1.CC1=NC=C[N-]1 MFLKDEMTKSVIBK-UHFFFAOYSA-N 0.000 title claims abstract description 85
- 239000013154 zeolitic imidazolate framework-8 Substances 0.000 title claims abstract description 84
- 239000000463 material Substances 0.000 title claims abstract description 44
- 238000001179 sorption measurement Methods 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title claims abstract description 19
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 claims abstract description 32
- OERNJTNJEZOPIA-UHFFFAOYSA-N zirconium nitrate Chemical compound [Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O OERNJTNJEZOPIA-UHFFFAOYSA-N 0.000 claims abstract description 32
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910021642 ultra pure water Inorganic materials 0.000 claims abstract description 12
- 239000012498 ultrapure water Substances 0.000 claims abstract description 12
- 239000013153 zeolitic imidazolate framework Substances 0.000 claims abstract description 10
- 239000007787 solid Substances 0.000 claims abstract description 9
- 238000001035 drying Methods 0.000 claims abstract description 6
- 238000000227 grinding Methods 0.000 claims abstract description 6
- 239000007788 liquid Substances 0.000 claims abstract description 6
- 239000000843 powder Substances 0.000 claims abstract description 6
- 238000000926 separation method Methods 0.000 claims abstract description 6
- 238000003756 stirring Methods 0.000 claims abstract description 6
- 238000005406 washing Methods 0.000 claims abstract description 6
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- XLSZMDLNRCVEIJ-UHFFFAOYSA-N methylimidazole Natural products CC1=CNC=N1 XLSZMDLNRCVEIJ-UHFFFAOYSA-N 0.000 claims description 2
- 239000011148 porous material Substances 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 238000010586 diagram Methods 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 3
- 238000002336 sorption--desorption measurement Methods 0.000 description 3
- 239000013163 zeolitic imidazolate framework-82 Substances 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000002411 thermogravimetry Methods 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 238000003795 desorption Methods 0.000 description 1
- 238000010218 electron microscopic analysis Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000012621 metal-organic framework Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/0203—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
- B01J20/0211—Compounds of Ti, Zr, Hf
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/0203—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
- B01J20/024—Compounds of Zn, Cd, Hg
- B01J20/0244—Compounds of Zn
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/223—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
- B01J20/226—Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明涉及一种Zr掺杂ZIF‑8制备Zr/ZIF‑8多孔吸附材料的方法及应用,属于吸附材料技术领域。本发明将2‑甲基咪唑溶解于NH4OH溶液中得到溶液A;将硝酸锌和硝酸锆溶解于超纯水中得到溶液B;在温度为25~26℃、搅拌条件下,将溶液A加入到溶液B中反应24~25h;固液分离,采用超纯水洗涤固体,干燥、研磨即得Zr掺杂ZIF‑8的Zr/ZIF‑8多孔吸附材料粉末。本发明利用少量Zr元素掺杂于ZIF‑8,在不破坏ZIF‑8结构的同时,提高其吸附CO2的能力,Zr/ZIF‑8吸附CO2的能力为ZIF‑8的2.2倍,在CO2吸附减排方面具有重要工业应用价值。
Description
技术领域
本发明涉及一种Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法及应用,属于吸附材料技术领域。
背景技术
ZIF-8作为典型的金属有机框架材料,具有比表面积高、孔道结构易修饰、物理化学性能可调等特点,同时还具有更加良好的化学稳定性和热稳定性。虽然ZIF-8具有较大的比表面积和孔容,但其金属位点是Zn,Zn表面的碱性较弱,不利于CO2的吸附。而Zr元素表面碱性较强,将Zr元素掺杂在ZIF-8中,制备出新型多孔吸附材料Zr/ZIF-8,可提高ZIF-8对CO2的吸附能力。
发明内容
本发明针对现有技术存在的问题,提供一种Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法及应用,本发明利用少量Zr元素掺杂于ZIF-8,在不破坏ZIF-8结构的同时,提高其吸附CO2的能力。
一种Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法,具体步骤如下:
(1)将2-甲基咪唑溶解于NH4OH溶液中得到溶液A;
(2)将硝酸锌和硝酸锆溶解于超纯水中得到溶液B;
(3)在温度为25~26℃、搅拌条件下,将步骤(1)溶液A加入到步骤(2)溶液B中反应24~25h;固液分离,采用超纯水洗涤固体,干燥、研磨即得Zr掺杂ZIF-8的Zr/ZIF-8多孔吸附材料粉末。
所述步骤(1)NH4OH溶液中NH3的含量为25%~28%。
所述步骤(1)溶液A中2-甲基咪唑的浓度为1.8~1.9mol/L。
所述步骤(2)溶液B中硝酸锌的浓度为0.6~0.7mol /L,硝酸锆的浓度为0.06~0.07mol /L。
所述步骤(3)溶液A中2-甲基咪唑与溶液B中硝酸锌、硝酸锆的摩尔比为80:9:1。
所述Zr/ZIF-8多孔吸附材料作为CO2吸附捕集剂的应用。
Zr元素掺杂于ZIF-8能够提高吸附性能的原理:
Zr元素表面存在大量碱性位点,表面碱性位点有利于吸附CO2,Zr元素的加入可提高ZIF-8材料的表面碱性,从而提高CO2吸附性能。
本发明的有益效果是:
本发明利用少量Zr元素掺杂于ZIF-8,在不破坏ZIF-8结构的同时,提高其吸附CO2的能力;Zr/ZIF-8吸附CO2的能力为ZIF-8的2.2倍,在CO2吸附减排方面具有重要工业应用价值。
附图说明
图1为实施例1中Zr/ZIF-8材料的X射线衍射分析图;
图2为实施例1中Zr/ZIF-8材料的热重分析图;
图3为实施例1中Zr/ZIF-8材料与ZIF-8材料的电镜分析图;
图4为实施例1中Zr/ZIF-8材料的氮气吸附-脱附图和孔径分布图;
图5为实施例2中Zr/ZIF-8材料的CO2-TPD图。
具体实施方式
下面结合具体实施方式对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。
实施例1:一种Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法,具体步骤如下:
(1)将2-甲基咪唑溶解于NH4OH溶液中得到溶液A;其中NH4OH溶液中NH3的含量为25%,溶液A中2-甲基咪唑的浓度为1.90mol/L;
(2)将硝酸锌和硝酸锆溶解于超纯水中得到溶液B;其中溶液B中硝酸锌的浓度为0.60mol /L,硝酸锆的浓度为0.070mol /L;
(3)在温度为25.0℃、搅拌条件下,将步骤(1)溶液A加入到步骤(2)溶液B中反应24.0h;固液分离,采用超纯水洗涤固体,干燥、研磨即得Zr掺杂ZIF-8的Zr/ZIF-8多孔吸附材料粉末;其中溶液A中2-甲基咪唑与溶液B中硝酸锌、硝酸锆的摩尔比为80:9:1;
本实施例Zr/ZIF-8材料的X射线衍射分析图见图1;从图1可知,Zr/ZIF-8与纯ZIF-8具有相同的XRD衍射峰,没有出现其它峰,说明掺杂Zr元素后不会破坏ZIF-8的结构;
本实施例Zr/ZIF-8材料的热重分析图见图2;从图2可知,与ZIF-8相比,Zr/ZIF-8仍具有良好的热稳定性,说明掺杂Zr元素后不会破坏ZIF-8的热稳定性;
本实施例Zr/ZIF-8材料与ZIF-8材料的电镜分析图见图3;其中a为ZIF-8的电镜分析图,b为Zr/ZIF-8材料的电镜分析图,c为b图的局部放大图;从图3可知,Zr/ZIF-8仍具ZIF-8的典型形貌,说明掺杂Zr元素后不会破坏ZIF-8的形貌;
本实施例Zr/ZIF-8材料的氮气吸附-脱附图和孔径分布图见图4;其中a为氮气吸附-脱附图,b为孔径分布图,比表面积,孔容和孔径计算结果如表1所示;
表1
从表1可知,与ZIF-8相比,Zr/ZIF-8仍具ZIF-8的典型多孔结构。
实施例2:实施例1的Zr/ZIF-8的吸附CO2性能测试:
利用CO2-TPD测试Zr/ZIF-8的吸附CO2的性能:
(1)将50mg的Zr/ZIF-8置于温度为300℃条件下氮气吹扫1h;
(2)在温度为40℃条件下采用高纯CO2吸附1h,再用氮气吹扫1h;
(3)执行CO2-TPD程序,温度范围为40-250℃,升温速率为10℃/min;结果见图5,峰面积计算结果如表2所示;
表2
从图5和表2可知,Zr/ZIF-8的CO2脱附峰面积大幅度增加,峰面积由120 mV·℃增加到260 mV·℃。
实施例3:一种Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法,具体步骤如下:
(1)将2-甲基咪唑溶解于NH4OH溶液中得到溶液A;其中NH4OH溶液中NH3的含量为26%,溶液A中2-甲基咪唑的浓度为1.80mol/L;
(2)将硝酸锌和硝酸锆溶解于超纯水中得到溶液B;其中溶液B中硝酸锌的浓度为0.65mol /L,硝酸锆的浓度为0.068mol /L;
(3)在温度为26.0℃、搅拌条件下,将步骤(1)溶液A加入到步骤(2)溶液B中反应24.6h;固液分离,采用超纯水洗涤固体,干燥、研磨即得Zr掺杂ZIF-8的Zr/ZIF-8多孔吸附材料粉末;其中溶液A中2-甲基咪唑与溶液B中硝酸锌、硝酸锆的摩尔比为80:9:1;
本实施例Zr/ZIF-8多孔吸附材的孔容和孔径计算结果如表3所示;
表3
SBET:比表面积;Vp:孔容;Dp:平均孔径;
从表3可知,与ZIF-8相比,Zr/ZIF-8仍具ZIF-8的典型多孔结构。
实施例4:一种Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法,具体步骤如下:
(1)将2-甲基咪唑溶解于NH4OH溶液中得到溶液A;其中NH4OH溶液中NH3的含量为28%,溶液A中2-甲基咪唑的浓度为1.85mol/L;
(2)将硝酸锌和硝酸锆溶解于超纯水中得到溶液B;其中溶液B中硝酸锌的浓度为0.70mol /L,硝酸锆的浓度为0.060mol /L;
(3)在温度为25.5℃、搅拌条件下,将步骤(1)溶液A加入到步骤(2)溶液B中反应25.0h;固液分离,采用超纯水洗涤固体,干燥、研磨即得Zr掺杂ZIF-8的Zr/ZIF-8多孔吸附材料粉末;其中溶液A中2-甲基咪唑与溶液B中硝酸锌、硝酸锆的摩尔比为80:9:1;
本实施例Zr/ZIF-8多孔吸附材的孔容和孔径计算结果如表4所示;
表4
SBET:比表面积;Vp:孔容;Dp:平均孔径;
从表4可知,与ZIF-8相比,Zr/ZIF-8仍具ZIF-8的典型多孔结构。
Claims (6)
1.一种Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法,其特征在于,具体步骤如下:
(1)将2-甲基咪唑溶解于NH4OH溶液中得到溶液A;
(2)将硝酸锌和硝酸锆溶解于超纯水中得到溶液B;
(3)在温度为25~26℃、搅拌条件下,将步骤(1)溶液A加入到步骤(2)溶液B中反应24~25h;固液分离,采用超纯水洗涤固体,干燥、研磨即得Zr掺杂ZIF-8的Zr/ZIF-8多孔吸附材料粉末。
2.根据权利要求1所述Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法,其特征在于:步骤(1)NH4OH溶液中NH3的含量为25%~28%。
3.根据权利要求1所述Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法,其特征在于:步骤(1)溶液A中2-甲基咪唑的浓度为1.8~1.9mol/L。
4.根据权利要求1所述Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法,其特征在于:步骤(2)溶液B中硝酸锌的浓度为0.6~0.7mol /L,硝酸锆的浓度为0.06~0.07mol /L。
5.根据权利要求1所述Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法,其特征在于:步骤(3)溶液A中2-甲基咪唑与溶液B中硝酸锌、硝酸锆的摩尔比为80:9:1。
6.权利要求1~5任意一项所述Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法所制备的Zr/ZIF-8多孔吸附材料作为CO2吸附捕集剂的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910835889.8A CN110560000A (zh) | 2019-09-05 | 2019-09-05 | 一种Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法及应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910835889.8A CN110560000A (zh) | 2019-09-05 | 2019-09-05 | 一种Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法及应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110560000A true CN110560000A (zh) | 2019-12-13 |
Family
ID=68777921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910835889.8A Pending CN110560000A (zh) | 2019-09-05 | 2019-09-05 | 一种Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法及应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110560000A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112588324A (zh) * | 2020-12-28 | 2021-04-02 | 湖南金联星特种材料股份有限公司 | 一锅法制备复合光催化剂CdS/ZIF-8的方法及其应用 |
CN112979979A (zh) * | 2021-02-23 | 2021-06-18 | 云南省水利水电科学研究院 | 用于吸附去除水体中微污染汞的改性zif-8材料制备方法及应用 |
CN114950555A (zh) * | 2022-06-14 | 2022-08-30 | 淮阴师范学院 | 锆基单原子催化剂、制备方法及其在2,5-呋喃二甲醇选择性合成中的应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2155608A1 (en) * | 2007-05-11 | 2010-02-24 | The Regents Of The University Of California | Adsorptive gas separation of multi-component gases |
CN106732390A (zh) * | 2016-12-02 | 2017-05-31 | 太原理工大学 | 高CO2吸附性能的改性ZIFs材料及其制备方法 |
CN108854975A (zh) * | 2018-07-18 | 2018-11-23 | 西北农林科技大学 | 一种棒状zif-8材料及其制备方法和应用 |
CN109012758A (zh) * | 2018-08-31 | 2018-12-18 | 河南师范大学 | 一种用于吸附氟离子的ZrCl4改性ZIF-8复合吸附剂的制备方法及其应用 |
CN109647343A (zh) * | 2018-12-28 | 2019-04-19 | 南京工业大学 | 多活性吸附位点金属-有机骨架复合材料及其制备和应用 |
-
2019
- 2019-09-05 CN CN201910835889.8A patent/CN110560000A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2155608A1 (en) * | 2007-05-11 | 2010-02-24 | The Regents Of The University Of California | Adsorptive gas separation of multi-component gases |
CN106732390A (zh) * | 2016-12-02 | 2017-05-31 | 太原理工大学 | 高CO2吸附性能的改性ZIFs材料及其制备方法 |
CN108854975A (zh) * | 2018-07-18 | 2018-11-23 | 西北农林科技大学 | 一种棒状zif-8材料及其制备方法和应用 |
CN109012758A (zh) * | 2018-08-31 | 2018-12-18 | 河南师范大学 | 一种用于吸附氟离子的ZrCl4改性ZIF-8复合吸附剂的制备方法及其应用 |
CN109647343A (zh) * | 2018-12-28 | 2019-04-19 | 南京工业大学 | 多活性吸附位点金属-有机骨架复合材料及其制备和应用 |
Non-Patent Citations (1)
Title |
---|
HIMANSHU JASUJA ET AL.: "Rational Tuning of Water Vapor and CO2 Adsorption in Highly Stable Zr-Based MOFs", 《THE JOURNAL OF PHYSICAL CHEMISTRY》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112588324A (zh) * | 2020-12-28 | 2021-04-02 | 湖南金联星特种材料股份有限公司 | 一锅法制备复合光催化剂CdS/ZIF-8的方法及其应用 |
CN112588324B (zh) * | 2020-12-28 | 2022-04-26 | 湖南金联星特种材料股份有限公司 | 一锅法制备复合光催化剂CdS/ZIF-8的方法及其应用 |
CN112979979A (zh) * | 2021-02-23 | 2021-06-18 | 云南省水利水电科学研究院 | 用于吸附去除水体中微污染汞的改性zif-8材料制备方法及应用 |
CN114950555A (zh) * | 2022-06-14 | 2022-08-30 | 淮阴师范学院 | 锆基单原子催化剂、制备方法及其在2,5-呋喃二甲醇选择性合成中的应用 |
CN114950555B (zh) * | 2022-06-14 | 2023-08-18 | 淮阴师范学院 | 锆基单原子催化剂、制备方法及其在2,5-呋喃二甲醇选择性合成中的应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110560000A (zh) | 一种Zr掺杂ZIF-8制备Zr/ZIF-8多孔吸附材料的方法及应用 | |
Chen et al. | Synthesis and characterization of the interpenetrated MOF-5 | |
Qiu et al. | Fabrication of Co 3 O 4 nanoparticles in thin porous carbon shells from metal–organic frameworks for enhanced electrochemical performance | |
CN110642238B (zh) | 类石墨烯氮掺杂多孔碳材料及其制备方法和应用 | |
Wang et al. | The comparative lithium storage properties of urchin-like hematite spheres: hollow vs. solid | |
US7713660B2 (en) | Method for manufacturing manganese oxide nanotube or nanorod by anodic aluminum oxide template | |
US9381491B2 (en) | Ceramic material, method for adsorbing carbon dioxide and method for converting carbon dioxide | |
US9525190B2 (en) | Solid lithium electrolyte via addition of lithium salts to metal-organic frameworks | |
Ryu et al. | Preparation and characterization of a cylinder-type adsorbent for the recovery of lithium from seawater | |
CN107158979B (zh) | 一种锂离子印迹杂化膜的制备方法及其用途 | |
CN104475060A (zh) | 一种复合吸附剂及其制备方法与应用 | |
US20160340791A1 (en) | Electrocatalyst for acidic media and method of making an electrocatalyst for acidic media | |
CN113019305B (zh) | 多孔碱式碳酸镧磷酸盐吸附剂的制备及其应用 | |
CN112342378A (zh) | 一种锂离子吸附剂及其制备方法 | |
CN112871144B (zh) | 一种多孔微球吸附材料及其制备和在吸附回收含铀废水或海水中铀方面的应用 | |
CN103435620B (zh) | 用于co2吸附与分离的多孔铜金属有机骨架材料及其制备方法 | |
CN113708005B (zh) | 一种嵌锂mof/石墨烯复合修饰的功能隔膜及制备方法 | |
CN115845791B (zh) | 一种Ca/La基钙钛矿吸附材料的制备方法及用途 | |
CN110180489B (zh) | 一种掺硫富锂锰系锂吸附剂及其制备方法和应用 | |
CN116375031A (zh) | 一种低温活化活性炭、制备方法及应用 | |
CN106732441A (zh) | 一种具有层次孔结构的整体式锂离子筛的制备方法 | |
US20240238754A1 (en) | Anion-doped metal oxide | |
Gu et al. | General synthesis of metal oxide hollow core–shell microspheres as anode materials for lithium-ion batteries and as adsorbents for wastewater treatment | |
CN113234232B (zh) | 碱金属-稀土异金属框架化合物、制备方法及应用 | |
CN115532219A (zh) | 基于石榴石型固体电解质粉末的盐湖提锂吸附剂及其制备和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20191213 |
|
RJ01 | Rejection of invention patent application after publication |